Int J Stem Cells.  2024 Nov;17(4):381-396. 10.15283/ijsc23108.

Exosomes Reshape the Osteoarthritic Defect: Emerging Potential in Regenerative Medicine–A Review

Affiliations
  • 1Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, Korea
  • 2Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
  • 3Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea

Abstract

Osteoarthritis (OA) is a joint disorder caused by wear and tear of the cartilage that cushions the joints. It is a progressive condition that can cause significant pain and disability. Currently, there is no cure for OA, though there are treatments available to manage symptoms and slow the progression of the disease. A chondral defect is a common and devastating lesion that is challenging to treat due to its avascular and aneural nature. However, there are conventional therapies available, ranging from microfracture to cell-based therapy. Anyhow, its efficiency in cartilage defects is limited due to unclear cell viability. Exosomes have emerged as a potent therapeutic tool for chondral defects because they are a complicated complex containing cargo of proteins, DNA, and RNA as well as the ability to target cells due to their phospholipidic composition and the altering exosomal contents that boost regeneration potential. Exosomes are used in a variety of applications, including tissue healing and anti-inflammatory therapy. As in recent years, biomaterialsbased bio fabrication has gained popularity among the many printable polymer-based hydrogels, tissue-specific decellularized extracellular matrix might boost the effects rather than an extracellular matrix imitating environment, a short note has been discussed. Exosomes are believed to be the greatest alternative option for current cell-based therapy, and future progress in exosome-based therapy could have a greater influence in the field of orthopaedics. The review focuses extensively on the insights of exosome use and scientific breakthroughs centered OA.

Keyword

Cartilage associated defects; Exosomes; Osteoarthritis; Extracellular matrix; Three dimensional bioprinting; Regenerative medicine

Figure

  • Fig. 1 Biogenesis of extracellular vesicles. Schematic representation of the biogenesis of exosomes starts with double invagination of the plasma membrane. Further, formation of multi-vesicular bodies (MVBs) and followed by the exocytosis. Exosome secretion and composition (endosomal sorting complex required for transport [ESCRT] dependent). MVBs arise as buds from the plasma membrane during inflammatory and hypoxic circumstances. Apoptotic blebs are extracellular vesicles (EVs) that are produced in response to increased cell contraction and hydrostatic pressure. Only during planned cell death are apoptotic bodies released. Exomeres are newly found EVs with unknown biological functions and biogenesis. Migrasomes are oval-shaped EVs that are generated during cell migration. Oncosomes are big and tiny EVs produced from the membrane that are discharged by cancer cells. They have a distinct signature from the tumor cells from which they are released.

  • Fig. 2 Application of exosomes. Schematic representation of the potential applications of exosomes in wound healing, chondral defect repair, anticancer drug delivery. Exosomes can be loaded with endogenous cargos or intentionally changed molecules in a variety of ways, and many exosome delivery routes for treatment have been developed. Exosomes, on the other hand, require targeted tactics to boost medication efficacy. Exosomes generated from stem cells have been discovered to offer therapeutic promise for a wide range of injuries and disorders, including bone regeneration and wound repair.


Reference

References

1. Hunter DJ, Bierma-Zeinstra S. 2019; Osteoarthritis. Lancet. 393:1745–1759. DOI: 10.1016/S0140-6736(19)30417-9. PMID: 31034380.
2. Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. 2015; Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol. 11:21–34. DOI: 10.1038/nrrheum.2014.157. PMID: 25247412. PMCID: PMC4629810.
3. Jo CH, Lee YG, Shin WH, et al. 2014; Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 32:1254–1266. Erratum in: Stem Cells 2017;35:1651-1652. DOI: 10.1002/stem.1634. PMID: 24449146.
4. Amsar RM, Wijaya CH, Ana ID, et al. 2021; Extracellular vesicles: a promising cell-free therapy for cartilage repair. Fu-ture Sci OA. 8:FSO774. DOI: 10.2144/fsoa-2021-0096. PMID: 35070356. PMCID: PMC8765097.
5. Domenis R, Zanutel R, Caponnetto F, et al. 2017; Characterization of the proinflammatory profile of synovial fluid-derived exosomes of patients with osteoarthritis. Mediators Inflamm. 2017:4814987. DOI: 10.1155/2017/4814987. PMID: 28634420. PMCID: PMC5467328.
6. Sang X, Zhao X, Yan L, et al. 2022; Thermosensitive hydrogel loaded with primary chondrocyte-derived exosomes promotes cartilage repair by regulating macrophage polarization in osteoarthritis. Tissue Eng Regen Med. 19:629–642. DOI: 10.1007/s13770-022-00437-5. PMID: 35435577. PMCID: PMC9130414.
7. Zhang S, Chu WC, Lai RC, Lim SK, Hui JH, Toh WS. 2016; Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthritis Cartilage. 24:2135–2140. DOI: 10.1016/j.joca.2016.06.022. PMID: 27390028.
8. Li G, Chen T, Dahlman J, et al. 2023; Current challenges and future directions for engineering extracellular vesicles for heart, lung, blood and sleep diseases. J Extracell Vesicles. 12:e12305. Erratum in: J Extracell Vesicles 2023;12:e12314. DOI: 10.1002/jev2.12314. PMID: 36946223. PMCID: PMC10031452.
9. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. 1987; Vesicle formation during reticulocyte maturation. Associ-ation of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 262:9412–9420. DOI: 10.1016/S0021-9258(18)48095-7. PMID: 3597417.
10. Zou W, Lai M, Zhang Y, et al. 2018; Exosome release is regulated by mTORC1. Adv Sci (Weinh). 6:1801313. DOI: 10.1002/advs.201801313. PMID: 30775228. PMCID: PMC6364500.
11. Jia Y, Yu L, Ma T, et al. 2022; Small extracellular vesicles isolation and separation: current techniques, pending questions and clinical applications. Theranostics. 12:6548–6575. DOI: 10.7150/thno.74305. PMID: 36185597. PMCID: PMC9516236.
12. Filipović L, Spasojević M, Prodanović R, et al. 2022; Affinity-based isolation of extracellular vesicles by means of single-domain antibodies bound to macroporous methacrylate-based copolymer. N Biotechnol. 69:36–48. DOI: 10.1016/j.nbt.2022.03.001. PMID: 35301156.
13. Théry C, Witwer KW, Aikawa E, et al. 2018; Minimal infor-mation for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extra-cellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 7:1535750. DOI: 10.1080/20013078.2018.1535750. PMID: 30637094. PMCID: PMC6322352.
14. Kurian TK, Banik S, Gopal D, Chakrabarti S, Mazumder N. 2021; Elucidating methods for isolation and quantification of exosomes: a review. Mol Biotechnol. 63:249–266. DOI: 10.1007/s12033-021-00300-3. PMID: 33492613. PMCID: PMC7940341.
15. Chen P, Zheng L, Wang Y, et al. 2019; Desktop-stereolitho-graphy 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics. 9:2439–2459. DOI: 10.7150/thno.31017. PMID: 31131046. PMCID: PMC6525998.
16. Chen S, Tang Y, Liu Y, et al. 2019; Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif. 52:e12669. DOI: 10.1111/cpr.12669. PMID: 31380594. PMCID: PMC6797519.
17. Chen P, Tang S, Gao H, et al. 2022; Wharton's jelly mesenchymal stem cell-derived small extracellular vesicles as natural nanoparticles to attenuate cartilage injury via microRNA regulation. Int J Pharm. 623:121952. DOI: 10.1016/j.ijpharm.2022.121952. PMID: 35753534.
18. Zheng L, Wang Y, Qiu P, et al. 2019; Primary chondrocyte exosomes mediate osteoarthritis progression by regulating mitochondrion and immune reactivity. Nanomedicine (Lond). 14:3193–3212. DOI: 10.2217/nnm-2018-0498. PMID: 31855117.
19. Yan L, Liu G, Wu X. 2021; The umbilical cord mesenchymal stem cell-derived exosomal lncRNA H19 improves osteo-chondral activity through miR-29b-3p/FoxO3 axis. Clin Transl Med. 11:e255. DOI: 10.1002/ctm2.255. PMID: 33463060. PMCID: PMC7805401.
20. Zhang S, Wong KL, Ren X, et al. 2022; Mesenchymal stem cell exosomes promote functional osteochondral repair in a cli-nically relevant porcine model. Am J Sports Med. 50:788–800. DOI: 10.1177/03635465211068129. PMID: 35099327.
21. Sun L, Su Y, Liu X, et al. 2018; Serum and exosome long non coding RNAs as potential biomarkers for hepatocellular carcinoma. J Cancer. 9:2631–2639. DOI: 10.7150/jca.24978. PMID: 30087703. PMCID: PMC6072812.
22. Kim MY, Shin H, Moon HW, Park YH, Park J, Lee JY. 2021; Urinary exosomal microRNA profiling in intermediate-risk prostate cancer. Sci Rep. 11:7355. DOI: 10.1038/s41598-021-86785-z. PMID: 33795765. PMCID: PMC8016942.
23. Qiu Y, Sun J, Qiu J, et al. 2020; Antitumor activity of cabazitaxel and MSC-TRAIL derived extracellular vesicles in drug-resistant oral squamous cell carcinoma. Cancer Manag Res. 12:10809–10820. DOI: 10.2147/CMAR.S277324. PMID: 33149686. PMCID: PMC7605918.
24. Hu L, Wang J, Zhou X, et al. 2016; Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep. 6:32993. Erratum in: Sci Rep 2020;10:6693. DOI: 10.1038/s41598-020-63068-7. PMID: 32300115. PMCID: PMC7162983.
25. Guan M, Liu C, Zheng Q, et al. 2023; Exosome-laden injectable self-healing hydrogel based on quaternized chitosan and oxidized starch attenuates disc degeneration by suppressing nucleus pulposus senescence. Int J Biol Macromol. 232:123479. DOI: 10.1016/j.ijbiomac.2023.123479. PMID: 36731695.
26. Wang C, Zhang C, Liu L, et al. 2017; Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Mol Ther. 25:192–204. DOI: 10.1016/j.ymthe.2016.09.001. PMID: 28129114. PMCID: PMC5363311.
27. Emmanouilidou E, Melachroinou K, Roumeliotis T, et al. 2010; Cell-produced alpha-synuclein is secreted in a calcium-de-pendent manner by exosomes and impacts neuronal sur-vival. J Neurosci. 30:6838–6851. DOI: 10.1523/JNEUROSCI.5699-09.2010. PMID: 20484626. PMCID: PMC3842464.
28. Song JE, Kim JS, Shin JH, et al. 2021; Role of synovial exosomes in osteoclast differentiation in inflammatory arthritis. Cells. 10:120. DOI: 10.3390/cells10010120. PMID: 33435236. PMCID: PMC7827682.
29. Wu X, Crawford R, Xiao Y, Mao X, Prasadam I. 2021; Osteoa-rthritic subchondral bone release exosomes that promote cartilage degeneration. Cells. 10:251. DOI: 10.3390/cells10020251. PMID: 33525381. PMCID: PMC7911822.
30. Zhao Y, Xu J. 2018; Synovial fluid-derived exosomal lncRNA PCGEM1 as biomarker for the different stages of osteoar-thritis. Int Orthop. 42:2865–2872. DOI: 10.1007/s00264-018-4093-6. PMID: 30128669.
31. Dufour A, Gallostra XB, O'Keeffe C, et al. 2022; Integrating melt electrowriting and inkjet bioprinting for engineering structurally organized articular cartilage. Biomaterials. 283:121405. DOI: 10.1016/j.biomaterials.2022.121405. PMID: 35220017.
32. Nikfarjam S, Rezaie J, Zolbanin NM, Jafari R. 2020; Mesenchymal stem cell derived-exosomes: a modern approach in translational medicine. J Transl Med. 18:449. DOI: 10.1186/s12967-020-02622-3. PMID: 33246476. PMCID: PMC7691969.
33. Ferroni L, Gardin C, D'Amora U, et al. 2022; Exosomes of mesenchymal stem cells delivered from methacrylated hyaluronic acid patch improve the regenerative properties of endothelial and dermal cells. Biomater Adv. 139:213000. DOI: 10.1016/j.bioadv.2022.213000. PMID: 35891601.
34. Sun X, Mao Y, Liu B, et al. 2023; Mesenchymal stem cell-derived exosomes enhance 3D-printed scaffold functions and promote alveolar bone defect repair by enhancing angiogenesis. J Pers Med. 13:180. DOI: 10.3390/jpm13020180. PMID: 36836414. PMCID: PMC9963484.
35. Sun Y, Zhang B, Zhai D, Wu C. 2021; Three-dimensional printing of bioceramic-induced macrophage exosomes: immuno-modulation and osteogenesis/angiogenesis. NPG Asia Mater. 13:72. DOI: 10.1038/s41427-021-00340-w.
36. Liu H, Gu R, Li W, et al. 2023; Engineering 3D-printed strontium-titanium scaffold-integrated highly bioactive serum exosomes for critical bone defects by osteogenesis and ang-iogenesis. ACS Appl Mater Interfaces. 15:27486–27501. DOI: 10.1021/acsami.3c00898. PMID: 37212747.
37. Li Q, Yu H, Zhao F, et al. 2023; 3D printing of microenvironment-specific bioinspired and exosome-reinforced hydrogel scaffolds for efficient cartilage and subchondral bone rege-neration. Adv Sci (Weinh). 10:e2303650. DOI: 10.1002/advs.202303650. PMID: 37424038. PMCID: PMC10502685.
38. Xing H, Zhang Z, Mao Q, et al. 2021; Injectable exosome-func-tionalized extracellular matrix hydrogel for metabolism balance and pyroptosis regulation in intervertebral disc degeneration. J Nanobiotechnology. 19:264. DOI: 10.1186/s12951-021-00991-5. PMID: 34488795. PMCID: PMC8419940.
39. Guan P, Liu C, Xie D, et al. 2021; Exosome-loaded extracellular matrix-mimic hydrogel with anti-inflammatory property Facilitates/promotes growth plate injury repair. Bioact Mater. 10:145–158. DOI: 10.1016/j.bioactmat.2021.09.010. PMID: 34901536. PMCID: PMC8637006.
40. Hu H, Dong L, Bu Z, et al. 2020; miR-23a-3p-abundant small extracellular vesicles released from Gelma/nanoclay hydrogel for cartilage regeneration. J Extracell Vesicles. 9:1778883. DOI: 10.1080/20013078.2020.1778883. PMID: 32939233. PMCID: PMC7480606.
41. Wang SJ, Qin JZ, Zhang TE, Xia C. 2019; Intra-articular injection of kartogenin-incorporated thermogel enhancing osteoarthritis treatment. Front Chem. 7:677. DOI: 10.3389/fchem.2019.00677. PMID: 31681730. PMCID: PMC6813204.
42. Tao SC, Huang JY, Gao Y, et al. 2021; Small extracellular vesicles in combination with sleep-related circRNA3503: a targeted therapeutic agent with injectable thermosensitive hydrogel to prevent osteoarthritis. Bioact Mater. 6:4455–4469. DOI: 10.1016/j.bioactmat.2021.04.031. PMID: 34027234. PMCID: PMC8120802.
43. Zhang FX, Liu P, Ding W, et al. 2021; Injectable Mussel-Inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regenera-tion. Biomaterials. 278:121169. DOI: 10.1016/j.biomaterials.2021.121169. PMID: 34626937.
44. Khongkow M, Yata T, Boonrungsiman S, Ruktanonchai UR, Graham D, Namdee K. 2019; Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood-brain barrier penetration. Sci Rep. 9:8278. DOI: 10.1038/s41598-019-44569-6. PMID: 31164665. PMCID: PMC6547645.
45. He L, He T, Xing J, et al. 2020; Bone marrow mesenchymal stem cell-derived exosomes protect cartilage damage and relieve knee osteoarthritis pain in a rat model of osteoarthritis. Stem Cell Res Ther. 11:276. DOI: 10.1186/s13287-020-01781-w. PMID: 32650828. PMCID: PMC7350730.
46. Zhang X, Wang W, Zhu W, et al. 2019; Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int J Mol Sci. 20:5573. DOI: 10.3390/ijms20225573. PMID: 31717266. PMCID: PMC6888083.
47. Li ZQ, Kong L, Liu C, Xu HG. 2020; Human bone marrow mesenchymal stem cell-derived exosomes attenuate IL-1β-in-duced annulus fibrosus cell damage. Am J Med Sci. 360:693–700. DOI: 10.1016/j.amjms.2020.07.025. PMID: 32771218.
48. Cosenza S, Ruiz M, Toupet K, Jorgensen C, Noël D. 2017; Mese-nchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoar-thritis. Sci Rep. 7:16214. DOI: 10.1038/s41598-017-15376-8. PMID: 29176667. PMCID: PMC5701135.
49. Chen X, Shi Y, Xue P, Ma X, Li J, Zhang J. 2020; Mesenchymal stem cell-derived exosomal microRNA-136-5p inhibits cho-ndrocyte degeneration in traumatic osteoarthritis by targeting ELF3. Arthritis Res Ther. 22:256. DOI: 10.1186/s13075-020-02325-6. PMID: 33109253. PMCID: PMC7590698.
50. Sun Z, Zhao H, Liu B, et al. 2021; AF cell derived exosomes regulate endothelial cell migration and inflammation: implications for vascularization in intervertebral disc degene-ration. Life Sci. 265:118778. DOI: 10.1016/j.lfs.2020.118778. PMID: 33217442.
51. Zhang L, Lin Y, Zhang X, Shan C. 2022; Research progress of exosomes in orthopedics. Front Genet. 13:915141. DOI: 10.3389/fgene.2022.915141. PMID: 36081990. PMCID: PMC9445804.
52. Scioli MG, Bielli A, Gentile P, Cervelli V, Orlandi A. 2017; Combined treatment with platelet-rich plasma and insulin favours chondrogenic and osteogenic differentiation of human adipose-derived stem cells in three-dimensional collagen scaffolds. J Tissue Eng Regen Med. 11:2398–2410. DOI: 10.1002/term.2139. PMID: 27074878.
53. Long C, Wang J, Gan W, Qin X, Yang R, Chen X. 2022; Thera-peutic potential of exosomes from adipose-derived stem cells in chronic wound healing. Front Surg. 9:1030288. DOI: 10.3389/fsurg.2022.1030288. PMID: 36248361. PMCID: PMC9561814.
54. Ng CY, Chai JY, Foo JB, et al. 2021; Potential of exosomes as cell-free therapy in articular cartilage regeneration: a review. Int J Nanomedicine. 16:6749–6781. DOI: 10.2147/IJN.S327059. PMID: 34621125. PMCID: PMC8491788.
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr