Int J Stem Cells.  2024 Nov;17(4):437-448. 10.15283/ijsc23205.

The Characterization and Regulation of Schwann Cells in the Tooth Germ Development and Odontogenic Differentiation

Affiliations
  • 1Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
  • 2Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
  • 3Shanghai Jingan Dental Clinic, Shanghai, China
  • 4Department of Stomatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Abstract

Schwann cells (SCs), a type of glial cell in the peripheral nervous system, can serve as a source of mesenchymal stem cells (MSCs) to repair injured pulp. This study aimed to investigate the role of SCs in tooth germ development and repair of pulp injury. We performed RNA-seq and immunofluorescent staining on tooth germs at different developmental stages. The effect of L-type calcium channel (LTCC) blocker nimodipine on SCs odontogenic differentiation was analyzed by real-time polymerase chain reaction and Alizarin Red S staining. We used the PLP1-CreERT2/ Rosa26-GFP tracing mice model to examine the role of SCs and Cav 1.2 in self-repair after pulp injury. SC-specific markers expressed in rat tooth germs at different developmental stages. Nimodipine treatment enhanced mRNA levels of osteogenic markers (DSPP, DMP1, and Runx2) but decreased calcium nodule formation. SCs-derived cells increased following pulp injury and Ca v 1.2 showed a similar response pattern as SCs. The different SCs phenotypes are coordinated in the whole process to ensure tooth development. Blocking the LTCC with nimodipine promoted SCs odontogenic differentiation. Moreover, SCs participate in the process of injured dental pulp repair as a source of MSCs, and Cav 1.2 may regulate this process.

Keyword

Schwann cells; Tooth development; Cav 1.2; Odontogenic differentiation; Pulp injuries

Figure

  • Fig. 1 Protein-protein interactions network and RNA-seq analysis. (A) Protein-protein interaction network of the differentially expressed genes of rat nervous system of tooth germ between E14.5 and P7 by RNA-seq. (B) Protein-protein interaction network of the differentially expressed genes associated with specific markers of the different phenotypes of Schwann cells between E14.5 and P7. (C) Differential expression of rat neural development marker of tooth germ by RNA-seq. *p<0.05.

  • Fig. 2 Expression of rat neural development markers (GAP43, MBP101, S100β) in tooth germ at different stages. (A, F) Neural development markers expression on E14.5, amplification times is 400×. (B, G) Expression of neural development markers on E16.5, amplification times is 400×. (C, H) Expression of neural development markers on E18.5, amplification times is 200×. (D, I) Expression of neural development markers at P1. (E, J) Expression of rat neural development markers in tooth germ on P7. DAPI in blue. S100: S100β, OE: outer enamel, EM: ectodermal mesenchyme, OEE: outer enamel epithelium, SR: stellate reticulum, IEE: inner enamel epithelium, DP: dental papilla, DF: dental follicle, SI: stratum intermedium, E: enamel, D: dentin, P: dental pulp. *Co-stained.

  • Fig. 3 Effects of L-type calcium channel on the odontogenic differentiation of Schwann cells (SCs) in vitro. (A) Immunofluorescence staining of DSP in SCs after odontogenic differentiation. Scale bar=50 μm. (B) The mRNA expression of DSPP, DMP-1 and Runx2 in the three groups was measured at 14 days by real-time polymerase chain reaction. (i) Control: SCs in Schwann cell medium. (ii) OD: SCs in odontogenic differentiation medium (ODM). (iii) OD/Nimo(+): SCs in ODM supplemented with 1μM nimodipine. Error bar: ±SD (n=3); *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 OD group with or without nimodipine versus control. (C) Images of Alizarin Red S staining at 28 days of odontogenic differentiation.

  • Fig. 4 SCs-derived cells and Cav1.2 participate in the regeneration of incisors after injury. (A-C) represent the expression of GFP+ cells (green) and Cav1.2 (red) at the dental cusp, middle teeth and apical area of control and injured incisors with recovery for 0, 12, 48, 72 hours, 5 days, and 1 week, respectively. Boxed areas are shown magnified in (D) correspondingly. (D) The possible route of SCs-derived cells migrating to the odontoblast layer. The asterisk highlights GFP+ cells. (E) Co-expression of GFP+ cells and Cav1.2. Boxed areas are shown magnified to the right. Scale bar=50 μm. d: dentin, p: dental pulp, CL: cervical loop.


Reference

References

1. Miletich I, Sharpe PT. 2003; Normal and abnormal dental deve-lopment. Hum Mol Genet. 12:R69–R73. DOI: 10.1093/hmg/ddg085. PMID: 12668599.
2. Kaukua N, Shahidi MK, Konstantinidou C, et al. 2014; Glial origin of mesenchymal stem cells in a tooth model system. Nature. 513:551–554. DOI: 10.1038/nature13536. PMID: 25079316.
3. Cristobal CD, Lee HK. 2022; Development of myelinating glia: an overview. Glia. 70:2237–2259. DOI: 10.1002/glia.24238. PMID: 35785432. PMCID: PMC9561084.
4. D'Ascenzo M, Piacentini R, Casalbore P, et al. 2006; Role of L-type Ca2+ channels in neural stem/progenitor cell diffe-rentiation. Eur J Neurosci. 23:935–944. DOI: 10.1111/j.1460-9568.2006.04628.x. PMID: 16519658.
5. Wen L, Wang Y, Wang H, et al. 2012; L-type calcium channels play a crucial role in the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Bio-chem Biophys Res Commun. 424:439–445. DOI: 10.1016/j.bbrc.2012.06.128. PMID: 22771798.
6. Linask KL, Linask KK. 2010; Calcium channel blockade in embryonic cardiac progenitor cells disrupts normal cardiac cell differentiation. Stem Cells Dev. 19:1959–1965. DOI: 10.1089/scd.2010.0192. PMID: 20624035. PMCID: PMC3128306.
7. Ju Y, Ge J, Ren X, et al. 2015; Cav1.2 of L-type calcium channel is a key factor for the differentiation of dental pulp stem cells. J Endod. 41:1048–1055. DOI: 10.1016/j.joen.2015.01.009. PMID: 25703215.
8. Fu Y, Ju Y, Zhao S. 2023; Cav1.2 regulated odontogenic differentiation of NG2 pericytes during pulp injury. Odontology. 111:57–67. DOI: 10.1007/s10266-022-00720-w. PMID: 35739380.
9. Westenbroek RE, Anderson NL, Byers MR. 2004; Altered localization of Cav1.2 (L-type) calcium channels in nerve fibers, Schwann cells, odontoblasts, and fibroblasts of tooth pulp after tooth injury. J Neurosci Res. 75:371–383. DOI: 10.1002/jnr.10863. PMID: 14743450.
10. Li J, Ju Y, Liu S, Fu Y, Zhao S. 2021; Exosomes derived from lipopolysaccharide-preconditioned human dental pulp stem cells regulate Schwann cell migration and differentiation. Connect Tissue Res. 62:277–286. DOI: 10.1080/03008207.2019.1694010. PMID: 31769319.
11. Direder M, Wielscher M, Weiss T, et al. 2022; The transcriptional profile of keloidal Schwann cells. Exp Mol Med. 54:1886–1900. DOI: 10.1038/s12276-022-00874-1. PMID: 36333467. PMCID: PMC9722693.
12. Chang SY, Chen RS, Chang JYF, Chen MH. 2024; The temporospatial relationship between mouse dental pulp stem cells and tooth innervation. J Dent Sci. 19:1075–1082. DOI: 10.1016/j.jds.2024.02.007. PMID: 38618089. PMCID: PMC11010667.
13. Kanner AA, Marchi N, Fazio V, et al. 2003; Serum S100beta: a noninvasive marker of blood-brain barrier function and brain lesions. Cancer. 97:2806–2813. DOI: 10.1002/cncr.11409. PMID: 12767094. PMCID: PMC4135471.
14. Jessen KR, Brennan A, Morgan L, et al. 1994; The Schwann cell precursor and its fate: a study of cell death and differentia-tion during gliogenesis in rat embryonic nerves. Neuron. 12:509–527. DOI: 10.1016/0896-6273(94)90209-7. PMID: 8155318.
15. Yang Z, Wang KK. 2015; Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomar-ker. Trends Neurosci. 38:364–374. DOI: 10.1016/j.tins.2015.04.003. PMID: 25975510. PMCID: PMC4559283.
16. García-Suárez O, Montaño JA, Esteban I, et al. 2009; Myelin basic protein-positive nerve fibres in human Meissner cor-puscles. J Anat. 214:888–893. DOI: 10.1111/j.1469-7580.2009.01078.x. PMID: 19538632. PMCID: PMC2705297.
17. Marty MC, Alliot F, Rutin J, Fritz R, Trisler D, Pessac B. 2002; The myelin basic protein gene is expressed in differentiated blood cell lineages and in hemopoietic progenitors. Proc Natl Acad Sci U S A. 99:8856–8861. DOI: 10.1073/pnas.122079599. PMID: 12084930. PMCID: PMC124388.
18. Le Douarin NM, Smith J. 1988; Development of the peripheral nervous system from the neural crest. Annu Rev Cell Biol. 4:375–404. DOI: 10.1146/annurev.cb.04.110188.002111. PMID: 3058162.
19. Nosrat IV, Widenfalk J, Olson L, Nosrat CA. 2001; Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol. 238:120–132. DOI: 10.1006/dbio.2001.0400. PMID: 11783998.
20. Feng J, Mantesso A, De Bari C, Nishiyama A, Sharpe PT. 2011; Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc Natl Acad Sci U S A. 108:6503–6508. DOI: 10.1073/pnas.1015449108. PMID: 21464310. PMCID: PMC3081015.
21. Chidiac JJ, Kassab A, Rifai K, Saadé NE, Al Chaer ED. 2018; Modulation of incisor eruption in rats by sympathetic effe-rents. Arch Oral Biol. 89:31–36. DOI: 10.1016/j.archoralbio.2018.02.003. PMID: 29432940.
22. Li J, Parada C, Chai Y. 2017; Cellular and molecular mechanisms of tooth root development. Development. 144:374–384. DOI: 10.1242/dev.137216. PMID: 28143844. PMCID: PMC5341797.
23. Duan Y, Liang Y, Yang F, Ma Y. 2022; Neural regulations in tooth development and tooth-periodontium complex home-ostasis: a literature review. Int J Mol Sci. 23:14150. DOI: 10.3390/ijms232214150. PMID: 36430624. PMCID: PMC9698398.
24. Feltri ML, Poitelon Y, Previtali SC. 2016; How Schwann cells sort axons: new concepts. Neuroscientist. 22:252–265. DOI: 10.1177/1073858415572361. PMID: 25686621. PMCID: PMC5181106.
25. Jessen KR, Mirsky R. 2005; The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci. 6:671–682. DOI: 10.1038/nrn1746. PMID: 16136171.
26. Castelnovo LF, Bonalume V, Melfi S, Ballabio M, Colleoni D, Magnaghi V. 2017; Schwann cell development, maturation and regeneration: a focus on classic and emerging intracellular signaling pathways. Neural Regen Res. 12:1013–1023. DOI: 10.4103/1673-5374.211172. PMID: 28852375. PMCID: PMC5558472.
27. Cerri PS, de Faria FP, Villa RG, Katchburian E. 2004; Light microscopy and computer three-dimensional reconstruction of the blood capillaries of the enamel organ of rat molar tooth germs. J Anat. 204:191–195. DOI: 10.1111/j.0021-8782.2004.00268.x. PMID: 15032908. PMCID: PMC1571279.
28. Stewart HJ, Morgan L, Jessen KR, Mirsky R. 1993; Changes in DNA synthesis rate in the Schwann cell lineage in vivo are correlated with the precursor--Schwann cell transition and myelination. Eur J Neurosci. 5:1136–1144. DOI: 10.1111/j.1460-9568.1993.tb00968.x. PMID: 7506619.
29. Brown MJ, Asbury AK. 1981; Schwann cell proliferation in the postnatal mouse: timing and topography. Exp Neurol. 74:170–186. DOI: 10.1016/0014-4886(81)90157-6. PMID: 7286116.
30. Gao Q, Ge J, Ju Y, et al. 2017; Roles of L-type calcium channels (Cav1.2) and the distal C-terminus (DCT) in differentiation and mineralization of rat dental apical papilla stem cells (rSCAPs). Arch Oral Biol. 74:75–81. DOI: 10.1016/j.archoralbio.2016.11.004. PMID: 27918898.
31. Gao T, Cuadra AE, Ma H, et al. 2001; C-terminal fragments of the alpha 1C (Cav1.2) subunit associate with and regulate L-type calcium channels containing C-terminal-truncated alpha 1C subunits. J Biol Chem. 276:21089–21097. DOI: 10.1074/jbc.M008000200. PMID: 11274161.
32. Gomez-Ospina N, Tsuruta F, Barreto-Chang O, Hu L, Dol-metsch R. 2006; The C terminus of the L-type voltage-gated calcium channel Ca(V)1.2 encodes a transcription factor. Cell. 127:591–606. DOI: 10.1016/j.cell.2006.10.017. PMID: 17081980. PMCID: PMC1750862.
33. Yan JG, Agresti M, Zhang LL, Matloub HS, Sanger JR. 2012; Negative effect of high calcium levels on Schwann cell survival. Neurophysiology. 44:274–278. DOI: 10.1007/s11062-012-9297-6.
34. Yan JG, Zhang LL, Agresti MA, et al. 2017; Effect of calcitonin on cultured Schwann cells. Muscle Nerve. 56:768–772. DOI: 10.1002/mus.25519. PMID: 27997687.
35. Herzfeld E, Strauss C, Simmermacher S, et al. 2014; Investiga-tion of the neuroprotective impact of nimodipine on Neuro2a cells by means of a surgery-like stress model. Int J Mol Sci. 15:18453–18465. DOI: 10.3390/ijms151018453. PMID: 25318050. PMCID: PMC4227225.
36. Herzfeld E, Speh L, Strauss C, Scheller C. 2017; Nimodipine but not nifedipine promotes expression of fatty acid 2-hydroxylase in a surgical stress model based on Neuro2a cells. Int J Mol Sci. 18:964. DOI: 10.3390/ijms18050964. PMID: 28467360. PMCID: PMC5454877.
37. Leisz S, Simmermacher S, Prell J, Strauss C, Scheller C. 2019; Nimodipine-dependent protection of Schwann cells, astrocytes and neuronal cells from osmotic, oxidative and heat stress is associated with the activation of AKT and CREB. Int J Mol Sci. 20:4578. DOI: 10.3390/ijms20184578. PMID: 31527507. PMCID: PMC6770698.
38. Chen Y, Koshy R, Guirado E, George A. 2021; STIM1 a calcium sensor promotes the assembly of an ECM that contains extracellular vesicles and factors that modulate mineralization. Acta Biomater. 120:224–239. DOI: 10.1016/j.actbio.2020.10.011. PMID: 33130308. PMCID: PMC7796999.
39. Lundgren T, Linde A. 1997; Voltage-gated calcium channels and nonvoltage-gated calcium uptake pathways in the rat incisor odontoblast plasma membrane. Calcif Tissue Int. 60:79–85. DOI: 10.1007/s002239900189. PMID: 9030484.
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr