1. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. IDF Diabetes Atlas Committee. 2019; Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 157:107843. DOI:
10.1016/j.diabres.2019.107843. PMID:
31518657.
Article
2. Abbott CA, Malik RA, van Ross ER, Kulkarni J, Boulton AJ. 2011; Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care. 34:2220–4. DOI:
10.2337/dc11-1108. PMID:
21852677. PMCID:
PMC3177727.
Article
4. Bhandari R, Sharma A, Kuhad A. 2022; Novel nanotechnological approaches for targeting dorsal root ganglion (DRG) in mitigating diabetic neuropathic pain (DNP). Front Endocrinol (Lausanne). 12:790747. DOI:
10.3389/fendo.2021.790747. PMID:
35211091. PMCID:
PMC8862660.
Article
6. Kim H, Wang SY, Kwak G, Yang Y, Kwon IC, Kim SH. 2019; Exosome-guided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing. Adv Sci (Weinh). 6:1900513. DOI:
10.1002/advs.201900513. PMID:
31637157. PMCID:
PMC6794619.
Article
9. Gilron I, Ghasemlou N. 2014; Chronobiology of chronic pain: focus on diurnal rhythmicity of neuropathic pain. Curr Opin Support Palliat Care. 8:429–36. DOI:
10.1097/SPC.0000000000000085. PMID:
25111256.
10. Gilron I, Bailey JM, Tu D, Holden RR, Weaver DF, Houlden RL. 2005; Morphine, gabapentin, or their combination for neuropathic pain. N Engl J Med. 352:1324–34. DOI:
10.1056/NEJMoa042580. PMID:
15800228.
Article
11. Walton JC, Walker WH 2nd, Bumgarner JR, Meléndez-Fernández OH, Liu JA, Hughes HL, et al. 2021; Circadian variation in efficacy of medications. Clin Pharmacol Ther. 109:1457–88. DOI:
10.1002/cpt.2073. PMID:
33025623. PMCID:
PMC8268638.
Article
13. Pathak R, Sachan N, Chandra P. 2022; Mechanistic approach towards diabetic neuropathy screening techniques and future challenges: a review. Biomed Pharmacother. 150:113025. DOI:
10.1016/j.biopha.2022.113025. PMID:
35658222.
Article
14. Ying W, Cheruku PS, Bazer FW, Safe SH, Zhou B. 2013; Investigation of macrophage polarization using bone marrow derived macrophages. J Vis Exp. 76:50323. DOI:
10.3791/50323-v.
Article
16. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. 1994; Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 53:55–63. DOI:
10.1016/0165-0270(94)90144-9. PMID:
7990513.
Article
17. Jiang Y, Wang J, Li H, Xia L. 2020; IL-35 promotes microglial M2 polarization in a rat model of diabetic neuropathic pain. Arch Biochem Biophys. 685:108330. DOI:
10.1016/j.abb.2020.108330. PMID:
32156533.
Article
18. Kang J, Guo Y. 2022; Human umbilical cord mesenchymal stem cells derived exosomes promote neurological function recovery in a rat spinal cord injury model. Neurochem Res. 47:1532–40. DOI:
10.1007/s11064-022-03545-9. PMID:
35132478.
Article
19. Tsuda M, Ueno H, Kataoka A, Tozaki-Saitoh H, Inoue K. 2008; Activation of dorsal horn microglia contributes to diabetes-induced tactile allodynia via extracellular signal-regulated protein kinase signaling. Glia. 56:378–86. DOI:
10.1002/glia.20623. PMID:
18186080.
Article
20. Wu J, Ding DH, Li QQ, Wang XY, Sun YY, Li LJ. 2019; Lipoxin A4 regulates lipopolysaccharide-induced BV2 microglial activation and differentiation via the notch signaling pathway. Front Cell Neurosci. 13:19. DOI:
10.3389/fncel.2019.00019. PMID:
30778288. PMCID:
PMC6369213.
Article
22. Yuan J, Fei Y. 2022; Lidocaine ameliorates chronic constriction injury-induced neuropathic pain through regulating M1/M2 microglia polarization. Open Med (Wars). 17:897–906. DOI:
10.1515/med-2022-0480. PMID:
35647302. PMCID:
PMC9106111.
Article
23. Zhang Y, Chen Q, Nai Y, Cao C. 2020; Suppression of miR-155 attenuates neuropathic pain by inducing an M1 to M2 switch in microglia. Folia Neuropathol. 58:70–82. DOI:
10.5114/fn.2020.94008. PMID:
32337959.
Article
24. Afsari ZH, Renno WM, Abd-El-Basset E. 2008; Alteration of glial fibrillary acidic proteins immunoreactivity in astrocytes of the spinal cord diabetic rats. Anat Rec (Hoboken). 291:390–9. DOI:
10.1002/ar.20678. PMID:
18360886.
Article
25. Liao YH, Zhang GH, Jia D, Wang P, Qian NS, He F, et al. 2011; Spinal astrocytic activation contributes to mechanical allodynia in a mouse model of type 2 diabetes. Brain Res. 1368:324–35. DOI:
10.1016/j.brainres.2010.10.044. PMID:
20971097.
Article
27. Turk DC, Dworkin RH, Allen RR, Bellamy N, Brandenburg N, Carr DB, et al. 2003; Core outcome domains for chronic pain clinical trials: IMMPACT recommendations. Pain. 106:337–45. DOI:
10.1016/j.pain.2003.08.001. PMID:
14659516.
Article
28. Xia T, Cui Y, Qian Y, Chu S, Song J, Gu X, et al. 2016; Regulation of the NR2B-CREB-CRTC1 signaling pathway contributes to circadian pain in murine model of chronic constriction injury. Anesth Analg. 122:542–52. DOI:
10.1213/ANE.0000000000000991. PMID:
26440419.
Article
29. Fonken LK, Frank MG, Kitt MM, Barrientos RM, Watkins LR, Maier SF. 2015; Microglia inflammatory responses are controlled by an intrinsic circadian clock. Brain Behav Immun. 45:171–9. DOI:
10.1016/j.bbi.2014.11.009. PMID:
25433170. PMCID:
PMC4386638.
Article
31. Gilron I, Bailey JM, Vandenkerkhof EG. 2013; Chronobiological characteristics of neuropathic pain: clinical predictors of diurnal pain rhythmicity. Clin J Pain. 29:755–9. DOI:
10.1097/AJP.0b013e318275f287. PMID:
23370066.
33. Li H, Yang J, Wang Y, Liu Q, Cheng J, Wang F. 2019; Neuroprotective effects of increasing levels of HSP70 against neuroinflammation in Parkinson's disease model by inhibition of NF-κB and STAT3. Life Sci. 234:116747. DOI:
10.1016/j.lfs.2019.116747. PMID:
31408661.
Article
37. Shiue SJ, Rau RH, Shiue HS, Hung YW, Li ZX, Yang KD, et al. 2019; Mesenchymal stem cell exosomes as a cell-free therapy for nerve injury-induced pain in rats. Pain. 160:210–23. DOI:
10.1097/j.pain.0000000000001395. PMID:
30188455.
Article
39. Sun G, Li G, Li D, Huang W, Zhang R, Zhang H, et al. 2018; hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation. Mater Sci Eng C Mater Biol Appl. 89:194–204. DOI:
10.1016/j.msec.2018.04.006. PMID:
29752089.
Article
40. Guo S, Perets N, Betzer O, Ben-Shaul S, Sheinin A, Michaelevski I, et al. 2019; Intranasal delivery of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog siRNA repairs complete spinal cord injury. ACS Nano. 13:10015–28. DOI:
10.1021/acsnano.9b01892. PMID:
31454225.
Article
41. Tran PH, Xiang D, Nguyen TN, Tran TT, Chen Q, Yin W, et al. 2020; Aptamer-guided extracellular vesicle theranostics in oncology. Theranostics. 10:3849–66. DOI:
10.7150/thno.39706. PMID:
32226524. PMCID:
PMC7086349.
Article