Clin Transplant Res.  2024 Dec;38(4):377-403. 10.4285/ctr.24.0039.

Beyond the icebox: modern strategies in organ preservation for transplantation

Affiliations
  • 1Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
  • 2Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
  • 3Department of Energy Engineering, Hanyang University, Seoul, Korea
  • 4Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
  • 5Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Korea

Abstract

Organ transplantation, a critical treatment for end-stage organ failure, has witnessed significant advancements due to the integration of improved surgical techniques, immunosuppressive therapies, and donor-recipient matching. This review explores the progress of organ preservation, focusing on the shift from static cold storage (SCS) to advanced machine perfusion techniques such as hypothermic (HMP) and normothermic machine perfusion (NMP). Although SCS has been the standard approach, its limitations in preserving marginal organs and preventing ischemia-reperfusion injury (IRI) have led to the adoption of HMP and NMP. HMP, which is now the gold standard for high-risk donor kidneys, reduces metabolic activity and improves posttransplant outcomes. NMP allows real-time organ viability assessment and reconditioning, especially for liver transplants. Controlled oxygenated rewarming further minimizes IRI by addressing mitochondrial dysfunction. The review also highlights the potential of cryopreservation for long-term organ storage, despite challenges with ice formation. These advances are crucial for expanding the donor pool, improving transplant success rates, and addressing organ shortages. Continued innovation is necessary to meet the growing demands of transplantation and save more lives.

Keyword

Organ transplantation; Machine perfusion; Cryopreservation; Nanobiotechnology

Figure

  • Fig. 1 Progression of temperature trends in organ machine perfusion. Hypothermic machine perfusion (HMP): blue-shaded, hypothermic oxygenated perfusion (HOPE): gray-shaded, subnormothermic machine perfusion (SNMP): yellow-shaded, normothermic machine perfusion (NMP): green shaded, controlled oxygenated rewarming (COR): orange-shaded [12–62].

  • Fig. 2 Pictures of organ perfusion platforms: hypothermic, normothermic, and our lab’s innovations. (A) OrganOx Metra System: normothermic machine perfusion currently in clinical trials (with permission of OrganOx), (B) LifePort Liver Transporter: hypothermic machine perfusion currently in clinical trials (with permission of Organ Recovery Systems), and (C) BioCool Organ Preservation Machine: Hanyang’s Regenerative Medicine and Stem Cells institution hypothermic machine perfusion.

  • Fig. 3 Schematic illustration of ice formation and cryoinjury. EC, extracellular; conc, concentration; IC, intracellular.

  • Fig. 4 Diagrammatic illustration of the role of cryoprotective agents (CPAs) in subzero preservation: permeable CPAs (pCPAs) and nonpermeable CPAs (npCPAs). EC, extracellular; IC, intracellular.

  • Fig. 5 Classification of cryopreservation techniques by temperature and principle of ice preservation.


Reference

1. Nordham KD, Ninokawa S. 2021; The history of organ transplantation. Proc (Bayl Univ Med Cent). 35:124–8. DOI: 10.1080/08998280.2021.1985889. PMID: 34970061. PMCID: PMC8682823.
2. Colaneri J. 2014; An overview of transplant immunosuppression-history, principles, and current practices in kidney transplantation. Nephrol Nurs J. 41:549–60.
3. Ploeg RJ. 1990; Kidney preservation with the UW and Euro-Collins solutions: a preliminary report of a clinical comparison. Transplantation. 49:281–4. DOI: 10.1097/00007890-199002000-00011. PMID: 2407002.
4. Peters TG, Shaver TR, Ames JE 4th, Santiago-Delpin EA, Jones KW, Blanton JW. 1995; Cold ischemia and outcome in 17,937 cadaveric kidney transplants. Transplantation. 59:191–6. DOI: 10.1097/00007890-199501270-00007. PMID: 7839440.
5. O'Callaghan JM, Morgan RD, Knight SR, Morris PJ. 2013; Systematic review and meta-analysis of hypothermic machine perfusion versus static cold storage of kidney allografts on transplant outcomes. Br J Surg. 100:991–1001. DOI: 10.1002/bjs.9169. PMID: 23754643.
6. United Network for Organ Sharing (UNOS). 2024. Current state of organ donation and transplantation: transplant trends [Internet]. UNOS;Available from: https://unos.org/. cited 2024 Jul 27.
7. Health Resources and Services Administration (HRSA). 2024. Organ donation statistics [Internet]. HRSA;Available from: https://www.organdonor.gov/learn/organ-donation-statistics. cited 2024 Mar 31.
8. Statista. 2023. Number of people waiting for organ transplants in South Korea from 2019 to September 2023 [Internet]. Statista;Available from: https://www.statista.com/statistics/1419295/south-korea-people-waiting-for-organ-transplants/. cited 2024 Sep 2.
9. López-Navidad A, Caballero F. 2003; Extended criteria for organ acceptance: strategies for achieving organ safety and for increasing organ pool. Clin Transplant. 17:308–24. DOI: 10.1034/j.1399-0012.2003.00119.x. PMID: 12868987.
10. Fernández AR, Sánchez-Tarjuelo R, Cravedi P, Ochando J, López-Hoyos M. 2020; Review: ischemia reperfusion injury-a translational perspective in organ transplantation. Int J Mol Sci. 21:8549. DOI: 10.3390/ijms21228549. PMID: 33202744. PMCID: PMC7696417.
11. Lurje I, Uluk D, Hammerich L, Pratschke J, Tacke F, Lurje G. 2024; Comparing hypothermic oxygenated and normothermic liver machine perfusion: translation matters. J Hepatol. 80:e163–5. DOI: 10.1016/j.jhep.2023.09.027. PMID: 37827473.
12. Lee CY, Zhang JX, Jones JW Jr, Southard JH, Clemens MG. 2002; Functional recovery of preserved livers following warm ischemia: improvement by machine perfusion preservation. Transplantation. 74:944–51. DOI: 10.1097/00007890-200210150-00008. PMID: 12394835.
13. Brasile L, Stubenitsky BM, Booster MH, Lindell S, Araneda D, Buck C, et al. 2002; Overcoming severe renal ischemia: the role of ex vivo warm perfusion. Transplantation. 73:897–901. DOI: 10.1097/00007890-200203270-00011. PMID: 11923688.
14. Gok MA, Buckley PE, Shenton BK, Balupuri S, El-Sheikh MA, Robertson H, et al. 2002; Long-term renal function in kidneys from non-heart-beating donors: a single-center experience. Transplantation. 74:664–9. DOI: 10.1097/00007890-200209150-00013. PMID: 12352883.
15. Schön MR, Kollmar O, Wolf S, Schrem H, Matthes M, Akkoc N, et al. 2001; Liver transplantation after organ preservation with normothermic extracorporeal perfusion. Ann Surg. 233:114–23. DOI: 10.1097/00000658-200101000-00017. PMID: 11141233. PMCID: PMC1421174.
16. Bessems M, Doorschodt BM, van Marle J, Vreeling H, Meijer AJ, van Gulik TM. 2005; Improved machine perfusion preservation of the non-heart-beating donor rat liver using Polysol: a new machine perfusion preservation solution. Liver Transpl. 11:1379–88. DOI: 10.1002/lt.20502. PMID: 16237689.
17. Lindell SL, Compagnon P, Mangino MJ, Southard JH. 2005; UW solution for hypothermic machine perfusion of warm ischemic kidneys. Transplantation. 79:1358–61. DOI: 10.1097/01.TP.0000159143.45022.F6. PMID: 15912104.
18. Maathuis MH, Manekeller S, van der Plaats A, Leuvenink HG, 't Hart NA, Lier AB, et al. 2007; Improved kidney graft function after preservation using a novel hypothermic machine perfusion device. Ann Surg. 246:982–8. DOI: 10.1097/SLA.0b013e31815c4019. PMID: 18043100.
19. Sohrabi S, Navarro AP, Wilson C, Sanni A, Wyrley-Birch H, Anand DV, et al. 2007; Donation after cardiac death kidneys with low severity pre-arrest acute renal failure. Am J Transplant. 7:571–5. DOI: 10.1111/j.1600-6143.2006.01639.x. PMID: 17352711.
20. Xu H, Lee CY, Clemens MG, Zhang JX. 2008; Inhibition of TXA synthesis with OKY-046 improves liver preservation by prolonged hypothermic machine perfusion in rats. J Gastroenterol Hepatol. 23(7 Pt 2):e212–20. DOI: 10.1111/j.1440-1746.2007.05061.x.
21. Jain S, Lee SH, Korneszczuk K, Culberson CR, Southard JH, Berthiaume F, et al. 2008; Improved preservation of warm ischemic livers by hypothermic machine perfusion with supplemented University of Wisconsin solution. J Invest Surg. 21:83–91. DOI: 10.1080/08941930701883657. PMID: 18340625.
22. Bagul A, Hosgood SA, Kaushik M, Kay MD, Waller HL, Nicholson ML. 2008; Experimental renal preservation by normothermic resuscitation perfusion with autologous blood. Br J Surg. 95:111–8. DOI: 10.1002/bjs.5909. PMID: 17696214.
23. Hosgood SA, Yang B, Bagul A, Mohamed IH, Nicholson ML. 2010; A comparison of hypothermic machine perfusion versus static cold storage in an experimental model of renal ischemia reperfusion injury. Transplantation. 89:830–7. DOI: 10.1097/TP.0b013e3181cfa1d2. PMID: 20098357.
24. Guarrera JV, Henry SD, Samstein B, Odeh-Ramadan R, Kinkhabwala M, Goldstein MJ, et al. 2010; Hypothermic machine preservation in human liver transplantation: the first clinical series. Am J Transplant. 10:372–81. DOI: 10.1111/j.1600-6143.2009.02932.x. PMID: 19958323.
25. Berendsen TA, Bruinsma BG, Lee J, D'Andrea V, Liu Q, Izamis ML, et al. 2012; A simplified subnormothermic machine perfusion system restores ischemically damaged liver grafts in a rat model of orthotopic liver transplantation. Transplant Res. 1:6. DOI: 10.1186/2047-1440-1-6. PMID: 23369351. PMCID: PMC3552573.
26. Tolboom H, Izamis ML, Sharma N, Milwid JM, Uygun B, Berthiaume F, et al. 2012; Subnormothermic machine perfusion at both 20°C and 30°C recovers ischemic rat livers for successful transplantation. J Surg Res. 175:149–56. DOI: 10.1016/j.jss.2011.03.003. PMID: 21550058. PMCID: PMC3863393.
27. Henry SD, Nachber E, Tulipan J, Stone J, Bae C, Reznik L, et al. 2012; Hypothermic machine preservation reduces molecular markers of ischemia/reperfusion injury in human liver transplantation. Am J Transplant. 12:2477–86. DOI: 10.1111/j.1600-6143.2012.04086.x. PMID: 22594953.
28. Hoyer DP, Gallinat A, Swoboda S, Wohlschläger J, Rauen U, Paul A, et al. 2014; Subnormothermic machine perfusion for preservation of porcine kidneys in a donation after circulatory death model. Transpl Int. 27:1097–106. DOI: 10.1111/tri.12389. PMID: 24963744.
29. Bruinsma BG, Yeh H, Ozer S, Martins PN, Farmer A, Wu W, et al. 2014; Subnormothermic machine perfusion for ex vivo preservation and recovery of the human liver for transplantation. Am J Transplant. 14:1400–9. DOI: 10.1111/ajt.12727. PMID: 24758155. PMCID: PMC4470578.
30. Fontes P, Lopez R, van der Plaats A, Vodovotz Y, Minervini M, Scott V, et al. 2015; Liver preservation with machine perfusion and a newly developed cell-free oxygen carrier solution under subnormothermic conditions. Am J Transplant. 15:381–94. DOI: 10.1111/ajt.12991. PMID: 25612645. PMCID: PMC5024042.
31. Schopp I, Reissberg E, Lüer B, Efferz P, Minor T. 2015; Controlled rewarming after hypothermia: adding a new principle to renal preservation. Clin Transl Sci. 8:475–8. DOI: 10.1111/cts.12295. PMID: 26053383. PMCID: PMC4744687.
32. Hoyer DP, Mathé Z, Gallinat A, Canbay AC, Treckmann JW, Rauen U, et al. 2016; Controlled oxygenated rewarming of cold stored livers prior to transplantation: first clinical application of a new concept. Transplantation. 100:147–52. DOI: 10.1097/TP.0000000000000915. PMID: 26479280.
33. Ravikumar R, Jassem W, Mergental H, Heaton N, Mirza D, Perera MT, et al. 2016; Liver transplantation after ex vivo normothermic machine preservation: a phase 1 (first-in-man) clinical trial. Am J Transplant. 16:1779–87. DOI: 10.1111/ajt.13708. PMID: 26752191.
34. Westerkamp AC, Karimian N, Matton AP, Mahboub P, van Rijn R, Wiersema-Buist J, et al. 2016; Oxygenated hypothermic machine perfusion after static cold storage improves hepatobiliary function of extended criteria donor livers. Transplantation. 100:825–35. DOI: 10.1097/TP.0000000000001081. PMID: 26863473.
35. Zhang Y, Fu Z, Zhong Z, Wang R, Hu L, Xiong Y, et al. 2016; Hypothermic machine perfusion decreases renal cell apoptosis during ischemia/reperfusion injury via the Ezrin/AKT pathway. Artif Organs. 40:129–35. DOI: 10.1111/aor.12534. PMID: 26263023.
36. Boteon YL, Laing R, Mergental H, Reynolds GM, Mirza DF, Afford SC, et al. 2017; Mechanisms of autophagy activation in endothelial cell and their targeting during normothermic machine liver perfusion. World J Gastroenterol. 23:8443–51. DOI: 10.3748/wjg.v23.i48.8443. PMID: 29358854. PMCID: PMC5752706.
37. Zhao DF, Dong Q, Zhang T. 2017; Effects of static cold storage and hypothermic machine perfusion on oxidative stress factors, adhesion molecules, and zinc finger transcription factor proteins before and after liver transplantation. Ann Transplant. 22:96–100. DOI: 10.12659/AOT.901897. PMID: 28209945.
38. Juriasingani S, Akbari M, Chan JY, Whiteman M, Sener A. 2018; H2S supplementation: a novel method for successful organ preservation at subnormothermic temperatures. Nitric Oxide. 81:57–66. DOI: 10.1016/j.niox.2018.10.004. PMID: 30393129.
39. Hosgood SA, Thompson E, Moore T, Wilson CH, Nicholson ML. 2018; Normothermic machine perfusion for the assessment and transplantation of declined human kidneys from donation after circulatory death donors. Br J Surg. 105:388–94. DOI: 10.1002/bjs.10733. PMID: 29210064. PMCID: PMC5887977.
40. Nasralla D, Coussios CC, Mergental H, Akhtar MZ, Butler AJ, Ceresa CD, et al. 2018; A randomized trial of normothermic preservation in liver transplantation. Nature. 557:50–6. DOI: 10.1038/s41586-018-0047-9. PMID: 29670285.
41. Zeng X, Li M, Fan X, Xue S, Liang W, Fang Z, et al. 2019; Hypothermic oxygenated machine perfusion alleviates donation after circulatory death liver injury through regulating p-selectin-dependent and -independent pathways in mice. Transplantation. 103:918–28. DOI: 10.1097/TP.0000000000002621. PMID: 31033856.
42. Jassem W, Xystrakis E, Ghnewa YG, Yuksel M, Pop O, Martinez-Llordella M, et al. 2019; Normothermic machine perfusion (NMP) inhibits proinflammatory responses in the liver and promotes regeneration. Hepatology. 70:682–95. DOI: 10.1002/hep.30475. PMID: 30561835.
43. Minor T, von Horn C. 2019; Rewarming injury after cold preservation. Int J Mol Sci. 20:2059. DOI: 10.3390/ijms20092059. PMID: 31027332. PMCID: PMC6539208.
44. Minor T, von Horn C, Gallinat A, Kaths M, Kribben A, Treckmann J, et al. 2020; First-in-man controlled rewarming and normothermic perfusion with cell-free solution of a kidney prior to transplantation. Am J Transplant. 20:1192–5. DOI: 10.1111/ajt.15647. PMID: 31599063.
45. Martins PN, Buchwald JE, Mergental H, Vargas L, Quintini C. The role of normothermic machine perfusion in liver transplantation. Int J Surg. 2020; 82S:52–60. DOI: 10.1016/j.ijsu.2020.05.026. PMID: 32417462.
46. Bhattacharjee RN, Patel SV, Sun Q, Jiang L, Richard-Mohamed M, Ruthirakanthan A, et al. 2020; Renal protection against ischemia reperfusion injury: hemoglobin-based oxygen carrier-201 versus blood as an oxygen carrier in ex vivo subnormothermic machine perfusion. Transplantation. 104:482–9. DOI: 10.1097/TP.0000000000002967. PMID: 31568396.
47. Nilsson J, Jernryd V, Qin G, Paskevicius A, Metzsch C, Sjöberg T, et al. 2020; A nonrandomized open-label phase 2 trial of nonischemic heart preservation for human heart transplantation. Nat Commun. 11:2976. DOI: 10.1038/s41467-020-16782-9. PMID: 32532991. PMCID: PMC7293246.
48. Jochmans I, Brat A, Davies L, Hofker HS, van de Leemkolk FE, Leuvenink HG, et al. 2020; Oxygenated versus standard cold perfusion preservation in kidney transplantation (COMPARE): a randomised, double-blind, paired, phase 3 trial. Lancet. 396:1653–62. DOI: 10.1016/S0140-6736(20)32411-9. PMID: 33220737.
49. Juriasingani S, Ruthirakanthan A, Richard-Mohamed M, Akbari M, Aquil S, Patel S, et al. 2021; Subnormothermic perfusion with H2S donor AP39 improves DCD porcine renal graft outcomes in an ex vivo model of kidney preservation and reperfusion. Biomolecules. 11:446. DOI: 10.3390/biom11030446. PMID: 33802753. PMCID: PMC8002411.
50. Husen P, Boffa C, Jochmans I, Krikke C, Davies L, Mazilescu L, et al. 2021; Oxygenated end-hypothermic machine perfusion in expanded criteria donor kidney transplant: a randomized clinical trial. JAMA Surg. 156:517–25. DOI: 10.1001/jamasurg.2021.0949. PMID: 33881456. PMCID: PMC8060886.
51. Knijff LW, van Kooten C, Ploeg RJ. 2022; The effect of hypothermic machine perfusion to ameliorate ischemia-reperfusion injury in donor organs. Front Immunol. 13:848352. DOI: 10.3389/fimmu.2022.848352. PMID: 35572574. PMCID: PMC9099247.
52. Faucher Q, Alarcan H, Sauvage FL, Forestier L, Miquelestorena-Standley E, Nadal-Desbarats L, et al. 2022; Perfusate metabolomics content and expression of tubular transporters during human kidney graft preservation by hypothermic machine perfusion. Transplantation. 106:1831–43. DOI: 10.1097/TP.0000000000004129. PMID: 35442245.
53. Langmuur SJ, Amesz JH, Veen KM, Bogers AJ, Manintveld OC, Taverne YJ. 2022; Normothermic ex situ heart perfusion with the organ care system for cardiac transplantation: a meta-analysis. Transplantation. 106:1745–53. DOI: 10.1097/TP.0000000000004167. PMID: 35618669.
54. Thompson ER, Sewpaul A, Figuereido R, Bates L, Tingle SJ, Ferdinand JR, et al. 2022; MicroRNA antagonist therapy during normothermic machine perfusion of donor kidneys. Am J Transplant. 22:1088–100. DOI: 10.1111/ajt.16929. PMID: 34932895.
55. Lascaris B, de Meijer VE, Porte RJ. 2022; Normothermic liver machine perfusion as a dynamic platform for regenerative purposes: what does the future have in store for us? J Hepatol. 77:825–36. DOI: 10.1016/j.jhep.2022.04.033. PMID: 35533801.
56. Olumba FC, Zhou F, Park Y, Chapman WC. RESTORE Investigators Group. 2023; Normothermic machine perfusion for declined livers: a strategy to rescue marginal livers for transplantation. J Am Coll Surg. 236:614–25. DOI: 10.1097/XCS.0000000000000555. PMID: 36728302.
57. Li J, Lu H, Zhang J, Li Y, Zhao Q. 2023; Comprehensive approach to assessment of liver viability during normothermic machine perfusion. J Clin Transl Hepatol. 11:466–79.
58. Kim J, Zimmerman MA, Shin WY, Boettcher BT, Lee JS, Park JI, et al. 2023; Effects of subnormothermic regulated hepatic reperfusion on mitochondrial and transcriptomic profiles in a porcine model. Ann Surg. 277:e366–75. DOI: 10.1097/SLA.0000000000005156. PMID: 34387201. PMCID: PMC8840998.
59. Grąt M, Morawski M, Zhylko A, Rykowski P, Krasnodębski M, Wyporski A, et al. 2023; Routine end-ischemic hypothermic oxygenated machine perfusion in liver transplantation from donors after brain death: a randomized controlled trial. Ann Surg. 278:662–8. DOI: 10.1097/SLA.0000000000006055. PMID: 37497636.
60. Panayotova GG, Lunsford KE, Quillin RC 3rd, Rana A, Agopian VG, Lee-Riddle GS, et al. 2024; Portable hypothermic oxygenated machine perfusion for organ preservation in liver transplantation: a randomized, open-label, clinical trial. Hepatology. 79:1033–47. DOI: 10.1097/HEP.0000000000000715. PMID: 38090880. PMCID: PMC11019979.
61. Tang G, Zhang L, Xia L, Zhang J, Wei Z, Zhou R. 2024; Hypothermic oxygenated perfusion in liver transplantation: a meta-analysis of randomized controlled trials and matched studies. Int J Surg. 110:464–77. DOI: 10.1097/JS9.0000000000000784. PMCID: PMC10793758.
62. Abraham N, Gao Q, Kahan R, Alderete IS, Wang B, Howell DN, et al. 2024; Subnormothermic oxygenated machine perfusion (24 h) in DCD kidney transplantation. Transplant Direct. 10:e1633. DOI: 10.1097/TXD.0000000000001633. PMID: 38807861. PMCID: PMC11132391.
63. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. 2012; Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 298:229–317. DOI: 10.1016/B978-0-12-394309-5.00006-7. PMID: 22878108. PMCID: PMC3904795.
64. Zhai Y, Petrowsky H, Hong JC, Busuttil RW, Kupiec-Weglinski JW. 2013; Ischaemia-reperfusion injury in liver transplantation-from bench to bedside. Nat Rev Gastroenterol Hepatol. 10:79–89. DOI: 10.1038/nrgastro.2012.225. PMID: 23229329. PMCID: PMC3577927.
65. Liang Y, Christopher K, Finn PW, Colson YL, Perkins DL. 2007; Graft produced interleukin-6 functions as a danger signal and promotes rejection after transplantation. Transplantation. 84:771–7. DOI: 10.1097/01.tp.0000281384.24333.0b. PMID: 17893611.
66. Nabi Z, Reddy DN. 2019; Endoscopic management of combined biliary and duodenal obstruction. Clin Endosc. 52:40–6. DOI: 10.5946/ce.2018.102. PMID: 30626177. PMCID: PMC6370931.
67. de Rougemont O, Dutkowski P, Clavien PA. 2010; Biological modulation of liver ischemia-reperfusion injury. Curr Opin Organ Transplant. 15:183–9. DOI: 10.1097/MOT.0b013e3283373ced. PMID: 20125019.
68. Nieuwenhuijs-Moeke GJ, Pischke SE, Berger SP, Sanders JS, Pol RA, Struys MM, et al. 2020; Ischemia and reperfusion injury in kidney transplantation: relevant mechanisms in injury and repair. J Clin Med. 9:253. DOI: 10.3390/jcm9010253. PMID: 31963521. PMCID: PMC7019324.
69. Hausenloy DJ, Yellon DM. 2013; Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest. 123:92–100. DOI: 10.1172/JCI62874. PMID: 23281415. PMCID: PMC3533275.
70. Gielis JF, Boulet GA, Briedé JJ, Horemans T, Debergh T, Kussé M, et al. 2015; Longitudinal quantification of radical bursts during pulmonary ischaemia and reperfusion. Eur J Cardiothorac Surg. 48:622–9. DOI: 10.1093/ejcts/ezu518. PMID: 25564212.
71. Collins GM, Bravo-Shugarman M, Terasaki PI. 1969; Kidney preservation for transportation: initial perfusion and 30 hours' ice storage. Lancet. 2:1219–22. DOI: 10.1016/S0140-6736(69)90753-3. PMID: 4187813.
72. Southard JH, Belzer FO. 1995; Organ preservation. Annu Rev Med. 46:235–47. DOI: 10.1146/annurev.med.46.1.235. PMID: 7598460.
73. Mühlbacher F, Langer F, Mittermayer C. 1999; Preservation solutions for transplantation. Transplant Proc. 31:2069–70. DOI: 10.1016/S0041-1345(99)00265-1. PMID: 10455972.
74. Stringham JC, Southard JH, Hegge J, Triemstra L, Fields BL, Belzer FO. 1992; Limitations of heart preservation by cold storage. Transplantation. 53:287–94. DOI: 10.1097/00007890-199202010-00007. PMID: 1738922.
75. Paloyo S, Sageshima J, Gaynor JJ, Chen L, Ciancio G, Burke GW. 2016; Negative impact of prolonged cold storage time before machine perfusion preservation in donation after circulatory death kidney transplantation. Transpl Int. 29:1117–25. DOI: 10.1111/tri.12818. PMID: 27421771.
76. Pascual J, Zamora J, Pirsch JD. 2008; A systematic review of kidney transplantation from expanded criteria donors. Am J Kidney Dis. 52:553–86. DOI: 10.1053/j.ajkd.2008.06.005. PMID: 18725015.
77. Karangwa SA, Dutkowski P, Fontes P, Friend PJ, Guarrera JV, Markmann JF, et al. 2016; Machine perfusion of donor livers for transplantation: a proposal for standardized nomenclature and reporting guidelines. Am J Transplant. 16:2932–42. DOI: 10.1111/ajt.13843. PMID: 27129409. PMCID: PMC5132023.
78. Radajewska A, Krzywonos-Zawadzka A, Bil-Lula I. 2022; Recent methods of kidney storage and therapeutic possibilities of transplant kidney. Biomedicines. 10:1013. DOI: 10.3390/biomedicines10051013. PMID: 35625750. PMCID: PMC9139114.
79. Boteon YL, Afford SC. 2019; Machine perfusion of the liver: which is the best technique to mitigate ischaemia-reperfusion injury? World J Transplant. 9:14–20. DOI: 10.5500/wjt.v9.i1.14. PMID: 30697517. PMCID: PMC6347667.
80. van Leeuwen OB, Bodewes SB, Lantinga VA, Haring MP, Thorne AM, Brüggenwirth IM, et al. 2022; Sequential hypothermic and normothermic machine perfusion enables safe transplantation of high-risk donor livers. Am J Transplant. 22:1658–70. DOI: 10.1111/ajt.17022. PMID: 35286759. PMCID: PMC9325426.
81. Cardinal H, Dieudé M, Hébert MJ. 2018; Endothelial dysfunction in kidney transplantation. Front Immunol. 9:1130. DOI: 10.3389/fimmu.2018.01130. PMID: 29875776. PMCID: PMC5974048.
82. Schlegel A, de Rougemont O, Graf R, Clavien PA, Dutkowski P. 2013; Protective mechanisms of end-ischemic cold machine perfusion in DCD liver grafts. J Hepatol. 58:278–86. DOI: 10.1016/j.jhep.2012.10.004. PMID: 23063573.
83. Chazelas P, Steichen C, Favreau F, Trouillas P, Hannaert P, Thuillier R, et al. 2021; Oxidative stress evaluation in ischemia reperfusion models: characteristics, limits and perspectives. Int J Mol Sci. 22:2366. DOI: 10.3390/ijms22052366. PMID: 33673423. PMCID: PMC7956779.
84. Kang M, Kim S, Choi JY, Kim KS, Jung YK, Park B, et al. 2024; Ex vivo kidney machine perfusion: meta-analysis of randomized clinical trials. Br J Surg. 111:znae102. DOI: 10.1093/bjs/znae102. PMID: 38637312.
85. Moers C, Smits JM, Maathuis MH, Treckmann J, van Gelder F, Napieralski BP, et al. 2009; Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med. 360:7–19. DOI: 10.1056/NEJMoa0802289. PMID: 19118301.
86. Malinoski D, Saunders C, Swain S, Groat T, Wood PR, Reese J, et al. 2023; Hypothermia or machine perfusion in kidney donors. N Engl J Med. 388:418–26. DOI: 10.1056/NEJMoa2118265. PMID: 36724328.
87. Panayotova GG, Rosado J, Paterno F, Deo D, Dikdan G, McCarty MA, et al. 2020; Novel oxygenation technique for hypothermic machine perfusion of liver grafts: validation in porcine donation after cardiac death (DCD) liver model. Am J Surg. 220:1270–7. DOI: 10.1016/j.amjsurg.2020.06.072. PMID: 32892979.
88. Liang A, Cheng W, Cao P, Cai S, Zhang L, Zhong K, et al. 2023; Effects of machine perfusion strategies on different donor types in liver transplantation: a systematic review and meta-analysis. Int J Surg. 109:3617–30. DOI: 10.1097/JS9.0000000000000661. PMID: 37578436. PMCID: PMC10651255.
89. Andrijauskaite K, Veraza RJ, Lopez RP, Maxwell Z, Cano I, Cisneros EE, et al. 2024; Novel portable hypothermic machine perfusion preservation device enhances cardiac viability of donated human hearts. Front Cardiovasc Med. 11:1376101. DOI: 10.3389/fcvm.2024.1376101. PMID: 38628313. PMCID: PMC11018979.
90. McGiffin DC, Kure CE, Macdonald PS, Jansz PC, Emmanuel S, Marasco SF, et al. 2024; Hypothermic oxygenated perfusion (HOPE) safely and effectively extends acceptable donor heart preservation times: results of the Australian and New Zealand trial. J Heart Lung Transplant. 43:485–95. DOI: 10.1016/j.healun.2023.10.020. PMID: 37918701.
91. Minor T, Efferz P, Fox M, Wohlschlaeger J, Lüer B. 2013; Controlled oxygenated rewarming of cold stored liver grafts by thermally graduated machine perfusion prior to reperfusion. Am J Transplant. 13:1450–60. DOI: 10.1111/ajt.12235. PMID: 23617781.
92. Nicholson ML, Hosgood SA. 2013; Renal transplantation after ex vivo normothermic perfusion: the first clinical study. Am J Transplant. 13:1246–52. DOI: 10.1111/ajt.12179. PMID: 23433047.
93. Adams TD, Patel M, Hosgood SA, Nicholson ML. 2017; Lowering perfusate temperature from 37°c to 32°c diminishes function in a porcine model of ex vivo kidney perfusion. Transplant Direct. 3:e140. DOI: 10.1097/TXD.0000000000000655. PMID: 28361124. PMCID: PMC5367757.
94. Berendsen TA, Bruinsma BG, Lee J, D'Andrea V, Liu Q, Izamis ML, et al. 2012; A simplified subnormothermic machine perfusion system restores ischemically damaged liver grafts in a rat model of orthotopic liver transplantation. Transplant Res. 1:6. DOI: 10.1186/2047-1440-1-6. PMID: 23369351. PMCID: PMC3552573.
95. Bona M, Wyss RK, Arnold M, Méndez-Carmona N, Sanz MN, Günsch D, et al. 2021; Cardiac graft assessment in the era of machine perfusion: current and future biomarkers. J Am Heart Assoc. 10:e018966. DOI: 10.1161/JAHA.120.018966. PMID: 33522248. PMCID: PMC7955334.
96. Parente A, Tirotta F, Pini A, Eden J, Dondossola D, Manzia TM, et al. 2023; Machine perfusion techniques for liver transplantation - a meta-analysis of the first seven randomized-controlled trials. J Hepatol. 79:1201–13. DOI: 10.1016/j.jhep.2023.05.027. PMID: 37302578.
97. García Sáez D, Zych B, Sabashnikov A, Bowles CT, De Robertis F, Mohite PN, et al. 2014; Evaluation of the organ care system in heart transplantation with an adverse donor/recipient profile. Ann Thorac Surg. 98:2099–105. DOI: 10.1016/j.athoracsur.2014.06.098. PMID: 25443013.
98. Sponga S, Vendramin I, Salman J, Ferrara V, De Manna ND, Lechiancole A, et al. 2023; Heart transplantation in high-risk recipients employing donor marginal grafts preserved with ex-vivo perfusion. Transpl Int. 36:11089. DOI: 10.3389/ti.2023.11089. PMID: 37547752. PMCID: PMC10401590.
99. Sponga S, Bonetti A, Ferrara V, Beltrami AP, Isola M, Vendramin I, et al. 2020; Preservation by cold storage vs ex vivo normothermic perfusion of marginal donor hearts: clinical, histopathologic, and ultrastructural features. J Heart Lung Transplant. 39:1408–16. DOI: 10.1016/j.healun.2020.08.021. PMID: 33041182.
100. Minor T, von Horn C, Zlatev H, Saner F, Grawe M, Lüer B, et al. 2022; Controlled oxygenated rewarming as novel end-ischemic therapy for cold stored liver grafts: a randomized controlled trial. Clin Transl Sci. 15:2918–27. DOI: 10.1111/cts.13409. PMID: 36251938. PMCID: PMC9747115.
101. Guo Z, Zhao Q, Jia Z, Huang C, Wang D, Ju W, et al. 2023; A randomized-controlled trial of ischemia-free liver transplantation for end-stage liver disease. J Hepatol. 79:394–402. DOI: 10.1016/j.jhep.2023.04.010. PMID: 37086919.
102. Pegg DE. Wolkers WF, Oldenhof H, editors. Principles of cryopreservation. Cryopreservation and freeze-drying protocols. Springer;2015. p. 3–19.
103. Love R. 2009; Chillin' at the symposium with Plato: refrigeration in the ancient world. ASHRAE Trans. 115:106.
104. Polge C, Smith AU, Parkes AS. 1949; Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature. 164:666. DOI: 10.1038/164666a0. PMID: 18143360.
105. Smith AU. 1950; Prevention of haemolysis during freezing and thawing of red blood- cells. Lancet. 2:910–1. DOI: 10.1016/S0140-6736(50)91861-7. PMID: 14795743.
106. Lovelock JE, Bishop MW. 1959; Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature. 183:1394–5. DOI: 10.1038/1831394a0. PMID: 13657132.
107. Toledo-Pereyra LH, Gordon DA, MacKenzie GH. 1982; Current research review: organ freezing. J Surg Res. 32:75–84. DOI: 10.1016/0022-4804(82)90188-3. PMID: 7033665.
108. Finger EB, Bischof JC. 2018; Cryopreservation by vitrification: a promising approach for transplant organ banking. Curr Opin Organ Transplant. 23:35–60. DOI: 10.1097/MOT.0000000000000534. PMID: 29702495.
109. Pullen LC. 2023; Supercooling halts biological time: new technologies can multiply the number of hours that an organ remains viable for transplant. Am J Transplant. 23:1473–5. DOI: 10.1016/j.ajt.2023.08.024. PMID: 37661021.
110. Lin M, Cao H, Li J. 2023; Control strategies of ice nucleation, growth, and recrystallization for cryopreservation. Acta Biomater. 155:35–56. DOI: 10.1016/j.actbio.2022.10.056. PMID: 36323355.
111. Jaiswal AN, Vagga A. 2022; Cryopreservation: a review article. Cureus. 14:e31564. DOI: 10.7759/cureus.31564.
112. Zhao G, Luo D, Gao D. 2006; Universal model for intracellular ice formation and its growth. AIChE J. 52:2596–606. DOI: 10.1002/aic.10851.
113. Schmid WD. 1982; Survival of frogs in low temperature. Science. 215:697–8. DOI: 10.1126/science.7058335. PMID: 7058335.
114. Baust JG, Brown RT. 1980; Heterothermy and cold acclimation in the arctic ground squirrel, Citellus undulatus. Comp Biochem Physiol A Physiol. 67:447–52. DOI: 10.1016/S0300-9629(80)80021-1.
115. Bojic S, Murray A, Bentley BL, Spindler R, Pawlik P, Cordeiro JL, et al. 2021; Winter is coming: the future of cryopreservation. BMC Biol. 19:56. DOI: 10.1186/s12915-021-00976-8. PMID: 33761937. PMCID: PMC7989039.
116. Pegg DE. 2007; Principles of cryopreservation. Methods Mol Biol. 368:39–57. DOI: 10.1007/978-1-59745-362-2_3. PMID: 18080461.
117. Elliott GD, Wang S, Fuller BJ. 2017; Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology. 76:74–91. DOI: 10.1016/j.cryobiol.2017.04.004. PMID: 28428046.
118. Guo N, Wei Q, Xu Y. 2020; Optimization of cryopreservation of pathogenic microbial strains. J Biosaf Biosecur. 2:66–70. DOI: 10.1016/j.jobb.2020.11.003.
119. Karow AM Jr. 1969; Cryoprotectants-a new class of drugs. J Pharm Pharmacol. 21:209–23. DOI: 10.1111/j.2042-7158.1969.tb08235.x. PMID: 4390139.
120. Trounson AO. 1990; Cryopreservation. Br Med Bull. 46:695–708. DOI: 10.1093/oxfordjournals.bmb.a072425. PMID: 2207601.
121. Arutyunyan I, Fatkhudinov T, Sukhikh G. 2018; Umbilical cord tissue cryopreservation: a short review. Stem Cell Res Ther. 9:236. DOI: 10.1186/s13287-018-0992-0. PMID: 30219095. PMCID: PMC6138889.
122. Brandstadter JD, De Martin A, Lϋtge M, Ferreira A, Gaudette BT, Stanossek Y, et al. 2023; A novel cryopreservation and biobanking strategy to study lymphoid tissue stromal cells in human disease. Eur J Immunol. 53:e2250362. DOI: 10.1002/eji.202250362. PMID: 37366295. PMCID: PMC10529925.
123. Gal S, Pu LL. 2020; An update on cryopreservation of adipose tissue. Plast Reconstr Surg. 145:1089–97. DOI: 10.1097/PRS.0000000000006699. PMID: 32221240.
124. Liu D, Pan F. 2016; Advances in cryopreservation of organs. J Huazhong Univ Sci Technolog Med Sci. 36:153–61. DOI: 10.1007/s11596-016-1559-x. PMID: 27072955.
125. Mazur P. 1984; Freezing of living cells: mechanisms and implications. Am J Physiol. 247(3 Pt 1):C125–42. DOI: 10.1152/ajpcell.1984.247.3.C125. PMID: 6383068.
126. Pegg DE. 2010; The relevance of ice crystal formation for the cryopreservation of tissues and organs. Cryobiology. 60(3 Suppl):S36–44. DOI: 10.1016/j.cryobiol.2010.02.003. PMID: 20159009.
127. Steponkus PL. Advances in low-temperature biology. Elsevier;1996.
128. Whaley D, Damyar K, Witek RP, Mendoza A, Alexander M, Lakey JR. 2021; Cryopreservation: an overview of principles and cell-specific considerations. Cell Transplant. 30:963689721999617. DOI: 10.1177/0963689721999617. PMID: 33757335. PMCID: PMC7995302.
129. Ozgur OS, Namsrai BE, Pruett TL, Bischof JC, Toner M, Finger EB, et al. 2023; Current practice and novel approaches in organ preservation. Front Transplant. 2:1156845. DOI: 10.3389/frtra.2023.1156845. PMID: 38993842. PMCID: PMC11235303.
130. Bruinsma BG, Uygun K. 2017; Subzero organ preservation: the dawn of a new ice age? Curr Opin Organ Transplant. 22:281–6. DOI: 10.1097/MOT.0000000000000403. PMID: 28266941. PMCID: PMC5520671.
131. Costanzo JP, Reynolds AM, do Amaral MC, Rosendale AJ, Lee RE Jr. 2015; Cryoprotectants and extreme freeze tolerance in a subarctic population of the wood frog. PLoS One. 10:e0117234. DOI: 10.1371/journal.pone.0117234. PMID: 25688861. PMCID: PMC4331536.
132. Storey KB, Storey JM. 1984; Biochemical adaption for freezing tolerance in the wood frog, Rana sylvatica. J Comp Physiol B. 155:29–36. DOI: 10.1007/BF00688788.
133. Tessier SN, Haque O, Pendexter CA, Cronin SE, Hafiz EOA, Weng L, et al. 2022; The role of antifreeze glycoprotein (AFGP) and polyvinyl alcohol/polyglycerol (X/Z-1000) as ice modulators during partial freezing of rat livers. Front Phys. 10:1033613. DOI: 10.3389/fphy.2022.1033613. PMID: 37151819. PMCID: PMC10161798.
134. Melnik BS, Glukhova KA, Sokolova Voronova EA, Balalaeva IV, Garbuzynskiy SO, Finkelstein AV. 2023; Physics of ice nucleation and antinucleation: action of ice-binding proteins. Biomolecules. 14:54. DOI: 10.3390/biom14010054. PMID: 38254654. PMCID: PMC10813080.
135. Tessier SN, de Vries RJ, Pendexter CA, Cronin SE, Ozer S, Hafiz EO, et al. 2022; Partial freezing of rat livers extends preservation time by 5-fold. Nat Commun. 13:4008. DOI: 10.1038/s41467-022-31490-2. PMID: 35840553. PMCID: PMC9287450.
136. Sultana T, Lee JI, Park JH, Lee S. 2018; Supercooling storage for the transplantable sources from the rat and the rabbit: a preliminary report. Transplant Proc. 50:1178–82. DOI: 10.1016/j.transproceed.2018.01.046. PMID: 29731089.
137. Basco MT, Yiu WK, Cheng SW, Sumpio BE. 2010; The effects of freezing versus supercooling on vascular cells: implications for balloon cryoplasty. J Vasc Interv Radiol. 21:910–5. DOI: 10.1016/j.jvir.2010.02.016. PMID: 20417120. PMCID: PMC2878641.
138. Abe M, Jimi S, Hama H, Shiraishi T, Iwasaki A, Ono N, et al. 2006; A novel method for preserving human lungs using a super-cooling system. Ann Thorac Surg. 82:1085–8. DOI: 10.1016/j.athoracsur.2006.03.016. PMID: 16928543.
139. Berendsen TA, Bruinsma BG, Puts CF, Saeidi N, Usta OB, Uygun BE, et al. 2014; Supercooling enables long-term transplantation survival following 4 days of liver preservation. Nat Med. 20:790–3. DOI: 10.1038/nm.3588. PMID: 24973919. PMCID: PMC4141719.
140. Zhmakin AI. Fundamentals of cryobiology: physical phenomena and mathematical models. Springer;2009. DOI: 10.1007/b10800.
141. Morris GJ, Acton E. 2013; Controlled ice nucleation in cryopreservation-a review. Cryobiology. 66:85–92. DOI: 10.1016/j.cryobiol.2012.11.007. PMID: 23246475.
142. William N, Acker JP. 2021; High sub-zero organ preservation: a paradigm of nature-inspired strategies. Cryobiology. 102:15–26. DOI: 10.1016/j.cryobiol.2021.04.002. PMID: 33905707.
143. Prickett RC, Marquez-Curtis LA, Elliott JA, McGann LE. 2015; Effect of supercooling and cell volume on intracellular ice formation. Cryobiology. 70:156–63. DOI: 10.1016/j.cryobiol.2015.02.002. PMID: 25707695.
144. Fujikawa S, Kuwabara C, Kasuga J, Arakawa K. 2018; Supercooling-promoting (anti-ice nucleation) substances. Adv Exp Med Biol. 1081:289–320. DOI: 10.1007/978-981-13-1244-1_16. PMID: 30288716.
145. Huang H, Yarmush ML, Usta OB. 2018; Long-term deep-supercooling of large-volume water and red cell suspensions via surface sealing with immiscible liquids. Nat Commun. 9:3201. DOI: 10.1038/s41467-018-05636-0. PMID: 30097570. PMCID: PMC6086840.
146. Usta OB, Kim Y, Ozer S, Bruinsma BG, Lee J, Demir E, et al. 2013; Supercooling as a viable non-freezing cell preservation method of rat hepatocytes. PLoS One. 8:e69334. DOI: 10.1371/journal.pone.0069334. PMID: 23874947. PMCID: PMC3713052.
147. Scotte M, Eschwege P, Cherruau C, Fontaliran F, Moreau F, Houssin D. 1996; Liver preservation below 0 degrees C with UW solution and 2,3-butanediol. Cryobiology. 33:54–61. DOI: 10.1006/cryo.1996.0006. PMID: 8812085.
148. Matsuda H, Yagi T, Matsuoka J, Yamamura H, Tanaka N. 1999; Subzero nonfreezing storage of isolated rat hepatocytes in University of Wisconsin solution. Transplantation. 67:186–91. DOI: 10.1097/00007890-199901150-00032. PMID: 9921819.
149. Kim M, Yoon HY. 2023; The biomechanical and biological effect of supercooling on cortical bone allograft. J Vet Sci. 24:e79. DOI: 10.4142/jvs.23183. PMID: 37904641. PMCID: PMC10694378.
150. Berkane Y, Filz von Reiterdank I, Tawa P, Charlès L, Goutard M, Dinicu AT, et al. 2024; VCA supercooling in a swine partial hindlimb model. Sci Rep. 14:12618. DOI: 10.1038/s41598-024-63041-8. PMID: 38824189. PMCID: PMC11144209.
151. Que W, Hu X, Fujino M, Terayama H, Sakabe K, Fukunishi N, et al. 2020; Prolonged cold ischemia time in mouse heart transplantation using supercooling preservation. Transplantation. 104:1879–89. DOI: 10.1097/TP.0000000000003089. PMID: 31895334.
152. Bruinsma BG, Berendsen TA, Izamis ML, Yeh H, Yarmush ML, Uygun K. 2015; Supercooling preservation and transplantation of the rat liver. Nat Protoc. 10:484–94. DOI: 10.1038/nprot.2015.011. PMID: 25692985. PMCID: PMC4494653.
153. de Vries RJ, Tessier SN, Banik PD, Nagpal S, Cronin SE, Ozer S, et al. 2019; Supercooling extends preservation time of human livers. Nat Biotechnol. 37:1131–6. DOI: 10.1038/s41587-019-0223-y. PMID: 31501557. PMCID: PMC6776681.
154. Wan L, Powell-Palm MJ, Lee C, Gupta A, Weegman BP, Clemens MG, et al. 2018; Preservation of rat hearts in subfreezing temperature isochoric conditions to - 8 °C and 78 MPa. Biochem Biophys Res Commun. 496:852–7. DOI: 10.1016/j.bbrc.2018.01.140. PMID: 29395085.
155. Botea F, Năstase G, Herlea V, Chang TT, Șerban A, Barcu A, et al. 2023; An exploratory study on isochoric supercooling preservation of the pig liver. Biochem Biophys Rep. 34:101485. DOI: 10.1016/j.bbrep.2023.101485. PMID: 37229422. PMCID: PMC10203736.
156. Sharma A, Rao JS, Han Z, Gangwar L, Namsrai B, Gao Z, et al. 2021; Vitrification and nanowarming of kidneys. Adv Sci (Weinh). 8:e2101691. DOI: 10.1002/advs.202101691. PMID: 34382371. PMCID: PMC8498880.
157. Gao Z, Namsrai B, Han Z, Joshi P, Rao JS, Ravikumar V, et al. 2022; Vitrification and rewarming of magnetic nanoparticle-loaded rat hearts. Adv Mater Technol. 7:2100873. DOI: 10.1002/admt.202100873. PMID: 35668819. PMCID: PMC9164386.
158. Sharma A, Lee CY, Namsrai BE, Han Z, Tobolt D, Rao JS, et al. 2023; Cryopreservation of whole rat livers by vitrification and nanowarming. Ann Biomed Eng. 51:566–77. DOI: 10.1007/s10439-022-03064-2. PMID: 36183025. PMCID: PMC10315167.
159. Han Z, Rao JS, Gangwar L, Namsrai BE, Pasek-Allen JL, Etheridge ML, et al. 2023; Vitrification and nanowarming enable long-term organ cryopreservation and life-sustaining kidney transplantation in a rat model. Nat Commun. 14:3407. DOI: 10.1038/s41467-023-38824-8. PMID: 37296144. PMCID: PMC10256770.
160. Kuro A, Morimoto N, Hara T, Matsuoka Y, Fukui M, Hihara M, et al. 2022; Protection of rat artery grafts from tissue damage by voltage-applied supercooling. Med Mol Morphol. 55:91–9. DOI: 10.1007/s00795-021-00310-9. PMID: 35129664.
161. Monzen K, Hosoda T, Hayashi D, Imai Y, Okawa Y, Kohro T, et al. 2005; The use of a supercooling refrigerator improves the preservation of organ grafts. Biochem Biophys Res Commun. 337:534–9. DOI: 10.1016/j.bbrc.2005.09.082. PMID: 16202974.
162. Sanz E, Vega C, Espinosa JR, Caballero-Bernal R, Abascal JL, Valeriani C. 2013; Homogeneous ice nucleation at moderate supercooling from molecular simulation. J Am Chem Soc. 135:15008–17. DOI: 10.1021/ja4028814. PMID: 24010583.
163. Takahashi T, Kakita A, Takahashi Y, Yokoyama K, Sakamoto I, Yamashina S. 2001; Preservation of rat livers by supercooling under high pressure. Transplant Proc. 33:916–9. DOI: 10.1016/S0041-1345(00)02268-5. PMID: 11267128.
164. Preciado JA, Rubinsky B. 2010; Isochoric preservation: a novel characterization method. Cryobiology. 60:23–9. DOI: 10.1016/j.cryobiol.2009.06.010. PMID: 19559692.
165. Powell-Palm MJ, Koh-Bell A, Rubinsky B. 2020; Isochoric conditions enhance stability of metastable supercooled water. Appl Phys Lett. 116:123702. DOI: 10.1063/1.5145334.
166. Consiglio A, Ukpai G, Rubinsky B, Powell-Palm MJ. 2020; Suppression of cavitation-induced nucleation in systems under isochoric confinement. Phys Rev Res. 2:023350. DOI: 10.1103/PhysRevResearch.2.023350.
167. Năstase G, Botea F, Beșchea GA, Câmpean ȘI, Barcu A, Neacșu I, et al. 2023; Isochoric supercooling organ preservation system. Bioengineering (Basel). 10:934. DOI: 10.3390/bioengineering10080934. PMID: 37627819. PMCID: PMC10451689.
168. Powell-Palm MJ, Charwat V, Charrez B, Siemons B, Healy KE, Rubinsky B. 2021; Isochoric supercooled preservation and revival of human cardiac microtissues. Commun Biol. 4:1118. DOI: 10.1038/s42003-021-02650-9. PMID: 34552201. PMCID: PMC8458396.
169. Ueno T, Omura T, Takahashi T, Matsumoto H, Takahashi Y, Kakita A, et al. 2005; Liver transplantation using liver grafts preserved under high pressure. Artif Organs. 29:849–55. DOI: 10.1111/j.1525-1594.2005.00139.x. PMID: 16185349.
170. Ukpai G, Năstase G, Șerban A, Rubinsky B. 2017; Pressure in isochoric systems containing aqueous solutions at subzero Centigrade temperatures. PLoS One. 12:e0183353. DOI: 10.1371/journal.pone.0183353. PMID: 28817681. PMCID: PMC5560655.
171. Armitage WJ, Rich SJ. 1990; Vitrification of organized tissues. Cryobiology. 27:483–91. DOI: 10.1016/0011-2240(90)90037-5. PMID: 2249452.
172. Fuller BJ, Lane N, Benson EE. Life in the frozen state. CRC press;2004. DOI: 10.1201/9780203647073.
173. Fahy GM, MacFarlane DR, Angell CA, Meryman HT. 1984; Vitrification as an approach to cryopreservation. Cryobiology. 21:407–26. DOI: 10.1016/0011-2240(84)90079-8. PMID: 6467964.
174. Fahy GM, Wowk B, Wu J, Paynter S. 2004; Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology. 48:22–35. DOI: 10.1016/j.cryobiol.2003.11.004. PMID: 14969679.
175. Rall WF, Fahy GM. 1985; Ice-free cryopreservation of mouse embryos at -196 degrees C by vitrification. Nature. 313:573–5. DOI: 10.1038/313573a0. PMID: 3969158.
176. Rall WF. 1987; Factors affecting the survival of mouse embryos cryopreserved by vitrification. Cryobiology. 24:387–402. DOI: 10.1016/0011-2240(87)90042-3. PMID: 3652721.
177. Amorim CA, Curaba M, Van Langendonckt A, Dolmans MM, Donnez J. 2011; Vitrification as an alternative means of cryopreserving ovarian tissue. Reprod Biomed Online. 23:160–86. DOI: 10.1016/j.rbmo.2011.04.005. PMID: 21676653.
178. Yagoub SH, Lim M, Tan TC, Chow DJ, Dholakia K, Gibson BC, et al. 2022; Vitrification within a nanoliter volume: oocyte and embryo cryopreservation within a 3D photopolymerized device. J Assist Reprod Genet. 39:1997–2014. DOI: 10.1007/s10815-022-02610-0.
179. Canosa S, Cimadomo D, Conforti A, Maggiulli R, Giancani A, Tallarita A, et al. 2022; The effect of extended cryo-storage following vitrification on embryo competence: a systematic review and meta-analysis. J Assist Reprod Genet. 39:873–82. DOI: 10.1007/s10815-022-02405-3. PMID: 35119549. PMCID: PMC9050987.
180. Schulz M, Risopatrón J, Uribe P, Isachenko E, Isachenko V, Sánchez R. 2020; Human sperm vitrification: a scientific report. Andrology. 8:1642–50. DOI: 10.1111/andr.12847. PMID: 32598551.
181. Brockbank KG, Chen Z, Greene ED, Campbell LH. 2015; Vitrification of heart valve tissues. Methods Mol Biol. 1257:399–421. DOI: 10.1007/978-1-4939-2193-5_20. PMID: 25428020. PMCID: PMC7590235.
182. Fahy GM, Wowk B, Pagotan R, Chang A, Phan J, Thomson B, et al. 2009; Physical and biological aspects of renal vitrification. Organogenesis. 5:167–75. DOI: 10.4161/org.5.3.9974. PMID: 20046680. PMCID: PMC2781097.
183. Fahy GM, Wowk B, Wu J, Phan J, Rasch C, Chang A, et al. 2004; Cryopreservation of organs by vitrification: perspectives and recent advances. Cryobiology. 48:157–78. DOI: 10.1016/j.cryobiol.2004.02.002. PMID: 15094092.
184. Best BP. 2015; Cryoprotectant toxicity: facts, issues, and questions. Rejuvenation Res. 18:422–36. DOI: 10.1089/rej.2014.1656. PMID: 25826677. PMCID: PMC4620521.
185. Diller KR. Cho YI, editor. Modeling of bioheat transfer processes at high and low temperatures. Advances in heat transfer. Elsevier;1992. p. 157–357. DOI: 10.1016/S0065-2717(08)70345-9.
186. Karow AM. 1984; Electronic techniques for controlling thawing of major organs. Cryobiology. 21:403–6. DOI: 10.1016/0011-2240(84)90078-6. PMID: 6467963.
187. Lovelock JE, Smith AU. 1959; Heat transfer from and to animals in experimental hypothermia and freezing. Ann N Y Acad Sci. 80:487–99. DOI: 10.1111/j.1749-6632.1959.tb49226.x. PMID: 14418500.
188. Goldzveig SA, Smith AU. 1956; A simple method for reanimating ice-cold rats and mice. J Physiol. 132:406–13. DOI: 10.1113/jphysiol.1956.sp005534. PMID: 13320407. PMCID: PMC1363505.
189. Burns CP, Burdett EC, Karow AM. 1975; Thawing of rabbit kidneys from −79 °C with 2450 MHz radiation. Cryobiology. 12:577. DOI: 10.1016/0011-2240(75)90118-2.
190. Burdette EC, Wiggins S, Brown R, Karow AM Jr. 1980; Microwave thawing of frozen kidneys: a theoretically based experimentally-effective design. Cryobiology. 17:393–402. DOI: 10.1016/0011-2240(80)90046-2. PMID: 6995027.
191. Guttman FM, Lizin J, Robitaille P, Blanchard H, Turgeon-Knaack C. 1977; Survival of canine kidneys after treatment with dimethyl-sulfoxide, freezing at -80 degrees C, and thawing by microwave illumination. Cryobiology. 14:559–67. DOI: 10.1016/0011-2240(77)90166-3. PMID: 332449.
192. Chen P, Wang S, Chen Z, Ren P, Hepfer RG, Greene ED, et al. 2023; Nanowarming and ice-free cryopreservation of large sized, intact porcine articular cartilage. Commun Biol. 6:220. DOI: 10.1038/s42003-023-04577-9. PMID: 36828843. PMCID: PMC9958003.
193. Bischof J. 2015; Nanowarming: a new concept in tissue and organ preservation. Cryobiology. 71:176. DOI: 10.1016/j.cryobiol.2015.05.051.
194. Ye Z, Liu S, Yin Y. 2023; Magnetic nanoparticles for nanowarming: seeking a fine balance between heating performance and biocompatibility. Mater Chem Front. 7:3427–33. DOI: 10.1039/D3QM00248A.
195. Gao Z, Ring HL, Sharma A, Namsrai B, Tran N, Finger EB, et al. 2020; Preparation of scalable silica-coated iron oxide nanoparticles for nanowarming. Adv Sci (Weinh). 7:1901624. DOI: 10.1002/advs.201901624. PMID: 32099753. PMCID: PMC7029634.
196. Manuchehrabadi N, Gao Z, Zhang J, Ring HL, Shao Q, Liu F, et al. 2017; Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci Transl Med. 9:eaah4586. DOI: 10.1126/scitranslmed.aah4586. PMID: 28251904. PMCID: PMC5470364.
197. Chiu-Lam A, Staples E, Pepine CJ, Rinaldi C. 2021; Perfusion, cryopreservation, and nanowarming of whole hearts using colloidally stable magnetic cryopreservation agent solutions. Sci Adv. 7:eabe3005. DOI: 10.1126/sciadv.abe3005. PMID: 33523997. PMCID: PMC7793590.
198. Dogar AW, Ullah K, Shams-Ud-Din , Abbas SH, Hussain A, Ghaffar A, et al. 2022; Is a preservation solution for living donor liver transplantation needed? Adding a new chapter in LDLT! Transplant Direct. 8:e1396. DOI: 10.1097/TXD.0000000000001396. PMID: 36246001. PMCID: PMC9553383.
199. Moser MA, Ginther N, Luo Y, Beck G, Ginther R, Ewen M, et al. 2017; Early experience with hypothermic machine perfusion of living donor kidneys - a retrospective study. Transpl Int. 30:706–12. DOI: 10.1111/tri.12964. PMID: 28390094.
200. Flores Carvalho M, Boteon YL, Guarrera JV, Modi PR, Lladó L, Lurje G, et al. 2024; Obstacles to implement machine perfusion technology in routine clinical practice of transplantation: why are we not there yet? Hepatology. 79:713–30. DOI: 10.1097/HEP.0000000000000394. PMID: 37013926.
Full Text Links
  • CTR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr