1. Yu D, Liu B. Developmental anesthetic neurotoxicity: from animals to humans? J Anesth. 2013; 27:750–6.
Article
2. De Tina A, Palanisamy A. General anesthesia during the third trimester: any link to neurocognitive outcomes? Anesthesiol Clin. 2017; 35:69–80.
3. Andropoulos DB. Effect of anesthesia on the developing brain: infant and fetus. Fetal Diagn Ther. 2018; 43:1–11.
4. Center for Drug Evaluation and Research. FDA Drug Safety Communication: FDA review results in new warnings about using general anesthetics and sedation drugs in young children and pregnant women. FDA [Internet]. [2017 Apr 17]. Available from
www.fda.gov/Drugs/DrugSafety/ucm532356.htm.
5. Levin ED, Uemura E, Bowman RE. Neurobehavioral toxicology of halothane in rats. Neurotoxicol Teratol. 1991; 13:461–70.
8. Ing C, Brambrink AM. Mayo Anesthesia Safety in Kids continued: two new studies and a potential redirection of the field. Br J Anaesth. 2019; 122:716–9.
9. Vutskits L, Xie Z. Lasting impact of general anaesthesia on the brain: mechanisms and relevance. Nat Rev Neurosci. 2016; 17:705–17.
10. Walkden GJ, Pickering AE, Gill H. Assessing long-term neurodevelopmental outcome following general anesthesia in early childhood. Anesth Analg. 2019; 128:681–94.
11. Jackson WM, Gray CDB, Jiang D, Schaefer ML, Connor C, Mintz CD. Molecular mechanisms of anesthetic neurotoxicity. J Neurosurg Anesthesiol. 2016; 28:361–72.
12. Johnson SC, Pan A, Li L, Sedensky M, Morgan P. Neurotoxicity of anesthetics: mechanisms and meaning from mouse intervention studies. Neurotoxicol Teratol. 2019; 71:22–31.
Article
13. Disma N, O’Leary JD, Loepke AW, Brambrink AM, Becke K, Clausen NG, et al. Anesthesia and the developing brain: a way forward for laboratory and clinical research. Pediatr Anesth. 2018; 28:758–63.
Article
14. Lee KEM, Diacovo TG, Calderon J, Byrne MW, Ing C. Outcomes Research in Vulnerable Pediatric Populations. J Neurosurg Anesthesiol. 2019; 31:140–3.
Article
15. Zanghi CN, Jevtovic-Todorovic V. A holistic approach to anesthesia-induced neurotoxicity and its implications for future mechanistic studies. Neurotoxicol Teratol. 2017; 60:24–32.
Article
16. Sun LS, Li G, Miller TLK, Salorio C, Byrne MW, Bellinger DC, et al. Association between a single general anesthesia exposure before age 36 months and neurocognitive outcomes in later childhood. JAMA. 2016; 315:2312–20.
Article
17. Neudecker V, Xu J, Thomas MA, Penberthy KK, Kang E, Berg DA, et al. An update on preclinical research in anesthetic-induced developmental neurotoxicity in nonhuman primate and rodent models. J Neurosurg Anesthesiol. 2023; 35:104–13.
Article
18. Davidson AJ, Disma N, de Graaff JC, Withington DE, Dorris L, Bell G, et al. Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): an international multicentre, randomised controlled trial. Lancet. 2016; 387:239–50.
Article
19. McCann ME, de Graaff JC, Dorris L, Disma N, Withington D, Bell G, et al. Neurodevelopmental outcome at 5 years of age after general anaesthesia or awake-regional anaesthesia in infancy (GAS): an international, multicentre, randomised, controlled equivalence trial. Lancet. 2019; 393:664–77.
20. Flick R, Katusic SK, Colligan RC, Wilder RT, Voigt RG, Olson MD, et al. Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics. 2011; 128:e1053–61.
Article
21. Warner DO, Zaccariello MJ, Katusic SK, Schroeder DR, Hanson AC, Schulte PJ, et al. Neuropsychological and behavioral outcomes after exposure of young children to procedures requiring general anesthesia: the Mayo Anesthesia Safety in Kids (MASK) study. Anesthesiology. 2018; 129:89–105.
22. Sprung J, Flick RP, Wilder RT, Katusic SK, Pike TL, Dingli M, et al. Anesthesia for cesarean delivery and learning disabilities in a population-based birth cohort. Anesthesiology. 2009; 111:302–10.
23. Ing C, Landau R, DeStephano D, Miles CH, Von Ungern-Sternberg BS, Li G, et al. Prenatal exposure to general anesthesia and childhood behavioral deficit. Anesth Analg. 2021; 133:595–605.
24. Kong FJ, Ma LL, Hu WW, Wang WN, Lu HS, Chen SP. Fetal exposure to high isoflurane concentration induces postnatal memory and learning deficits in rats. Biochem Pharmacol. 2012; 84:558–63.
25. Chen Q, Chu W, Sheng R, Song S, Yang J, Ji F, et al. Maternal anesthesia with sevoflurane during the mid-gestation induces social interaction deficits in offspring C57BL/6 mice. Biochem Biophys Res Commun. 2021; 553:65–71.
26. Zuo Y, Chang Y, Thirupathi A, Zhou C, Shi Z. Prenatal sevoflurane exposure: effects of iron metabolic dysfunction on offspring cognition and potential mechanism. Int J Dev Neurosci. 2021; 81:1–9.
27. Huang R, Lin B, Tian H, Luo Q, Li Y. Prenatal exposure to general anesthesia drug esketamine impaired neurobehavior in offspring. Cell Mol Neurobiol. 2023; 43:3005–22.
Article
28. Shan Y, Liu P, Zhou Y, Ding X, Liu H, Yang J. Prenatal sevoflurane exposure impairs the learning and memory of rat offspring via HMGB1-induced NLRP3/ASC inflammasome activation. ACS Chem Neurosci. 2023; 14:699–708.
Article
29. Zhang Y, Kuai S, Zhang Y, Xue H, Wu Z, Zhao P. Maternal sevoflurane exposure affects neural stem cell differentiation in offspring rats through NRF2 signaling. Neurotoxicology. 2022; 93:348–54.
Article
30. Jiang M, Tang T, Liang X, Li J, Qiu Y, Liu S, et al. Maternal sevoflurane exposure induces temporary defects in interkinetic nuclear migration of radial glial progenitors in the fetal cerebral cortex through the Notch signalling pathway. Cell Prolif. 2021; 54:e13042.
Article
31. Olutoye OA, Sheikh F, Zamora IZ, Yu L, Akinkuotu AC, Adesina AM, et al. Repeated isoflurane exposure and neuroapoptosis in the midgestation fetal sheep brain. Am J Obstet Gynecol. 2016; 214:542.e1–e8.
Article
32. Bleeser T, Basurto D, Russo F, Vergote S, Valenzuela I, Van den Broucke S, et al. Effects of cumulative duration of repeated anaesthesia exposure on foetal brain development in the ovine model. J Clin Anesth. 2023; 85:111050.
Article
33. Kitagawa H, Pringle KC. Fetal surgery: a critical review. Pediatr Surg Int. 2017; 33:421–33.
Article
34. Baschat AA, Blackwell SB, Chatterjee D, Cummings JJ, Emery SP, Hirose S, et al. Care levels for fetal therapy centers. Obstet Gynecol. 2022; 139:1027–42.
Article
35. Hoagland MA, Chatterjee D. Anesthesia for fetal surgery. Paediatr Anaesth. 2017; 27:346–57.
Article
36. Massa H, Lacoh CM, Vutskits L. Effects of morphine on the differentiation and survival of developing pyramidal neurons during the brain growth spurt. Toxicol Sci. 2012; 130:168–79.
Article
37. Bajic D, Commons KG, Soriano SG. Morphine-enhanced apoptosis in selective brain regions of neonatal rats. Int J Dev Neurosci. 2013; 31:258–66.
Article
38. Turner RJ, Lambrost M, Holmes C, Katz SG, Downs CS, Collins DW, et al. The effects of sevoflurane on isolated gravid human myometrium. Anaesth Intensive Care. 2002; 30:591–6.
Article
39. Van de Velde M, De Buck F. Fetal and maternal analgesia/anesthesia for fetal procedures. Fetal Diagn Ther. 2012; 31:201–9.
Article
40. Boat A, Mahmoud M, Michelfelder EC, Lin E, Ngamprasertwong P, Schnell B, et al. Supplementing desflurane with intravenous anesthesia reduces fetal cardiac dysfunction during open fetal surgery. Paediatr Anaesth. 2010; 20:748–56.
Article
41. Sviggum HP, Kodali BS. Maternal anesthesia for fetal surgery. Clin Perinatol. 2013; 40:413–27.
Article
42. Zakowski MI, Geller AG. The Placenta: Anatomy, Physiology, and Transfer of Drugs. In: Chestnut’s Obstetric Anesthesia: Principles and Practice. 5th ed. Edited by Chestnut DH, Wong CA, Tsen LC, Ngan Kee WD, Beilin Y, eds: Philadelphia, Elsevier. 2014, pp 55-74.
43. Hoagland MA, Fleming J, Foley C, Fernandez P, Wood CL. Avoiding the use of halogenated anesthetic agents for uterine relaxation in open mid-gestation fetal surgery: a case report. Fetal Diagn Ther. 2022; 49:190–5.
Article