Womens Health Nurs.  2024 Dec;30(4):265-276. 10.4069/whn.2024.12.16.

Dietary interventions to reduce heavy metal exposure in antepartum and postpartum women: a systematic review

Affiliations
  • 1College of Nursing Science, Kyung Hee University, Seoul, Korea

Abstract

Purpose
Heavy metals, which are persistent in the environment and toxic, can accumulate in the body and cause organ damage, which may further negatively affect perinatal women and their fetuses. Therefore, this systematic review was conducted to evaluate the effectiveness of dietary interventions to reduce heavy metal exposure in antepartum and postpartum women. Methods: We searched five databases (PubMed, Embase, Scopus, Web of Science, and Cochrane Library) for randomized controlled trials that provided dietary interventions for antepartum and postpartum women. Quality assessments were conducted independently by two reviewers using the Cochrane Risk-of-Bias tool, a quality assessment tool for randomized controlled trials. Results: A total of seven studies were included. The studies were conducted in six countries, with interventions categorized into “nutritional supplements,” “food supply,” and “educational” strategies. Interventions involving nutritional supplements, such as calcium and probiotics, primarily reduced heavy metal levels in the blood and minimized toxicity. Food-based interventions, including specific fruit consumption, decreased heavy metal concentrations in breast milk. Educational interventions effectively promoted behavioral changes, such as adopting diets low in mercury. The studies demonstrated a low overall risk of bias, supporting the reliability of the findings. These strategies underscore the effectiveness of dietary approaches in mitigating heavy metal exposure and improving maternal and child health. Conclusion: The main findings underscore the importance of dietary interventions in reducing heavy metal exposure. This emphasizes the critical role of nursing in guiding dietary strategies to minimize exposure risks, ultimately supporting maternal and fetal health during pregnancy.

Keyword

Antepartum; Postpartum; Heavy metal; Intervention; Systematic review

Figure

  • Figure 1. PRISMA 2020 flow chart.

  • Figure 2. Risk of bias in included studies. (A) Risk of bias graph. (B) Risk of bias of selected studies.


Reference

References

1. King KE, Darrah TH, Money E, Meentemeyer R, Maguire RL, Nye MD, et al. Geographic clustering of elevated blood heavy metal levels in pregnant women. BMC Public Health. 2015; 15:1035. https://doi.org/10.1186/s12889-015-2379-9. DOI: 10.1186/s12889-015-2379-9. PMID: 26449855.
Article
2. Wang M, Chen Z, Song W, Hong D, Huang L, Li Y. A review on cadmium exposure in the population and intervention strategies against cadmium toxicity. Bull Environ Contam Toxicol. 2021; 106(1):65–74. https://doi.org/10.1007/s00128-020-03088-1. DOI: 10.1007/s00128-020-03088-1. PMID: 33486543.
Article
3. Al-Saleh I, Shinwari N, Mashhour A, Mohamed Gel D, Rabah A. Heavy metals (lead, cadmium and mercury) in maternal, cord blood and placenta of healthy women. Int J Hyg Environ Health. 2011; 214(2):79–101. https://doi.org/10.1016/j.ijheh.2010.10.001. DOI: 10.1016/j.ijheh.2010.10.001. PMID: 21093366.
Article
4. Okubo H, Nakayama SF; Japan Environment and Children’s Study Group. Periconceptional diet quality and its relation to blood heavy metal concentrations among pregnant women: the Japan environment and Children’s study. Environ Res. 2023; 225:115649. https://doi.org/10.1016/j.envres.2023.115649. DOI: 10.1016/j.envres.2023.115649. PMID: 36894116.
Article
5. Fisher RM, Gupta V. Heavy Metals. StatPearls. Treasure Island (FL): StatPearls Publishing;2024.
6. Jannetto PJ, Cowl CT. Elementary overview of heavy metals. Clin Chem. 2023; 69(4):336–349. https://doi.org/10.1093/clinchem/hvad022. DOI: 10.1093/clinchem/hvad022. PMID: 36945128.
Article
7. Duan H, Yu L, Tian F, Zhai Q, Fan L, Chen W. Gut microbiota: a target for heavy metal toxicity and a probiotic protective strategy. Sci Total Environ. 2020; 742:140429. https://doi.org/10.1016/j.scitotenv.2020.140429. DOI: 10.1016/j.scitotenv.2020.140429. PMID: 32629250.
Article
8. Kuo CC, Balakrishnan P, Gribble MO, Best LG, Goessler W, Umans JG, et al. The association of arsenic exposure and arsenic metabolism with all-cause, cardiovascular and cancer mortality in the Strong Heart Study. Environ Int. 2022; 159:107029. https://doi.org/10.1016/j.envint.2021.107029. DOI: 10.1016/j.envint.2021.107029. PMID: 34890900.
Article
9. Obeng-Gyasi E. Chronic cadmium exposure and cardiovascular disease in adults. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2020; 55(6):726–729. https://doi.org/10.1080/10934529.2020.1737459. DOI: 10.1080/10934529.2020.1737459. PMID: 32149559.
Article
10. Chen T, Dai K, Wu H. Effect of lead exposure on respiratory health: a systematic review and meta-analysis. Air Qual Atmos Health. 2024; 17:3031–3044. https://doi.org/10.1007/s11869-024-01619-x. DOI: 10.1007/s11869-024-01619-x.
Article
11. Emeny RT, Korrick SA, Li Z, Nadeau K, Madan J, Jackson B, et al. Prenatal exposure to mercury in relation to infant infections and respiratory symptoms in the New Hampshire Birth Cohort Study. Environ Res. 2019; 171:523–529. https://doi.org/10.1016/j.envres.2019.01.026. DOI: 10.1016/j.envres.2019.01.026. PMID: 30743244.
Article
12. Signes-Pastor AJ, Díaz-Coto S, Martinez-Camblor P, Carey M, Soler-Blasco R, García-Villarino M, et al. Arsenic exposure and respiratory outcomes during childhood in the INMA study. PLoS One. 2022; 17(9):e0274215. https://doi.org/10.1371/journal.pone.0274215. DOI: 10.1371/journal.pone.0274215. PMID: 36083997.
Article
13. Feki-Tounsi M, Hamza-Chaffai A. Cadmium as a possible cause of bladder cancer: a review of accumulated evidence. Environ Sci Pollut Res Int. 2014; 21(18):10561–10573. https://doi.org/10.1007/s11356-014-2970-0. DOI: 10.1007/s11356-014-2970-0. PMID: 24894749.
Article
14. Wu H, Liao Q, Chillrud SN, Yang Q, Huang L, Bi J, et al. Environmental exposure to cadmium: health risk assessment and its associations with hypertension and impaired kidney function. Sci Rep. 2016; 6:29989. https://doi.org/10.1038/srep29989. DOI: 10.1038/srep29989. PMID: 27411493.
Article
15. Bakulski KM, Seo YA, Hickman RC, Brandt D, Vadari HS, Hu H, et al. Heavy metals exposure and Alzheimer’s disease and related dementias. J Alzheimers Dis. 2020; 76(4):1215–1242. https://doi.org/10.3233/JAD-200282. DOI: 10.3233/JAD-200282. PMID: 32651318.
Article
16. Gundacker C, Forsthuber M, Szigeti T, Kakucs R, Mustieles V, Fernandez MF, et al. Lead (Pb) and neurodevelopment: a review on exposure and biomarkers of effect (BDNF, HDL) and susceptibility. Int J Hyg Environ Health. 2021; 238:113855. https://doi.org/10.1016/j.ijheh.2021. DOI: 10.1016/j.ijheh.2021. PMID: 34655857.
Article
17. Rezaei K, Mastali G, Abbasgholinejad E, Bafrani MA, Shahmohammadi A, Sadri Z, et al. Cadmium neurotoxicity: Insights into behavioral effect and neurodegenerative diseases. Chemosphere. 2024; 364:143180. https://doi.org/10.1016/j.chemosphere.2024.143180. DOI: 10.1016/j.chemosphere.2024.143180. PMID: 39187026.
Article
18. Flannery BM, Schaefer HR, Middleton KB. A scoping review of infant and children health effects associated with cadmium exposure. Regul Toxicol Pharmacol. 2022; 131:105155. https://doi.org/10.1016/j.yrtph.2022.105155. DOI: 10.1016/j.yrtph.2022.105155. PMID: 35257832.
Article
19. Pollack AZ, Ranasinghe S, Sjaarda LA, Mumford SL. Cadmium and reproductive health in women: a systematic review of the epidemiologic evidence. Curr Environ Health Rep. 2014; 1(2):172–184. https://doi.org/10.1007/s40572-014-0013-0. DOI: 10.1007/s40572-014-0013-0. PMID: 27453808.
Article
20. Amegah AK, Sewor C, Jaakkola JJK. Cadmium exposure and risk of adverse pregnancy and birth outcomes: a systematic review and dose-response meta-analysis of cohort and cohort-based case-control studies. J Expo Sci Environ Epidemiol. 2021; 31(2):299–317. https://doi.org/10.1038/s41370-021-00289-6. DOI: 10.1038/s41370-021-00289-6. PMID: 33510430.
Article
21. Rehman Q, Rehman K, Akash MSH. Heavy metals and neurological disorders: from exposure to preventive interventions. In : Akash MSH, Rehman K, editors. Environmental contaminants and neurological disorders. Emerging contaminants and associated treatment technologies. Cham: Springer;2021. p. 83–100.
22. Mehrandish R, Rahimian A, Shahriary A. Heavy metals detoxification: a review of herbal compounds for chelation therapy in heavy metals toxicity. J Herbmed Pharmacol. 2019; 8(2):69–77. https://doi.org/10.15171/jhp.2019.12. DOI: 10.15171/jhp.2019.12.
Article
23. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 372:n71. https://doi.org/10.1136/bmj.n71. DOI: 10.1136/bmj.n71. PMID: 33782057.
Article
24. Sterne JA, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019; 366:l4898. https://doi.org/10.1136/bmj.l4898. DOI: 10.1136/bmj.l4898. PMID: 31462531.
Article
25. Hernandez-Avila M, Gonzalez-Cossio T, Hernandez-Avila JE, Romieu I, Peterson KE, Aro A, et al. Dietary calcium supplements to lower blood lead levels in lactating women: a randomized placebo-controlled trial. Epidemiology. 2003; 14(2):206–212. https://doi.org/10.1097/01.EDE.0000038520.66094.34. DOI: 10.1097/01.EDE.0000038520.66094.34. PMID: 12606887.
Article
26. Ettinger AS, Lamadrid-Figueroa H, Téllez-Rojo MM, Mercado-García A, Peterson KE, Schwartz J, et al. Effect of calcium supplementation on blood lead levels in pregnancy: a randomized placebo-controlled trial. Environ Health Perspect. 2009; 117(1):26–31. https://doi.org/10.1289/ehp.11868. DOI: 10.1289/ehp.11868. PMID: 19165383.
Article
27. Bisanz JE, Enos MK, Mwanga JR, Changalucha J, Burton JP, Gloor GB, et al. Randomized open-label pilot study of the influence of probiotics and the gut microbiome on toxic metal levels in Tanzanian pregnant women and school children. mBio. 2014; 5(5):e01580–14. https://doi.org/10.1128/mBio.01580-14. DOI: 10.1128/mBio.01580-14. PMID: 25293764.
Article
28. Jukic AM, Zuchniak A, Qamar H, Ahmed T, Mahmud AA, Roth DE. Vitamin D treatment during pregnancy and maternal and neonatal cord blood metal concentrations at delivery: results of a randomized controlled trial in Bangladesh. Environ Health Perspect. 2020; 128(11):117007. https://doi.org/10.1289/EHP7265. DOI: 10.1289/EHP7265. PMID: 33226277.
Article
29. Kelishadi R, Hasanghaliaei N, Poursafa P, Keikha M, Ghannadi A, Yazdi M, et al. A randomized controlled trial on the effects of jujube fruit on the concentrations of some toxic trace elements in human milk. J Res Med Sci. 2016; 21:108. https://doi.org/10.4103/1735-1995. DOI: 10.4103/1735-1995. PMID: 28250785.
Article
30. Oken E, Guthrie LB, Bloomingdale A, Platek DN, Price S, Haines J, et al. A pilot randomized controlled trial to promote healthful fish consumption during pregnancy: the Food for Thought Study. Nutr J. 2013; 12:33. https://doi.org/10.1186/1475-2891-12-33. DOI: 10.1186/1475-2891-12-33. PMID: 23496848.
Article
31. Katsonouri A, Gabriel C, Esteban López M, Namorado S, Halldorsson TI, Snoj Tratnik J, et al. HBM4EU-MOM: prenatal methylmercury-exposure control in five countries through suitable dietary advice for pregnancy - study design and characteristics of participants. Int J Hyg Environ Health. 2023; 252:114213. https://doi.org/10.1016/j.ijheh.2023.114213. DOI: 10.1016/j.ijheh.2023.114213. PMID: 37393843.
Article
32. Gil F, Hernández AF, Márquez C, Femia P, Olmedo P, López-Guarnido O, et al. Biomonitorization of cadmium, chromium, manganese, nickel and lead in whole blood, urine, axillary hair and saliva in an occupationally exposed population. Sci Total Environ. 2011; 409(6):1172–80. https://doi.org/10.1016/j.scitotenv.2010.11.033. DOI: 10.1016/j.scitotenv.2010.11.033. PMID: 21211822.
Article
33. Lisik F, Piketty-Desfeux M, Tchikladze C, Glowaczower É. The effectiveness of an intervention to reduce exposure to trace metals during or prior to pregnancy: a prospective study in urban and rural locations. Heliyon. 2023; 9(11):e21293. https://doi.org/10.1016/j.heliyon.2023.e21293. DOI: 10.1016/j.heliyon.2023.e21293. PMID: 37954379.
Article
34. Lotah HN, Agarwal AK, Khanam R. Heavy metals in hair and nails as markers of occupational hazard among welders working in United Arab Emirates. Toxicol Res. 2021; 38(1):63–68. https://doi.org/10.1007/s43188-021-00091-4. DOI: 10.1007/s43188-021-00091-4. PMID: 35070942.
Article
35. Zheng J, Li M, Tang B, Luo W, Ma Y, Ren M, et al. Levels, Spatial distribution, and impact factors of heavy metals in the hair of metropolitan residents in China and human health implications. Environ Sci Technol. 2021; 55(15):10578–10588. https://doi.org/10.1021/acs.est.1c02001. DOI: 10.1021/acs.est.1c02001. PMID: 34296597.
Article
36. Christensen K. Nutritional multitasking? Exploring calcium supplementation to reduce toxic metal effects. Environ Health Perspect. 2022; 130(12):124002. https://doi.org/10.1289/EHP12341. DOI: 10.1289/EHP12341. PMID: 36541789.
Article
37. Gulson B, Taylor A, Eisman J. Bone remodeling during pregnancy and post-partum assessed by metal lead levels and isotopic concentrations. Bone. 2016; 89:40–51. https://doi.org/10.1016/j.bone.2016.05.005. DOI: 10.1016/j.bone.2016.05.005. PMID: 27233973.
Article
38. Sears ME. Chelation: harnessing and enhancing heavy metal detoxification--a review. ScientificWorldJournal. 2013; 2013:219840. https://doi.org/10.1155/2013/219840. DOI: 10.1155/2013/219840. PMID: 23690738.
Article
39. Zhai Q, Tian F, Zhao J, Zhang H, Narbad A, Chen W. Oral Administration of probiotics inhibits absorption of the heavy metal cadmium by protecting the intestinal barrier. Appl Environ Microbiol. 2016; 82(14):4429–4440. https://doi.org/10.1128/AEM.00695-16. DOI: 10.1128/AEM.00695-16. PMID: 27208136.
Article
40. Feng P, Yang J, Zhao S, Ling Z, Han R, Wu Y, et al. Human supplementation with Pediococcus acidilactici GR-1 decreases heavy metals levels through modifying the gut microbiota and metabolome. NPJ Biofilms Microbiomes. 2022; 8(1):63. https://doi.org/10.1038/s41522-022-00326-8. DOI: 10.1038/s41522-022-00326-8. PMID: 35974020.
Article
41. Zhai Q, Narbad A, Chen W. Dietary strategies for the treatment of cadmium and lead toxicity. Nutrients. 2015; 7(1):552–571. https://doi.org/10.3390/nu7010552. DOI: 10.3390/nu7010552. PMID: 25594439.
Article
42. Schwalfenberg G, Rodushkin I, Genuis SJ. Heavy metal contamination of prenatal vitamins. Toxicol Rep. 2018; 5:390–395. https://doi.org/10.1016/j.toxrep.2018.02.015. DOI: 10.1016/j.toxrep.2018.02.015. PMID: 29854609.
Article
43. Suomi J, Valsta L, Tuominen P. Dietary heavy metal exposure among Finnish adults in 2007 and in 2012. Int J Environ Res Public Health. 2021; 18(20):10581. https://doi.org/10.3390/ijerph182010581. DOI: 10.3390/ijerph182010581. PMID: 34682327.
Article
44. Pfadenhauer LM, Burns J, Rohwer A, Rehfuess EA. A protocol for a systematic review of the effectiveness of interventions to reduce exposure to lead through consumer products and drinking water. Syst Rev. 2014; 3:36. https://doi.org/10.1186/2046-4053-3-36. DOI: 10.1186/2046-4053-3-36. PMID: 24731516.
Article
45. Dai Y, Huo X, Cheng Z, Faas MM, Xu X. Early-life exposure to widespread environmental toxicants and maternal-fetal health risk: A focus on metabolomic biomarkers. Sci Total Environ. 2020; 739:139626. https://doi.org/10.1016/j.scitotenv.2020.139626. DOI: 10.1016/j.scitotenv.2020.139626. PMID: 32535459.
Article
Full Text Links
  • WHN
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr