2. Colaneri J. 2014; An overview of transplant immunosuppression-history, principles, and current practices in kidney transplantation. Nephrol Nurs J. 41:549–60.
3. Ploeg RJ. 1990; Kidney preservation with the UW and Euro-Collins solutions: a preliminary report of a clinical comparison. Transplantation. 49:281–4. DOI:
10.1097/00007890-199002000-00011. PMID:
2407002.
4. Peters TG, Shaver TR, Ames JE 4th, Santiago-Delpin EA, Jones KW, Blanton JW. 1995; Cold ischemia and outcome in 17,937 cadaveric kidney transplants. Transplantation. 59:191–6. DOI:
10.1097/00007890-199501270-00007. PMID:
7839440.
5. O'Callaghan JM, Morgan RD, Knight SR, Morris PJ. 2013; Systematic review and meta-analysis of hypothermic machine perfusion versus static cold storage of kidney allografts on transplant outcomes. Br J Surg. 100:991–1001. DOI:
10.1002/bjs.9169. PMID:
23754643.
6. United Network for Organ Sharing (UNOS). 2024. Current state of organ donation and transplantation: transplant trends [Internet]. UNOS;Available from:
https://unos.org/. cited 2024 Jul 27.
9. López-Navidad A, Caballero F. 2003; Extended criteria for organ acceptance: strategies for achieving organ safety and for increasing organ pool. Clin Transplant. 17:308–24. DOI:
10.1034/j.1399-0012.2003.00119.x. PMID:
12868987.
10. Fernández AR, Sánchez-Tarjuelo R, Cravedi P, Ochando J, López-Hoyos M. 2020; Review: ischemia reperfusion injury-a translational perspective in organ transplantation. Int J Mol Sci. 21:8549. DOI:
10.3390/ijms21228549. PMID:
33202744. PMCID:
PMC7696417.
11. Lurje I, Uluk D, Hammerich L, Pratschke J, Tacke F, Lurje G. 2024; Comparing hypothermic oxygenated and normothermic liver machine perfusion: translation matters. J Hepatol. 80:e163–5. DOI:
10.1016/j.jhep.2023.09.027. PMID:
37827473.
12. Lee CY, Zhang JX, Jones JW Jr, Southard JH, Clemens MG. 2002; Functional recovery of preserved livers following warm ischemia: improvement by machine perfusion preservation. Transplantation. 74:944–51. DOI:
10.1097/00007890-200210150-00008. PMID:
12394835.
13. Brasile L, Stubenitsky BM, Booster MH, Lindell S, Araneda D, Buck C, et al. 2002; Overcoming severe renal ischemia: the role of ex vivo warm perfusion. Transplantation. 73:897–901. DOI:
10.1097/00007890-200203270-00011. PMID:
11923688.
14. Gok MA, Buckley PE, Shenton BK, Balupuri S, El-Sheikh MA, Robertson H, et al. 2002; Long-term renal function in kidneys from non-heart-beating donors: a single-center experience. Transplantation. 74:664–9. DOI:
10.1097/00007890-200209150-00013. PMID:
12352883.
15. Schön MR, Kollmar O, Wolf S, Schrem H, Matthes M, Akkoc N, et al. 2001; Liver transplantation after organ preservation with normothermic extracorporeal perfusion. Ann Surg. 233:114–23. DOI:
10.1097/00000658-200101000-00017. PMID:
11141233. PMCID:
PMC1421174.
16. Bessems M, Doorschodt BM, van Marle J, Vreeling H, Meijer AJ, van Gulik TM. 2005; Improved machine perfusion preservation of the non-heart-beating donor rat liver using Polysol: a new machine perfusion preservation solution. Liver Transpl. 11:1379–88. DOI:
10.1002/lt.20502. PMID:
16237689.
17. Lindell SL, Compagnon P, Mangino MJ, Southard JH. 2005; UW solution for hypothermic machine perfusion of warm ischemic kidneys. Transplantation. 79:1358–61. DOI:
10.1097/01.TP.0000159143.45022.F6. PMID:
15912104.
18. Maathuis MH, Manekeller S, van der Plaats A, Leuvenink HG, 't Hart NA, Lier AB, et al. 2007; Improved kidney graft function after preservation using a novel hypothermic machine perfusion device. Ann Surg. 246:982–8. DOI:
10.1097/SLA.0b013e31815c4019. PMID:
18043100.
19. Sohrabi S, Navarro AP, Wilson C, Sanni A, Wyrley-Birch H, Anand DV, et al. 2007; Donation after cardiac death kidneys with low severity pre-arrest acute renal failure. Am J Transplant. 7:571–5. DOI:
10.1111/j.1600-6143.2006.01639.x. PMID:
17352711.
20. Xu H, Lee CY, Clemens MG, Zhang JX. 2008; Inhibition of TXA synthesis with OKY-046 improves liver preservation by prolonged hypothermic machine perfusion in rats. J Gastroenterol Hepatol. 23(7 Pt 2):e212–20. DOI:
10.1111/j.1440-1746.2007.05061.x.
21. Jain S, Lee SH, Korneszczuk K, Culberson CR, Southard JH, Berthiaume F, et al. 2008; Improved preservation of warm ischemic livers by hypothermic machine perfusion with supplemented University of Wisconsin solution. J Invest Surg. 21:83–91. DOI:
10.1080/08941930701883657. PMID:
18340625.
22. Bagul A, Hosgood SA, Kaushik M, Kay MD, Waller HL, Nicholson ML. 2008; Experimental renal preservation by normothermic resuscitation perfusion with autologous blood. Br J Surg. 95:111–8. DOI:
10.1002/bjs.5909. PMID:
17696214.
23. Hosgood SA, Yang B, Bagul A, Mohamed IH, Nicholson ML. 2010; A comparison of hypothermic machine perfusion versus static cold storage in an experimental model of renal ischemia reperfusion injury. Transplantation. 89:830–7. DOI:
10.1097/TP.0b013e3181cfa1d2. PMID:
20098357.
24. Guarrera JV, Henry SD, Samstein B, Odeh-Ramadan R, Kinkhabwala M, Goldstein MJ, et al. 2010; Hypothermic machine preservation in human liver transplantation: the first clinical series. Am J Transplant. 10:372–81. DOI:
10.1111/j.1600-6143.2009.02932.x. PMID:
19958323.
25. Berendsen TA, Bruinsma BG, Lee J, D'Andrea V, Liu Q, Izamis ML, et al. 2012; A simplified subnormothermic machine perfusion system restores ischemically damaged liver grafts in a rat model of orthotopic liver transplantation. Transplant Res. 1:6. DOI:
10.1186/2047-1440-1-6. PMID:
23369351. PMCID:
PMC3552573.
26. Tolboom H, Izamis ML, Sharma N, Milwid JM, Uygun B, Berthiaume F, et al. 2012; Subnormothermic machine perfusion at both 20°C and 30°C recovers ischemic rat livers for successful transplantation. J Surg Res. 175:149–56. DOI:
10.1016/j.jss.2011.03.003. PMID:
21550058. PMCID:
PMC3863393.
27. Henry SD, Nachber E, Tulipan J, Stone J, Bae C, Reznik L, et al. 2012; Hypothermic machine preservation reduces molecular markers of ischemia/reperfusion injury in human liver transplantation. Am J Transplant. 12:2477–86. DOI:
10.1111/j.1600-6143.2012.04086.x. PMID:
22594953.
28. Hoyer DP, Gallinat A, Swoboda S, Wohlschläger J, Rauen U, Paul A, et al. 2014; Subnormothermic machine perfusion for preservation of porcine kidneys in a donation after circulatory death model. Transpl Int. 27:1097–106. DOI:
10.1111/tri.12389. PMID:
24963744.
29. Bruinsma BG, Yeh H, Ozer S, Martins PN, Farmer A, Wu W, et al. 2014; Subnormothermic machine perfusion for ex vivo preservation and recovery of the human liver for transplantation. Am J Transplant. 14:1400–9. DOI:
10.1111/ajt.12727. PMID:
24758155. PMCID:
PMC4470578.
30. Fontes P, Lopez R, van der Plaats A, Vodovotz Y, Minervini M, Scott V, et al. 2015; Liver preservation with machine perfusion and a newly developed cell-free oxygen carrier solution under subnormothermic conditions. Am J Transplant. 15:381–94. DOI:
10.1111/ajt.12991. PMID:
25612645. PMCID:
PMC5024042.
31. Schopp I, Reissberg E, Lüer B, Efferz P, Minor T. 2015; Controlled rewarming after hypothermia: adding a new principle to renal preservation. Clin Transl Sci. 8:475–8. DOI:
10.1111/cts.12295. PMID:
26053383. PMCID:
PMC4744687.
32. Hoyer DP, Mathé Z, Gallinat A, Canbay AC, Treckmann JW, Rauen U, et al. 2016; Controlled oxygenated rewarming of cold stored livers prior to transplantation: first clinical application of a new concept. Transplantation. 100:147–52. DOI:
10.1097/TP.0000000000000915. PMID:
26479280.
33. Ravikumar R, Jassem W, Mergental H, Heaton N, Mirza D, Perera MT, et al. 2016; Liver transplantation after ex vivo normothermic machine preservation: a phase 1 (first-in-man) clinical trial. Am J Transplant. 16:1779–87. DOI:
10.1111/ajt.13708. PMID:
26752191.
34. Westerkamp AC, Karimian N, Matton AP, Mahboub P, van Rijn R, Wiersema-Buist J, et al. 2016; Oxygenated hypothermic machine perfusion after static cold storage improves hepatobiliary function of extended criteria donor livers. Transplantation. 100:825–35. DOI:
10.1097/TP.0000000000001081. PMID:
26863473.
35. Zhang Y, Fu Z, Zhong Z, Wang R, Hu L, Xiong Y, et al. 2016; Hypothermic machine perfusion decreases renal cell apoptosis during ischemia/reperfusion injury via the Ezrin/AKT pathway. Artif Organs. 40:129–35. DOI:
10.1111/aor.12534. PMID:
26263023.
36. Boteon YL, Laing R, Mergental H, Reynolds GM, Mirza DF, Afford SC, et al. 2017; Mechanisms of autophagy activation in endothelial cell and their targeting during normothermic machine liver perfusion. World J Gastroenterol. 23:8443–51. DOI:
10.3748/wjg.v23.i48.8443. PMID:
29358854. PMCID:
PMC5752706.
37. Zhao DF, Dong Q, Zhang T. 2017; Effects of static cold storage and hypothermic machine perfusion on oxidative stress factors, adhesion molecules, and zinc finger transcription factor proteins before and after liver transplantation. Ann Transplant. 22:96–100. DOI:
10.12659/AOT.901897. PMID:
28209945.
38. Juriasingani S, Akbari M, Chan JY, Whiteman M, Sener A. 2018; H2S supplementation: a novel method for successful organ preservation at subnormothermic temperatures. Nitric Oxide. 81:57–66. DOI:
10.1016/j.niox.2018.10.004. PMID:
30393129.
39. Hosgood SA, Thompson E, Moore T, Wilson CH, Nicholson ML. 2018; Normothermic machine perfusion for the assessment and transplantation of declined human kidneys from donation after circulatory death donors. Br J Surg. 105:388–94. DOI:
10.1002/bjs.10733. PMID:
29210064. PMCID:
PMC5887977.
40. Nasralla D, Coussios CC, Mergental H, Akhtar MZ, Butler AJ, Ceresa CD, et al. 2018; A randomized trial of normothermic preservation in liver transplantation. Nature. 557:50–6. DOI:
10.1038/s41586-018-0047-9. PMID:
29670285.
41. Zeng X, Li M, Fan X, Xue S, Liang W, Fang Z, et al. 2019; Hypothermic oxygenated machine perfusion alleviates donation after circulatory death liver injury through regulating p-selectin-dependent and -independent pathways in mice. Transplantation. 103:918–28. DOI:
10.1097/TP.0000000000002621. PMID:
31033856.
42. Jassem W, Xystrakis E, Ghnewa YG, Yuksel M, Pop O, Martinez-Llordella M, et al. 2019; Normothermic machine perfusion (NMP) inhibits proinflammatory responses in the liver and promotes regeneration. Hepatology. 70:682–95. DOI:
10.1002/hep.30475. PMID:
30561835.
44. Minor T, von Horn C, Gallinat A, Kaths M, Kribben A, Treckmann J, et al. 2020; First-in-man controlled rewarming and normothermic perfusion with cell-free solution of a kidney prior to transplantation. Am J Transplant. 20:1192–5. DOI:
10.1111/ajt.15647. PMID:
31599063.
45. Martins PN, Buchwald JE, Mergental H, Vargas L, Quintini C. The role of normothermic machine perfusion in liver transplantation. Int J Surg. 2020; 82S:52–60. DOI:
10.1016/j.ijsu.2020.05.026. PMID:
32417462.
46. Bhattacharjee RN, Patel SV, Sun Q, Jiang L, Richard-Mohamed M, Ruthirakanthan A, et al. 2020; Renal protection against ischemia reperfusion injury: hemoglobin-based oxygen carrier-201 versus blood as an oxygen carrier in ex vivo subnormothermic machine perfusion. Transplantation. 104:482–9. DOI:
10.1097/TP.0000000000002967. PMID:
31568396.
47. Nilsson J, Jernryd V, Qin G, Paskevicius A, Metzsch C, Sjöberg T, et al. 2020; A nonrandomized open-label phase 2 trial of nonischemic heart preservation for human heart transplantation. Nat Commun. 11:2976. DOI:
10.1038/s41467-020-16782-9. PMID:
32532991. PMCID:
PMC7293246.
48. Jochmans I, Brat A, Davies L, Hofker HS, van de Leemkolk FE, Leuvenink HG, et al. 2020; Oxygenated versus standard cold perfusion preservation in kidney transplantation (COMPARE): a randomised, double-blind, paired, phase 3 trial. Lancet. 396:1653–62. DOI:
10.1016/S0140-6736(20)32411-9. PMID:
33220737.
49. Juriasingani S, Ruthirakanthan A, Richard-Mohamed M, Akbari M, Aquil S, Patel S, et al. 2021; Subnormothermic perfusion with H2S donor AP39 improves DCD porcine renal graft outcomes in an ex vivo model of kidney preservation and reperfusion. Biomolecules. 11:446. DOI:
10.3390/biom11030446. PMID:
33802753. PMCID:
PMC8002411.
50. Husen P, Boffa C, Jochmans I, Krikke C, Davies L, Mazilescu L, et al. 2021; Oxygenated end-hypothermic machine perfusion in expanded criteria donor kidney transplant: a randomized clinical trial. JAMA Surg. 156:517–25. DOI:
10.1001/jamasurg.2021.0949. PMID:
33881456. PMCID:
PMC8060886.
51. Knijff LW, van Kooten C, Ploeg RJ. 2022; The effect of hypothermic machine perfusion to ameliorate ischemia-reperfusion injury in donor organs. Front Immunol. 13:848352. DOI:
10.3389/fimmu.2022.848352. PMID:
35572574. PMCID:
PMC9099247.
52. Faucher Q, Alarcan H, Sauvage FL, Forestier L, Miquelestorena-Standley E, Nadal-Desbarats L, et al. 2022; Perfusate metabolomics content and expression of tubular transporters during human kidney graft preservation by hypothermic machine perfusion. Transplantation. 106:1831–43. DOI:
10.1097/TP.0000000000004129. PMID:
35442245.
53. Langmuur SJ, Amesz JH, Veen KM, Bogers AJ, Manintveld OC, Taverne YJ. 2022; Normothermic ex situ heart perfusion with the organ care system for cardiac transplantation: a meta-analysis. Transplantation. 106:1745–53. DOI:
10.1097/TP.0000000000004167. PMID:
35618669.
54. Thompson ER, Sewpaul A, Figuereido R, Bates L, Tingle SJ, Ferdinand JR, et al. 2022; MicroRNA antagonist therapy during normothermic machine perfusion of donor kidneys. Am J Transplant. 22:1088–100. DOI:
10.1111/ajt.16929. PMID:
34932895.
55. Lascaris B, de Meijer VE, Porte RJ. 2022; Normothermic liver machine perfusion as a dynamic platform for regenerative purposes: what does the future have in store for us? J Hepatol. 77:825–36. DOI:
10.1016/j.jhep.2022.04.033. PMID:
35533801.
56. Olumba FC, Zhou F, Park Y, Chapman WC. RESTORE Investigators Group. 2023; Normothermic machine perfusion for declined livers: a strategy to rescue marginal livers for transplantation. J Am Coll Surg. 236:614–25. DOI:
10.1097/XCS.0000000000000555. PMID:
36728302.
57. Li J, Lu H, Zhang J, Li Y, Zhao Q. 2023; Comprehensive approach to assessment of liver viability during normothermic machine perfusion. J Clin Transl Hepatol. 11:466–79.
58. Kim J, Zimmerman MA, Shin WY, Boettcher BT, Lee JS, Park JI, et al. 2023; Effects of subnormothermic regulated hepatic reperfusion on mitochondrial and transcriptomic profiles in a porcine model. Ann Surg. 277:e366–75. DOI:
10.1097/SLA.0000000000005156. PMID:
34387201. PMCID:
PMC8840998.
59. Grąt M, Morawski M, Zhylko A, Rykowski P, Krasnodębski M, Wyporski A, et al. 2023; Routine end-ischemic hypothermic oxygenated machine perfusion in liver transplantation from donors after brain death: a randomized controlled trial. Ann Surg. 278:662–8. DOI:
10.1097/SLA.0000000000006055. PMID:
37497636.
60. Panayotova GG, Lunsford KE, Quillin RC 3rd, Rana A, Agopian VG, Lee-Riddle GS, et al. 2024; Portable hypothermic oxygenated machine perfusion for organ preservation in liver transplantation: a randomized, open-label, clinical trial. Hepatology. 79:1033–47. DOI:
10.1097/HEP.0000000000000715. PMID:
38090880. PMCID:
PMC11019979.
61. Tang G, Zhang L, Xia L, Zhang J, Wei Z, Zhou R. 2024; Hypothermic oxygenated perfusion in liver transplantation: a meta-analysis of randomized controlled trials and matched studies. Int J Surg. 110:464–77. DOI:
10.1097/JS9.0000000000000784. PMCID:
PMC10793758.
62. Abraham N, Gao Q, Kahan R, Alderete IS, Wang B, Howell DN, et al. 2024; Subnormothermic oxygenated machine perfusion (24 h) in DCD kidney transplantation. Transplant Direct. 10:e1633. DOI:
10.1097/TXD.0000000000001633. PMID:
38807861. PMCID:
PMC11132391.
64. Zhai Y, Petrowsky H, Hong JC, Busuttil RW, Kupiec-Weglinski JW. 2013; Ischaemia-reperfusion injury in liver transplantation-from bench to bedside. Nat Rev Gastroenterol Hepatol. 10:79–89. DOI:
10.1038/nrgastro.2012.225. PMID:
23229329. PMCID:
PMC3577927.
65. Liang Y, Christopher K, Finn PW, Colson YL, Perkins DL. 2007; Graft produced interleukin-6 functions as a danger signal and promotes rejection after transplantation. Transplantation. 84:771–7. DOI:
10.1097/01.tp.0000281384.24333.0b. PMID:
17893611.
67. de Rougemont O, Dutkowski P, Clavien PA. 2010; Biological modulation of liver ischemia-reperfusion injury. Curr Opin Organ Transplant. 15:183–9. DOI:
10.1097/MOT.0b013e3283373ced. PMID:
20125019.
68. Nieuwenhuijs-Moeke GJ, Pischke SE, Berger SP, Sanders JS, Pol RA, Struys MM, et al. 2020; Ischemia and reperfusion injury in kidney transplantation: relevant mechanisms in injury and repair. J Clin Med. 9:253. DOI:
10.3390/jcm9010253. PMID:
31963521. PMCID:
PMC7019324.
69. Hausenloy DJ, Yellon DM. 2013; Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest. 123:92–100. DOI:
10.1172/JCI62874. PMID:
23281415. PMCID:
PMC3533275.
70. Gielis JF, Boulet GA, Briedé JJ, Horemans T, Debergh T, Kussé M, et al. 2015; Longitudinal quantification of radical bursts during pulmonary ischaemia and reperfusion. Eur J Cardiothorac Surg. 48:622–9. DOI:
10.1093/ejcts/ezu518. PMID:
25564212.
71. Collins GM, Bravo-Shugarman M, Terasaki PI. 1969; Kidney preservation for transportation: initial perfusion and 30 hours' ice storage. Lancet. 2:1219–22. DOI:
10.1016/S0140-6736(69)90753-3. PMID:
4187813.
74. Stringham JC, Southard JH, Hegge J, Triemstra L, Fields BL, Belzer FO. 1992; Limitations of heart preservation by cold storage. Transplantation. 53:287–94. DOI:
10.1097/00007890-199202010-00007. PMID:
1738922.
75. Paloyo S, Sageshima J, Gaynor JJ, Chen L, Ciancio G, Burke GW. 2016; Negative impact of prolonged cold storage time before machine perfusion preservation in donation after circulatory death kidney transplantation. Transpl Int. 29:1117–25. DOI:
10.1111/tri.12818. PMID:
27421771.
76. Pascual J, Zamora J, Pirsch JD. 2008; A systematic review of kidney transplantation from expanded criteria donors. Am J Kidney Dis. 52:553–86. DOI:
10.1053/j.ajkd.2008.06.005. PMID:
18725015.
77. Karangwa SA, Dutkowski P, Fontes P, Friend PJ, Guarrera JV, Markmann JF, et al. 2016; Machine perfusion of donor livers for transplantation: a proposal for standardized nomenclature and reporting guidelines. Am J Transplant. 16:2932–42. DOI:
10.1111/ajt.13843. PMID:
27129409. PMCID:
PMC5132023.
78. Radajewska A, Krzywonos-Zawadzka A, Bil-Lula I. 2022; Recent methods of kidney storage and therapeutic possibilities of transplant kidney. Biomedicines. 10:1013. DOI:
10.3390/biomedicines10051013. PMID:
35625750. PMCID:
PMC9139114.
79. Boteon YL, Afford SC. 2019; Machine perfusion of the liver: which is the best technique to mitigate ischaemia-reperfusion injury? World J Transplant. 9:14–20. DOI:
10.5500/wjt.v9.i1.14. PMID:
30697517. PMCID:
PMC6347667.
80. van Leeuwen OB, Bodewes SB, Lantinga VA, Haring MP, Thorne AM, Brüggenwirth IM, et al. 2022; Sequential hypothermic and normothermic machine perfusion enables safe transplantation of high-risk donor livers. Am J Transplant. 22:1658–70. DOI:
10.1111/ajt.17022. PMID:
35286759. PMCID:
PMC9325426.
82. Schlegel A, de Rougemont O, Graf R, Clavien PA, Dutkowski P. 2013; Protective mechanisms of end-ischemic cold machine perfusion in DCD liver grafts. J Hepatol. 58:278–86. DOI:
10.1016/j.jhep.2012.10.004. PMID:
23063573.
83. Chazelas P, Steichen C, Favreau F, Trouillas P, Hannaert P, Thuillier R, et al. 2021; Oxidative stress evaluation in ischemia reperfusion models: characteristics, limits and perspectives. Int J Mol Sci. 22:2366. DOI:
10.3390/ijms22052366. PMID:
33673423. PMCID:
PMC7956779.
84. Kang M, Kim S, Choi JY, Kim KS, Jung YK, Park B, et al. 2024; Ex vivo kidney machine perfusion: meta-analysis of randomized clinical trials. Br J Surg. 111:znae102. DOI:
10.1093/bjs/znae102. PMID:
38637312.
85. Moers C, Smits JM, Maathuis MH, Treckmann J, van Gelder F, Napieralski BP, et al. 2009; Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med. 360:7–19. DOI:
10.1056/NEJMoa0802289. PMID:
19118301.
86. Malinoski D, Saunders C, Swain S, Groat T, Wood PR, Reese J, et al. 2023; Hypothermia or machine perfusion in kidney donors. N Engl J Med. 388:418–26. DOI:
10.1056/NEJMoa2118265. PMID:
36724328.
87. Panayotova GG, Rosado J, Paterno F, Deo D, Dikdan G, McCarty MA, et al. 2020; Novel oxygenation technique for hypothermic machine perfusion of liver grafts: validation in porcine donation after cardiac death (DCD) liver model. Am J Surg. 220:1270–7. DOI:
10.1016/j.amjsurg.2020.06.072. PMID:
32892979.
88. Liang A, Cheng W, Cao P, Cai S, Zhang L, Zhong K, et al. 2023; Effects of machine perfusion strategies on different donor types in liver transplantation: a systematic review and meta-analysis. Int J Surg. 109:3617–30. DOI:
10.1097/JS9.0000000000000661. PMID:
37578436. PMCID:
PMC10651255.
89. Andrijauskaite K, Veraza RJ, Lopez RP, Maxwell Z, Cano I, Cisneros EE, et al. 2024; Novel portable hypothermic machine perfusion preservation device enhances cardiac viability of donated human hearts. Front Cardiovasc Med. 11:1376101. DOI:
10.3389/fcvm.2024.1376101. PMID:
38628313. PMCID:
PMC11018979.
90. McGiffin DC, Kure CE, Macdonald PS, Jansz PC, Emmanuel S, Marasco SF, et al. 2024; Hypothermic oxygenated perfusion (HOPE) safely and effectively extends acceptable donor heart preservation times: results of the Australian and New Zealand trial. J Heart Lung Transplant. 43:485–95. DOI:
10.1016/j.healun.2023.10.020. PMID:
37918701.
91. Minor T, Efferz P, Fox M, Wohlschlaeger J, Lüer B. 2013; Controlled oxygenated rewarming of cold stored liver grafts by thermally graduated machine perfusion prior to reperfusion. Am J Transplant. 13:1450–60. DOI:
10.1111/ajt.12235. PMID:
23617781.
92. Nicholson ML, Hosgood SA. 2013; Renal transplantation after ex vivo normothermic perfusion: the first clinical study. Am J Transplant. 13:1246–52. DOI:
10.1111/ajt.12179. PMID:
23433047.
93. Adams TD, Patel M, Hosgood SA, Nicholson ML. 2017; Lowering perfusate temperature from 37°c to 32°c diminishes function in a porcine model of ex vivo kidney perfusion. Transplant Direct. 3:e140. DOI:
10.1097/TXD.0000000000000655. PMID:
28361124. PMCID:
PMC5367757.
94. Berendsen TA, Bruinsma BG, Lee J, D'Andrea V, Liu Q, Izamis ML, et al. 2012; A simplified subnormothermic machine perfusion system restores ischemically damaged liver grafts in a rat model of orthotopic liver transplantation. Transplant Res. 1:6. DOI:
10.1186/2047-1440-1-6. PMID:
23369351. PMCID:
PMC3552573.
95. Bona M, Wyss RK, Arnold M, Méndez-Carmona N, Sanz MN, Günsch D, et al. 2021; Cardiac graft assessment in the era of machine perfusion: current and future biomarkers. J Am Heart Assoc. 10:e018966. DOI:
10.1161/JAHA.120.018966. PMID:
33522248. PMCID:
PMC7955334.
96. Parente A, Tirotta F, Pini A, Eden J, Dondossola D, Manzia TM, et al. 2023; Machine perfusion techniques for liver transplantation - a meta-analysis of the first seven randomized-controlled trials. J Hepatol. 79:1201–13. DOI:
10.1016/j.jhep.2023.05.027. PMID:
37302578.
97. García Sáez D, Zych B, Sabashnikov A, Bowles CT, De Robertis F, Mohite PN, et al. 2014; Evaluation of the organ care system in heart transplantation with an adverse donor/recipient profile. Ann Thorac Surg. 98:2099–105. DOI:
10.1016/j.athoracsur.2014.06.098. PMID:
25443013.
98. Sponga S, Vendramin I, Salman J, Ferrara V, De Manna ND, Lechiancole A, et al. 2023; Heart transplantation in high-risk recipients employing donor marginal grafts preserved with ex-vivo perfusion. Transpl Int. 36:11089. DOI:
10.3389/ti.2023.11089. PMID:
37547752. PMCID:
PMC10401590.
99. Sponga S, Bonetti A, Ferrara V, Beltrami AP, Isola M, Vendramin I, et al. 2020; Preservation by cold storage vs ex vivo normothermic perfusion of marginal donor hearts: clinical, histopathologic, and ultrastructural features. J Heart Lung Transplant. 39:1408–16. DOI:
10.1016/j.healun.2020.08.021. PMID:
33041182.
100. Minor T, von Horn C, Zlatev H, Saner F, Grawe M, Lüer B, et al. 2022; Controlled oxygenated rewarming as novel end-ischemic therapy for cold stored liver grafts: a randomized controlled trial. Clin Transl Sci. 15:2918–27. DOI:
10.1111/cts.13409. PMID:
36251938. PMCID:
PMC9747115.
101. Guo Z, Zhao Q, Jia Z, Huang C, Wang D, Ju W, et al. 2023; A randomized-controlled trial of ischemia-free liver transplantation for end-stage liver disease. J Hepatol. 79:394–402. DOI:
10.1016/j.jhep.2023.04.010. PMID:
37086919.
102. Pegg DE. Wolkers WF, Oldenhof H, editors. Principles of cryopreservation. Cryopreservation and freeze-drying protocols. Springer;2015. p. 3–19.
103. Love R. 2009; Chillin' at the symposium with Plato: refrigeration in the ancient world. ASHRAE Trans. 115:106.
104. Polge C, Smith AU, Parkes AS. 1949; Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature. 164:666. DOI:
10.1038/164666a0. PMID:
18143360.
106. Lovelock JE, Bishop MW. 1959; Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature. 183:1394–5. DOI:
10.1038/1831394a0. PMID:
13657132.
108. Finger EB, Bischof JC. 2018; Cryopreservation by vitrification: a promising approach for transplant organ banking. Curr Opin Organ Transplant. 23:35–60. DOI:
10.1097/MOT.0000000000000534. PMID:
29702495.
109. Pullen LC. 2023; Supercooling halts biological time: new technologies can multiply the number of hours that an organ remains viable for transplant. Am J Transplant. 23:1473–5. DOI:
10.1016/j.ajt.2023.08.024. PMID:
37661021.
110. Lin M, Cao H, Li J. 2023; Control strategies of ice nucleation, growth, and recrystallization for cryopreservation. Acta Biomater. 155:35–56. DOI:
10.1016/j.actbio.2022.10.056. PMID:
36323355.
111. Jaiswal AN, Vagga A. 2022; Cryopreservation: a review article. Cureus. 14:e31564. DOI:
10.7759/cureus.31564.
112. Zhao G, Luo D, Gao D. 2006; Universal model for intracellular ice formation and its growth. AIChE J. 52:2596–606. DOI:
10.1002/aic.10851.
114. Baust JG, Brown RT. 1980; Heterothermy and cold acclimation in the arctic ground squirrel, Citellus undulatus. Comp Biochem Physiol A Physiol. 67:447–52. DOI:
10.1016/S0300-9629(80)80021-1.
117. Elliott GD, Wang S, Fuller BJ. 2017; Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology. 76:74–91. DOI:
10.1016/j.cryobiol.2017.04.004. PMID:
28428046.
118. Guo N, Wei Q, Xu Y. 2020; Optimization of cryopreservation of pathogenic microbial strains. J Biosaf Biosecur. 2:66–70. DOI:
10.1016/j.jobb.2020.11.003.
122. Brandstadter JD, De Martin A, Lϋtge M, Ferreira A, Gaudette BT, Stanossek Y, et al. 2023; A novel cryopreservation and biobanking strategy to study lymphoid tissue stromal cells in human disease. Eur J Immunol. 53:e2250362. DOI:
10.1002/eji.202250362. PMID:
37366295. PMCID:
PMC10529925.
126. Pegg DE. 2010; The relevance of ice crystal formation for the cryopreservation of tissues and organs. Cryobiology. 60(3 Suppl):S36–44. DOI:
10.1016/j.cryobiol.2010.02.003. PMID:
20159009.
127. Steponkus PL. Advances in low-temperature biology. Elsevier;1996.
128. Whaley D, Damyar K, Witek RP, Mendoza A, Alexander M, Lakey JR. 2021; Cryopreservation: an overview of principles and cell-specific considerations. Cell Transplant. 30:963689721999617. DOI:
10.1177/0963689721999617. PMID:
33757335. PMCID:
PMC7995302.
129. Ozgur OS, Namsrai BE, Pruett TL, Bischof JC, Toner M, Finger EB, et al. 2023; Current practice and novel approaches in organ preservation. Front Transplant. 2:1156845. DOI:
10.3389/frtra.2023.1156845. PMID:
38993842. PMCID:
PMC11235303.
131. Costanzo JP, Reynolds AM, do Amaral MC, Rosendale AJ, Lee RE Jr. 2015; Cryoprotectants and extreme freeze tolerance in a subarctic population of the wood frog. PLoS One. 10:e0117234. DOI:
10.1371/journal.pone.0117234. PMID:
25688861. PMCID:
PMC4331536.
132. Storey KB, Storey JM. 1984; Biochemical adaption for freezing tolerance in the wood frog, Rana sylvatica. J Comp Physiol B. 155:29–36. DOI:
10.1007/BF00688788.
133. Tessier SN, Haque O, Pendexter CA, Cronin SE, Hafiz EOA, Weng L, et al. 2022; The role of antifreeze glycoprotein (AFGP) and polyvinyl alcohol/polyglycerol (X/Z-1000) as ice modulators during partial freezing of rat livers. Front Phys. 10:1033613. DOI:
10.3389/fphy.2022.1033613. PMID:
37151819. PMCID:
PMC10161798.
134. Melnik BS, Glukhova KA, Sokolova Voronova EA, Balalaeva IV, Garbuzynskiy SO, Finkelstein AV. 2023; Physics of ice nucleation and antinucleation: action of ice-binding proteins. Biomolecules. 14:54. DOI:
10.3390/biom14010054. PMID:
38254654. PMCID:
PMC10813080.
135. Tessier SN, de Vries RJ, Pendexter CA, Cronin SE, Ozer S, Hafiz EO, et al. 2022; Partial freezing of rat livers extends preservation time by 5-fold. Nat Commun. 13:4008. DOI:
10.1038/s41467-022-31490-2. PMID:
35840553. PMCID:
PMC9287450.
136. Sultana T, Lee JI, Park JH, Lee S. 2018; Supercooling storage for the transplantable sources from the rat and the rabbit: a preliminary report. Transplant Proc. 50:1178–82. DOI:
10.1016/j.transproceed.2018.01.046. PMID:
29731089.
137. Basco MT, Yiu WK, Cheng SW, Sumpio BE. 2010; The effects of freezing versus supercooling on vascular cells: implications for balloon cryoplasty. J Vasc Interv Radiol. 21:910–5. DOI:
10.1016/j.jvir.2010.02.016. PMID:
20417120. PMCID:
PMC2878641.
138. Abe M, Jimi S, Hama H, Shiraishi T, Iwasaki A, Ono N, et al. 2006; A novel method for preserving human lungs using a super-cooling system. Ann Thorac Surg. 82:1085–8. DOI:
10.1016/j.athoracsur.2006.03.016. PMID:
16928543.
139. Berendsen TA, Bruinsma BG, Puts CF, Saeidi N, Usta OB, Uygun BE, et al. 2014; Supercooling enables long-term transplantation survival following 4 days of liver preservation. Nat Med. 20:790–3. DOI:
10.1038/nm.3588. PMID:
24973919. PMCID:
PMC4141719.
140. Zhmakin AI. Fundamentals of cryobiology: physical phenomena and mathematical models. Springer;2009. DOI:
10.1007/b10800.
143. Prickett RC, Marquez-Curtis LA, Elliott JA, McGann LE. 2015; Effect of supercooling and cell volume on intracellular ice formation. Cryobiology. 70:156–63. DOI:
10.1016/j.cryobiol.2015.02.002. PMID:
25707695.
144. Fujikawa S, Kuwabara C, Kasuga J, Arakawa K. 2018; Supercooling-promoting (anti-ice nucleation) substances. Adv Exp Med Biol. 1081:289–320. DOI:
10.1007/978-981-13-1244-1_16. PMID:
30288716.
145. Huang H, Yarmush ML, Usta OB. 2018; Long-term deep-supercooling of large-volume water and red cell suspensions via surface sealing with immiscible liquids. Nat Commun. 9:3201. DOI:
10.1038/s41467-018-05636-0. PMID:
30097570. PMCID:
PMC6086840.
146. Usta OB, Kim Y, Ozer S, Bruinsma BG, Lee J, Demir E, et al. 2013; Supercooling as a viable non-freezing cell preservation method of rat hepatocytes. PLoS One. 8:e69334. DOI:
10.1371/journal.pone.0069334. PMID:
23874947. PMCID:
PMC3713052.
147. Scotte M, Eschwege P, Cherruau C, Fontaliran F, Moreau F, Houssin D. 1996; Liver preservation below 0 degrees C with UW solution and 2,3-butanediol. Cryobiology. 33:54–61. DOI:
10.1006/cryo.1996.0006. PMID:
8812085.
148. Matsuda H, Yagi T, Matsuoka J, Yamamura H, Tanaka N. 1999; Subzero nonfreezing storage of isolated rat hepatocytes in University of Wisconsin solution. Transplantation. 67:186–91. DOI:
10.1097/00007890-199901150-00032. PMID:
9921819.
149. Kim M, Yoon HY. 2023; The biomechanical and biological effect of supercooling on cortical bone allograft. J Vet Sci. 24:e79. DOI:
10.4142/jvs.23183. PMID:
37904641. PMCID:
PMC10694378.
150. Berkane Y, Filz von Reiterdank I, Tawa P, Charlès L, Goutard M, Dinicu AT, et al. 2024; VCA supercooling in a swine partial hindlimb model. Sci Rep. 14:12618. DOI:
10.1038/s41598-024-63041-8. PMID:
38824189. PMCID:
PMC11144209.
151. Que W, Hu X, Fujino M, Terayama H, Sakabe K, Fukunishi N, et al. 2020; Prolonged cold ischemia time in mouse heart transplantation using supercooling preservation. Transplantation. 104:1879–89. DOI:
10.1097/TP.0000000000003089. PMID:
31895334.
152. Bruinsma BG, Berendsen TA, Izamis ML, Yeh H, Yarmush ML, Uygun K. 2015; Supercooling preservation and transplantation of the rat liver. Nat Protoc. 10:484–94. DOI:
10.1038/nprot.2015.011. PMID:
25692985. PMCID:
PMC4494653.
153. de Vries RJ, Tessier SN, Banik PD, Nagpal S, Cronin SE, Ozer S, et al. 2019; Supercooling extends preservation time of human livers. Nat Biotechnol. 37:1131–6. DOI:
10.1038/s41587-019-0223-y. PMID:
31501557. PMCID:
PMC6776681.
154. Wan L, Powell-Palm MJ, Lee C, Gupta A, Weegman BP, Clemens MG, et al. 2018; Preservation of rat hearts in subfreezing temperature isochoric conditions to - 8 °C and 78 MPa. Biochem Biophys Res Commun. 496:852–7. DOI:
10.1016/j.bbrc.2018.01.140. PMID:
29395085.
155. Botea F, Năstase G, Herlea V, Chang TT, Șerban A, Barcu A, et al. 2023; An exploratory study on isochoric supercooling preservation of the pig liver. Biochem Biophys Rep. 34:101485. DOI:
10.1016/j.bbrep.2023.101485. PMID:
37229422. PMCID:
PMC10203736.
156. Sharma A, Rao JS, Han Z, Gangwar L, Namsrai B, Gao Z, et al. 2021; Vitrification and nanowarming of kidneys. Adv Sci (Weinh). 8:e2101691. DOI:
10.1002/advs.202101691. PMID:
34382371. PMCID:
PMC8498880.
157. Gao Z, Namsrai B, Han Z, Joshi P, Rao JS, Ravikumar V, et al. 2022; Vitrification and rewarming of magnetic nanoparticle-loaded rat hearts. Adv Mater Technol. 7:2100873. DOI:
10.1002/admt.202100873. PMID:
35668819. PMCID:
PMC9164386.
158. Sharma A, Lee CY, Namsrai BE, Han Z, Tobolt D, Rao JS, et al. 2023; Cryopreservation of whole rat livers by vitrification and nanowarming. Ann Biomed Eng. 51:566–77. DOI:
10.1007/s10439-022-03064-2. PMID:
36183025. PMCID:
PMC10315167.
159. Han Z, Rao JS, Gangwar L, Namsrai BE, Pasek-Allen JL, Etheridge ML, et al. 2023; Vitrification and nanowarming enable long-term organ cryopreservation and life-sustaining kidney transplantation in a rat model. Nat Commun. 14:3407. DOI:
10.1038/s41467-023-38824-8. PMID:
37296144. PMCID:
PMC10256770.
160. Kuro A, Morimoto N, Hara T, Matsuoka Y, Fukui M, Hihara M, et al. 2022; Protection of rat artery grafts from tissue damage by voltage-applied supercooling. Med Mol Morphol. 55:91–9. DOI:
10.1007/s00795-021-00310-9. PMID:
35129664.
161. Monzen K, Hosoda T, Hayashi D, Imai Y, Okawa Y, Kohro T, et al. 2005; The use of a supercooling refrigerator improves the preservation of organ grafts. Biochem Biophys Res Commun. 337:534–9. DOI:
10.1016/j.bbrc.2005.09.082. PMID:
16202974.
162. Sanz E, Vega C, Espinosa JR, Caballero-Bernal R, Abascal JL, Valeriani C. 2013; Homogeneous ice nucleation at moderate supercooling from molecular simulation. J Am Chem Soc. 135:15008–17. DOI:
10.1021/ja4028814. PMID:
24010583.
163. Takahashi T, Kakita A, Takahashi Y, Yokoyama K, Sakamoto I, Yamashina S. 2001; Preservation of rat livers by supercooling under high pressure. Transplant Proc. 33:916–9. DOI:
10.1016/S0041-1345(00)02268-5. PMID:
11267128.
165. Powell-Palm MJ, Koh-Bell A, Rubinsky B. 2020; Isochoric conditions enhance stability of metastable supercooled water. Appl Phys Lett. 116:123702. DOI:
10.1063/1.5145334.
166. Consiglio A, Ukpai G, Rubinsky B, Powell-Palm MJ. 2020; Suppression of cavitation-induced nucleation in systems under isochoric confinement. Phys Rev Res. 2:023350. DOI:
10.1103/PhysRevResearch.2.023350.
168. Powell-Palm MJ, Charwat V, Charrez B, Siemons B, Healy KE, Rubinsky B. 2021; Isochoric supercooled preservation and revival of human cardiac microtissues. Commun Biol. 4:1118. DOI:
10.1038/s42003-021-02650-9. PMID:
34552201. PMCID:
PMC8458396.
169. Ueno T, Omura T, Takahashi T, Matsumoto H, Takahashi Y, Kakita A, et al. 2005; Liver transplantation using liver grafts preserved under high pressure. Artif Organs. 29:849–55. DOI:
10.1111/j.1525-1594.2005.00139.x. PMID:
16185349.
170. Ukpai G, Năstase G, Șerban A, Rubinsky B. 2017; Pressure in isochoric systems containing aqueous solutions at subzero Centigrade temperatures. PLoS One. 12:e0183353. DOI:
10.1371/journal.pone.0183353. PMID:
28817681. PMCID:
PMC5560655.
173. Fahy GM, MacFarlane DR, Angell CA, Meryman HT. 1984; Vitrification as an approach to cryopreservation. Cryobiology. 21:407–26. DOI:
10.1016/0011-2240(84)90079-8. PMID:
6467964.
174. Fahy GM, Wowk B, Wu J, Paynter S. 2004; Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology. 48:22–35. DOI:
10.1016/j.cryobiol.2003.11.004. PMID:
14969679.
175. Rall WF, Fahy GM. 1985; Ice-free cryopreservation of mouse embryos at -196 degrees C by vitrification. Nature. 313:573–5. DOI:
10.1038/313573a0. PMID:
3969158.
177. Amorim CA, Curaba M, Van Langendonckt A, Dolmans MM, Donnez J. 2011; Vitrification as an alternative means of cryopreserving ovarian tissue. Reprod Biomed Online. 23:160–86. DOI:
10.1016/j.rbmo.2011.04.005. PMID:
21676653.
178. Yagoub SH, Lim M, Tan TC, Chow DJ, Dholakia K, Gibson BC, et al. 2022; Vitrification within a nanoliter volume: oocyte and embryo cryopreservation within a 3D photopolymerized device. J Assist Reprod Genet. 39:1997–2014. DOI:
10.1007/s10815-022-02610-0.
179. Canosa S, Cimadomo D, Conforti A, Maggiulli R, Giancani A, Tallarita A, et al. 2022; The effect of extended cryo-storage following vitrification on embryo competence: a systematic review and meta-analysis. J Assist Reprod Genet. 39:873–82. DOI:
10.1007/s10815-022-02405-3. PMID:
35119549. PMCID:
PMC9050987.
180. Schulz M, Risopatrón J, Uribe P, Isachenko E, Isachenko V, Sánchez R. 2020; Human sperm vitrification: a scientific report. Andrology. 8:1642–50. DOI:
10.1111/andr.12847. PMID:
32598551.
182. Fahy GM, Wowk B, Pagotan R, Chang A, Phan J, Thomson B, et al. 2009; Physical and biological aspects of renal vitrification. Organogenesis. 5:167–75. DOI:
10.4161/org.5.3.9974. PMID:
20046680. PMCID:
PMC2781097.
183. Fahy GM, Wowk B, Wu J, Phan J, Rasch C, Chang A, et al. 2004; Cryopreservation of organs by vitrification: perspectives and recent advances. Cryobiology. 48:157–78. DOI:
10.1016/j.cryobiol.2004.02.002. PMID:
15094092.
185. Diller KR. Cho YI, editor. Modeling of bioheat transfer processes at high and low temperatures. Advances in heat transfer. Elsevier;1992. p. 157–357. DOI:
10.1016/S0065-2717(08)70345-9.
189. Burns CP, Burdett EC, Karow AM. 1975; Thawing of rabbit kidneys from −79 °C with 2450 MHz radiation. Cryobiology. 12:577. DOI:
10.1016/0011-2240(75)90118-2.
190. Burdette EC, Wiggins S, Brown R, Karow AM Jr. 1980; Microwave thawing of frozen kidneys: a theoretically based experimentally-effective design. Cryobiology. 17:393–402. DOI:
10.1016/0011-2240(80)90046-2. PMID:
6995027.
191. Guttman FM, Lizin J, Robitaille P, Blanchard H, Turgeon-Knaack C. 1977; Survival of canine kidneys after treatment with dimethyl-sulfoxide, freezing at -80 degrees C, and thawing by microwave illumination. Cryobiology. 14:559–67. DOI:
10.1016/0011-2240(77)90166-3. PMID:
332449.
192. Chen P, Wang S, Chen Z, Ren P, Hepfer RG, Greene ED, et al. 2023; Nanowarming and ice-free cryopreservation of large sized, intact porcine articular cartilage. Commun Biol. 6:220. DOI:
10.1038/s42003-023-04577-9. PMID:
36828843. PMCID:
PMC9958003.
194. Ye Z, Liu S, Yin Y. 2023; Magnetic nanoparticles for nanowarming: seeking a fine balance between heating performance and biocompatibility. Mater Chem Front. 7:3427–33. DOI:
10.1039/D3QM00248A.
195. Gao Z, Ring HL, Sharma A, Namsrai B, Tran N, Finger EB, et al. 2020; Preparation of scalable silica-coated iron oxide nanoparticles for nanowarming. Adv Sci (Weinh). 7:1901624. DOI:
10.1002/advs.201901624. PMID:
32099753. PMCID:
PMC7029634.
196. Manuchehrabadi N, Gao Z, Zhang J, Ring HL, Shao Q, Liu F, et al. 2017; Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci Transl Med. 9:eaah4586. DOI:
10.1126/scitranslmed.aah4586. PMID:
28251904. PMCID:
PMC5470364.
197. Chiu-Lam A, Staples E, Pepine CJ, Rinaldi C. 2021; Perfusion, cryopreservation, and nanowarming of whole hearts using colloidally stable magnetic cryopreservation agent solutions. Sci Adv. 7:eabe3005. DOI:
10.1126/sciadv.abe3005. PMID:
33523997. PMCID:
PMC7793590.
198. Dogar AW, Ullah K, Shams-Ud-Din , Abbas SH, Hussain A, Ghaffar A, et al. 2022; Is a preservation solution for living donor liver transplantation needed? Adding a new chapter in LDLT! Transplant Direct. 8:e1396. DOI:
10.1097/TXD.0000000000001396. PMID:
36246001. PMCID:
PMC9553383.
199. Moser MA, Ginther N, Luo Y, Beck G, Ginther R, Ewen M, et al. 2017; Early experience with hypothermic machine perfusion of living donor kidneys - a retrospective study. Transpl Int. 30:706–12. DOI:
10.1111/tri.12964. PMID:
28390094.
200. Flores Carvalho M, Boteon YL, Guarrera JV, Modi PR, Lladó L, Lurje G, et al. 2024; Obstacles to implement machine perfusion technology in routine clinical practice of transplantation: why are we not there yet? Hepatology. 79:713–30. DOI:
10.1097/HEP.0000000000000394. PMID:
37013926.