Int J Stem Cells.  2021 Aug;14(3):331-340. 10.15283/ijsc20156.

Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Regulate Macrophage Polarization to Attenuate Systemic Lupus Erythematosus-Associated Diffuse Alveolar Hemorrhage in Mice

Affiliations
  • 1Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China

Abstract

Background and Objectives
To investigate the effect and the underlying mechanism of exosomes secreted by human umbilical cord mesenchymal stem cells (hUCMSCs) on diffuse alveolar hemorrhage (DAH) in murine lupus.
Methods and Results
Exosomes were extracted from cultured hUCMSCs by ultracentrifugation. The expressions of exosome markers (Alix, CD63 and TSG101) were measured for identification of hUCMSC-derived exosomes (hUCMSC-exosomes). The alveolar hemorrhage of DAH mice was revealed by H&E staining. The primary alveolar macrophages were isolated from bronchoalveolar lavage fluid (BALF) of DAH mice. The expressions of M1 macrophage markers (iNOS, IL-6, TNF-α and IL-1β ) and M2 macrophage markers (Arg1, IL-10, TGF-β and chi3l3) were detected. Flow cytometry measured the ratio of M1/M2 macrophages. ELISA measured the secretion of pro-inflammatory cytokines (IL-6 and TNF-α) and anti-inflammatory cytokines (IL-10 and TGF-β ). DAH mice had hemorrhage and small-vessel vasculitis in the lung, with neutrophil and monocyte infiltration observed around the capillary and small artery. Furthermore, increases of IL-6 and TNF-α, and decreases of IL-10 and TGF-β were detected in the BALF of DAH mice. M1 makers were overexpressed in alveolar macrophages of DAH mice while M2 makers were lowly expressed. DAH mice had a higher proportion of M1 macrophages than M2 macrophages. After hUCMSC-exosome or methylprednisolone treatment in DAH mice, the alveolar injuries and inflammatory responses were attenuated, and the proportion of M2 macrophages was increased.
Conclusions
hUCMSC-exosomes attenuate DAH-induced inflammatory responses and alveolar hemorrhage by regulating macrophage polarization.

Keyword

Human umbilical cord mesenchymal stem cells; Exosome; Systemic lupus erythematosus; Diffuse alveolar hemorrhage; M1 macrophage; M2 macrophage

Figure

  • Fig. 1 Identification of hUCMSC-exosomes. (A) The ultrastructure of exosomes was observed under a transmission electron microscope; (B) expressions of exosome markers were tested by Western blotting; (C) exosome size was measured by the nanoparticle tracking analyzer Zetaview. hUCMSC, human umbilical cord mesenchymal stem cell.

  • Fig. 2 Establishment of DAH models on mice. (A) H&E staining detected the pathological conditions of mouse lung; (B∼E) ELISA measured the expressions of IL-6, TNF-α, IL-10 and TGF-β in mouse BALF. Each group had ten mice. **p< 0.01 compared to the control group; DAH, diffuse alveolar hemorrhage; BALF, bronchoalveolar lavage fluid; ELISA, enzyme-linked immunosorbent assay.

  • Fig. 3 hUCMSC-exosomes alleviate pathological symptoms of DAH mice. After hUCMSC-exosome or methylprednisolone treatment, (A) H&E staining assessed the morphology of mouse lung; (B∼E) ELISA measured the expressions of IL-6, TNF-α, IL-10 and TGF-β in mouse BALF. Each group had ten mice. **p<0.01 compared to the control group; hUCMSC, human umbilical cord mesenchymal stem cell; DAH, diffuse alveolar hemorrhage; BALF, bronchoalveolar lavage fluid; ELISA, enzyme-linked immunosorbent assay.

  • Fig. 4 hUCMSC-exosomes facilitate the transformation of macrophages from M1 into M2 phenotype. (A∼H) The expressions of iNOS, IL-6, TNF-α, IL-1β, Arg1, IL-10, TGF-β and chi3l3 in mouse macrophages were tested by qRT-PCR; (I∼K) the proportions of M1 and M2 macrophages were measured by flow cytometry; (L) phagocytosis was assessed by flow cytometry. n=10; *p<0.05, **p<0.01 compared to the control group; #p<0.05, ##p<0.01 compared to the DAH group; hUCMSC, human umbilical cord mesenchymal stem cell; DAH, diffuse alveolar hemorrhage.


Reference

References

1. Cucuzza ME, Marino SD, Schiavone L, Smilari P, Filosco F, Barone P. 2018; Diffuse alveolar haemorrage as initial presentation of systemic lupus erythematosus: a case report. Lupus. 27:507–510. DOI: 10.1177/0961203317713144. PMID: 28592199.
Article
2. Al-Adhoubi NK, Bystrom J. 2020; Systemic lupus erythematosus and diffuse alveolar hemorrhage, etiology and novel treatment strategies. Lupus. 29:355–363. DOI: 10.1177/0961203320903798. PMID: 32036761. PMCID: PMC7436451.
Article
3. Kim D, Choi J, Cho SK, Choi CB, Kim TH, Jun JB, Yoo DH, Bae SC, Sung YK. 2017; Clinical characteristics and outcomes of diffuse alveolar hemorrhage in patients with systemic lupus erythematosus. Semin Arthritis Rheum. 46:782–787. DOI: 10.1016/j.semarthrit.2016.09.004. PMID: 27745903.
Article
4. Ednalino C, Yip J, Carsons SE. 2015; Systematic review of diffuse alveolar hemorrhage in systemic lupus erythematosus: focus on outcome and therapy. J Clin Rheumatol. 21:305–310. DOI: 10.1097/RHU.0000000000000291. PMID: 26308350.
Article
5. Parmar M. 2018; Towards stem cell based therapies for Parkinson's disease. Development. 145:dev156117. DOI: 10.1242/dev.156117. PMID: 29311261.
Article
6. Senior PA, Pettus JH. 2019; Stem cell therapies for Type 1 diabetes: current status and proposed road map to guide successful clinical trials. Diabet Med. 36:297–307. DOI: 10.1111/dme.13846. PMID: 30362170.
Article
7. Jin MC, Medress ZA, Azad TD, Doulames VM, Veeravagu A. 2019; Stem cell therapies for acute spinal cord injury in humans: a review. Neurosurg Focus. 46:E10. DOI: 10.3171/2018.12.FOCUS18602. PMID: 30835679.
Article
8. Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. 2017; Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med. 6:2173–2185. DOI: 10.1002/sctm.17-0129. PMID: 29076267. PMCID: PMC5702523.
Article
9. Zou Q, Wu M, Zhong L, Fan Z, Zhang B, Chen Q, Ma F. 2016; Development of a xeno-free feeder-layer system from human umbilical cord mesenchymal stem cells for prolonged expansion of human induced pluripotent stem cells in culture. PLoS One. 11:e0149023. DOI: 10.1371/journal.pone.0149023. PMID: 26882313. PMCID: PMC4755601.
Article
10. Can A, Celikkan FT, Cinar O. 2017; Umbilical cord mesenchymal stromal cell transplantations: a systemic analysis of clinical trials. Cytotherapy. 19:1351–1382. DOI: 10.1016/j.jcyt.2017.08.004. PMID: 28964742.
Article
11. Liang J, Gu F, Wang H, Hua B, Hou Y, Shi S, Lu L, Sun L. 2010; Mesenchymal stem cell transplantation for diffuse alveolar hemorrhage in SLE. Nat Rev Rheumatol. 6:486–489. DOI: 10.1038/nrrheum.2010.80. PMID: 20517294.
Article
12. Hessvik NP, Llorente A. 2018; Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 75:193–208. DOI: 10.1007/s00018-017-2595-9. PMID: 28733901. PMCID: PMC5756260.
Article
13. Gurunathan S, Kang MH, Jeyaraj M, Qasim M, Kim JH. 2019; Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. 8:307. DOI: 10.3390/cells8040307. PMID: 30987213. PMCID: PMC6523673.
Article
14. Li P, Kaslan M, Lee SH, Yao J, Gao Z. 2017; Progress in exosome isolation techniques. Theranostics. 7:789–804. DOI: 10.7150/thno.18133. PMID: 28255367. PMCID: PMC5327650.
Article
15. Zhang R, Zhu Y, Li Y, Liu W, Yin L, Yin S, Ji C, Hu Y, Wang Q, Zhou X, Chen J, Xu W, Qian H. 2020; Human umbilical cord mesenchymal stem cell exosomes alleviate sepsis-associated acute kidney injury via regulating microRNA-146b expression. Biotechnol Lett. 42:669–679. DOI: 10.1007/s10529-020-02831-2. PMID: 32048128.
Article
16. Zhang X, Liu J, Yu B, Ma F, Ren X, Li X. 2018; Effects of mesenchymal stem cells and their exosomes on the healing of large and refractory macular holes. Graefes Arch Clin Exp Ophthalmol. 256:2041–2052. DOI: 10.1007/s00417-018-4097-3. PMID: 30167916.
Article
17. Wu Y, Qiu W, Xu X, Kang J, Wang J, Wen Y, Tang X, Yan Y, Qian H, Zhang X, Xu W, Mao F. 2018; Exosomes derived from human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease in mice through ubiquiti-nation. Am J Transl Res. 10:2026–2036. PMID: 30093940. PMCID: PMC6079129.
18. Ding M, Shen Y, Wang P, Xie Z, Xu S, Zhu Z, Wang Y, Lyu Y, Wang D, Xu L, Bi J, Yang H. 2018; Exosomes isolated from human umbilical cord mesenchymal stem cells alleviate neuroinflammation and reduce amyloid-beta deposition by modulating microglial activation in Alzheimer's disease. Neurochem Res. 43:2165–2177. DOI: 10.1007/s11064-018-2641-5. PMID: 30259257.
Article
19. Yaghoubi Y, Movassaghpour A, Zamani M, Talebi M, Mehdizadeh A, Yousefi M. 2019; Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment. Life Sci. 233:116733. DOI: 10.1016/j.lfs.2019.116733. PMID: 31394127.
Article
20. Sun G, Li G, Li D, Huang W, Zhang R, Zhang H, Duan Y, Wang B. 2018; hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating infla-mmation. Mater Sci Eng C Mater Biol Appl. 89:194–204. DOI: 10.1016/j.msec.2018.04.006. PMID: 29752089.
Article
21. Fang S, Xu C, Zhang Y, Xue C, Yang C, Bi H, Qian X, Wu M, Ji K, Zhao Y, Wang Y, Liu H, Xing X. 2016; Umbilical cord-derived mesenchymal stem cell-derived exosomal microRNAs suppress myofibroblast differentiation by inhibiting the transforming growth factor-β/SMAD2 pathway during wound healing. Stem Cells Transl Med. 5:1425–1439. DOI: 10.5966/sctm.2015-0367. PMID: 27388239. PMCID: PMC5031180.
Article
22. Perez-Hernandez J, Redon J, Cortes R. 2017; Extracellular vesicles as therapeutic agents in systemic lupus erythematosus. Int J Mol Sci. 18:717. DOI: 10.3390/ijms18040717. PMID: 28350323. PMCID: PMC5412303.
Article
23. Zhou D, Huang C, Lin Z, Zhan S, Kong L, Fang C, Li J. 2014; Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 26:192–197. DOI: 10.1016/j.cellsig.2013.11.004. PMID: 24219909.
Article
24. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A. 2018; Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. DOI: 10.1002/jcp.26429. PMID: 29319160.
Article
25. Wang N, Liang H, Zen K. 2014; Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol. 5:614. DOI: 10.3389/fimmu.2014.00614. PMID: 25506346. PMCID: PMC4246889.
Article
26. Barros MH, Hauck F, Dreyer JH, Kempkes B, Niedobitek G. 2013; Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages. PLoS One. 8:e80908. DOI: 10.1371/journal.pone.0080908. PMID: 24260507. PMCID: PMC3829941.
Article
27. Xu R, Zhang F, Chai R, Zhou W, Hu M, Liu B, Chen X, Liu M, Xu Q, Liu N, Liu S. 2019; Exosomes derived from pro-inflammatory bone marrow-derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization. J Cell Mol Med. 23:7617–7631. DOI: 10.1111/jcmm.14635. PMID: 31557396. PMCID: PMC6815833.
Article
28. Zhao J, Li X, Hu J, Chen F, Qiao S, Sun X, Gao L, Xie J, Xu B. 2019; Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res. 115:1205–1216. DOI: 10.1093/cvr/cvz040. PMID: 30753344. PMCID: PMC6529919.
Article
29. Liu H, Liang Z, Wang F, Zhou C, Zheng X, Hu T, He X, Wu X, Lan P. 2019; Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism. JCI Insight. 4:e131273. DOI: 10.1172/jci.insight.131273. PMID: 31689240. PMCID: PMC6975270.
Article
30. Zhuang H, Han S, Lee PY, Khaybullin R, Shumyak S, Lu L, Chatha A, Afaneh A, Zhang Y, Xie C, Nacionales D, Moldawer L, Qi X, Yang LJ, Reeves WH. 2017; Pathogenesis of diffuse alveolar hemorrhage in murine lupus. Arthritis Rheumatol. 69:1280–1293. DOI: 10.1002/art.40077. PMID: 28217966. PMCID: PMC5449234.
Article
31. Shen M, Zeng X, Tian X, Zhang F, Zeng X, Zhang X, Xu W. 2010; Diffuse alveolar hemorrhage in systemic lupus erythematosus: a retrospective study in China. Lupus. 19:1326–1330. DOI: 10.1177/0961203310373106. PMID: 20647253.
Article
32. Park MS. 2013; Diffuse alveolar hemorrhage. Tuberc Respir Dis (Seoul). 74:151–162. DOI: 10.4046/trd.2013.74.4.151. PMID: 23678356. PMCID: PMC3651925.
Article
33. Morales-Nebreda L, Alakija O, Ferguson KT, Singer BD. 2018; Systemic lupus erythematosus-associated diffuse alveolar hemorrhage: a case report and review of the literature. Clin Pulm Med. 25:166–169. DOI: 10.1097/CPM.0000000000000271. PMID: 30220838. PMCID: PMC6136257.
Article
34. Zhuang H, Szeto C, Han S, Yang L, Reeves WH. 2015; Animal models of interferon signature positive lupus. Front Immunol. 6:291. DOI: 10.3389/fimmu.2015.00291. PMID: 26097482. PMCID: PMC4456949.
Article
35. Reeves WH, Lee PY, Weinstein JS, Satoh M, Lu L. 2009; Induction of autoimmunity by pristane and other naturally occurring hydrocarbons. Trends Immunol. 30:455–464. DOI: 10.1016/j.it.2009.06.003. PMID: 19699150. PMCID: PMC2746238.
Article
36. Barker TT, Lee PY, Kelly-Scumpia KM, Weinstein JS, Nacionales DC, Kumagai Y, Akira S, Croker BP, Sobel ES, Reeves WH, Satoh M. 2011; Pathogenic role of B cells in the development of diffuse alveolar hemorrhage induced by pristane. Lab Invest. 91:1540–1550. DOI: 10.1038/labinvest.2011.108. PMID: 21808234. PMCID: PMC3184182.
Article
37. Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. 2019; Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 4:22. DOI: 10.1038/s41536-019-0083-6. PMID: 31815001. PMCID: PMC6889290.
Article
38. Pashoutan Sarvar D, Shamsasenjan K, Akbarzadehlaleh P. 2016; Mesenchymal stem cell-derived exosomes: new opportunity in cell-free therapy. Adv Pharm Bull. 6:293–299. DOI: 10.15171/apb.2016.041. PMID: 27766213. PMCID: PMC5071792.
Article
39. Shi D, Wang D, Li X, Zhang H, Che N, Lu Z, Sun L. 2012; Allogeneic transplantation of umbilical cord-derived mesenchymal stem cells for diffuse alveolar hemorrhage in systemic lupus erythematosus. Clin Rheumatol. 31:841–846. DOI: 10.1007/s10067-012-1943-2. PMID: 22302582.
Article
40. Monsel A, Zhu YG, Gudapati V, Lim H, Lee JW. 2016; Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases. Expert Opin Biol Ther. 16:859–871. DOI: 10.1517/14712598.2016.1170804. PMID: 27011289. PMCID: PMC5280876.
Article
41. Teng X, Chen L, Chen W, Yang J, Yang Z, Shen Z. 2015; Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cell Physiol Biochem. 37:2415–2424. DOI: 10.1159/000438594. PMID: 26646808.
Article
42. Li X, Liu L, Yang J, Yu Y, Chai J, Wang L, Ma L, Yin H. 2016; Exosome derived from human umbilical cord mesenchymal stem cell mediates miR-181c attenuating burn-induced excessive inflammation. EBioMedicine. 8:72–82. DOI: 10.1016/j.ebiom.2016.04.030. PMID: 27428420. PMCID: PMC4919539.
Article
43. Huang JH, Yin XM, Xu Y, Xu CC, Lin X, Ye FB, Cao Y, Lin FY. 2017; Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats. J Neurotrauma. 34:3388–3396. DOI: 10.1089/neu.2017.5063. PMID: 28665182.
Article
44. Viola A, Munari F, Sánchez-Rodríguez R, Scolaro T, Castegna A. 2019; The metabolic signature of macrophage responses. Front Immunol. 10:1462. DOI: 10.3389/fimmu.2019.01462. PMID: 31333642. PMCID: PMC6618143.
Article
45. Han S, Zhuang H, Shumyak S, Wu J, Xie C, Li H, Yang LJ, Reeves WH. 2018; Liver X receptor agonist therapy prevents diffuse alveolar hemorrhage in murine lupus by repolarizing macrophages. Front Immunol. 9:135. DOI: 10.3389/fimmu.2018.00135. PMID: 29456535. PMCID: PMC5801423.
Article
46. Willis GR, Fernandez-Gonzalez A, Anastas J, Vitali SH, Liu X, Ericsson M, Kwong A, Mitsialis SA, Kourembanas S. 2018; Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med. 197:104–116. DOI: 10.1164/rccm.201705-0925OC. PMID: 28853608. PMCID: PMC5765387.
Article
47. Ti D, Hao H, Tong C, Liu J, Dong L, Zheng J, Zhao Y, Liu H, Fu X, Han W. 2015; LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med. 13:308. DOI: 10.1186/s12967-015-0642-6. PMID: 26386558. PMCID: PMC4575470.
Article
48. Biswas S, Mandal G, Roy Chowdhury S, Purohit S, Payne KK, Anadon C, Gupta A, Swanson P, Yu X, Conejo-Garcia JR, Bhattacharyya A. 2019; Exosomes produced by mesenchymal stem cells drive differentiation of myeloid cells into immunosuppressive m2-polarized macrophages in breast cancer. J Immunol. 203:3447–3460. DOI: 10.4049/jimmunol.1900692. PMID: 31704881. PMCID: PMC6994919.
Article
49. Deng S, Zhou X, Ge Z, Song Y, Wang H, Liu X, Zhang D. 2019; Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization. Int J Biochem Cell Biol. 114:105564. DOI: 10.1016/j.biocel.2019.105564. PMID: 31276786.
Article
50. Li J, Xue H, Li T, Chu X, Xin D, Xiong Y, Qiu W, Gao X, Qian M, Xu J, Wang Z, Li G. 2019; Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE-/- mice via miR-let7 mediated infiltration and polarization of M2 macrophage. Biochem Biophys Res Commun. 510:565–572. DOI: 10.1016/j.bbrc.2019.02.005. PMID: 30739785.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr