Int J Stem Cells.  2024 Nov;17(4):347-362. 10.15283/ijsc23170.

A Roadmap for Selecting and Utilizing Optimal Features in scRNA Sequencing Data Analysis for Stem Cell Research: A Comprehensive Review

Affiliations
  • 1Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
  • 2Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia

Abstract

Stem cells and the cells they produce are unique because they vary from one cell to another. Traditional methods of studying cells often overlook these differences. However, the development of new technologies for studying individual cells has greatly changed biological research in recent years. Among these innovations, single-cell RNA sequencing (scRNA-seq) stands out. This technique allows scientists to examine the activity of genes in each cell, across thousands or even millions of cells. This makes it possible to understand the diversity of cells, identify new types of cells, and see how cells differ across different tissues, individuals, species, times, and conditions. This paper discusses the importance of scRNA-seq and the computational tools and software that are essential for analyzing the vast amounts of data generated by scRNA-seq studies. Our goal is to provide practical advice for bioinformaticians and biologists who are using scRNA-seq to study stem cells. We offer an overview of the scRNA-seq field, including the tools available, how they can be used, and how to present the results of these studies effectively. Our findings include a detailed overview and classification of tools used in scRNA-seq analysis, based on a review of 2,733 scientific publications. This review is complemented by information from the scRNA-tools database, which lists over 1,400 tools for analyzing scRNA-seq data. This database is an invaluable resource for researchers, offering a wide range of options for analyzing their scRNA-seq data.

Keyword

Single-cell gene expression analysis; Stem cells; Computational biology

Figure

  • Fig. 1 Schematic diagram of the overview of the study. (A) Study overview; comprising: (1) A bibliometric assessment of single-cell RNA sequencing (scRNA-seq); (2) Laboratory procedures with an emphasis on stem cell sourcing and sample preparation; (3) A synopsis of prevalent scRNA-seq tools and software; and (4) Inte-grated findings to aid data interpretation. (B) Process diagram; illustrating the four-phases procedure of the study. WoS: Web of Science.

  • Fig. 2 Exploring the rapid evolution of single-cell RNA sequencing (scRNA-seq) analysis. (A) The annual growth of publications in the field of scRNA-seq analysis. (B) Shows the top 8 sources’ cumulative growth in the field of scRNA-seq analysis. (C) Top 20 cited tools for analysing scRNA-seq data.

  • Fig. 3 Features of current single-cell RNA sequencing (scRNA-seq) analysis tools and availability of analysis options. (A) Number of features included in the current developed tools. (B) Essential and advanced analysis features in scRNA-Seq availability. UMIs: unique molecular identifiers.


Reference

References

1. Pullin JM, McCarthy DJ. 2024; A comparison of marker gene selection methods for single-cell RNA sequencing data. Genome Biol. 25:56. DOI: 10.1186/s13059-024-03183-0. PMID: 38409056. PMCID: PMC10895860.
2. Das S, Rai A, Rai SN. 2022; Differential expression analysis of single-cell RNA-Seq data: current statistical approaches and outstanding challenges. Entropy (Basel). 24:995. DOI: 10.3390/e24070995. PMID: 35885218. PMCID: PMC9315519.
3. Malhotra A, Das S, Rai SN. 2022; Analysis of single-cell RNA-sequencing data: a step-by-step guide. BioMedInformatics. 2:43–61. DOI: 10.3390/biomedinformatics2010003.
4. Patra SK, Mishra S. 2006; Bibliometric study of bioinformatics literature. Scientometrics. 67:477–489. DOI: 10.1556/Scient.67.2006.3.9.
5. Glänzel W, Janssens F, Thijs B. 2009; A comparative analysis of publication activity and citation impact based on the core literature in bioinformatics. Scientometrics. 79:109–129. DOI: 10.1007/s11192-009-0407-1.
6. Song M, Kim SY. 2013; Detecting the knowledge structure of bioinformatics by mining full-text collections. Scientometrics. 96:183–201. DOI: 10.1007/s11192-012-0900-9.
7. Tranfield D, Denyer D, Smart P. 2003; Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag. 14:207–222. DOI: 10.1111/1467-8551.00375.
8. Mongeon P, Paul-Hus A. 2016; The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics. 106:213–228. DOI: 10.1007/s11192-015-1765-5.
9. Chadegani AA, Salehi H, Yunus MM, et al. 2013; A comparison between two main academic literature collections: Web of Science and Scopus databases. Asian Soc Sci. 9:18–26. DOI: 10.5539/ass.v9n5p18.
10. Altarturi HHM, Saadoon M, Anuar NB. 2020; Cyber parental control: a bibliometric study. Child Youth Serv Rev. 116:105134. DOI: 10.1016/j.childyouth.2020.105134.
11. Aria M, Cuccurullo C. 2017; bibliometrix: an R-tool for comprehensive science mapping analysis. J Informetr. 11:959–975. DOI: 10.1016/j.joi.2017.08.007.
12. Echchakoui S. 2020; Why and how to merge Scopus and Web of Science during bibliometric analysis: the case of sales force literature from 1912 to 2019. J Market Anal. 8:165–184. DOI: 10.1057/s41270-020-00081-9.
13. Fahimnia B, Sarkis J, Davarzani H. 2015; Green supply chain management: a review and bibliometric analysis. Int J Prod Econom. 162:101–114. DOI: 10.1016/j.ijpe.2015.01.003.
14. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. 2018; Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 36:411–420. DOI: 10.1038/nbt.4096. PMID: 29608179. PMCID: PMC6700744.
15. Stuart T, Butler A, Hoffman P, et al. 2019; Comprehensive integration of single-cell data. Cell. 177:1888–1902.e21. DOI: 10.1016/j.cell.2019.05.031. PMID: 31178118. PMCID: PMC6687398.
16. Trapnell C, Cacchiarelli D, Grimsby J, et al. 2014; The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 32:381–386. DOI: 10.1038/nbt.2859. PMID: 24658644. PMCID: PMC4122333.
17. Kiselev VY, Kirschner K, Schaub MT, et al. 2017; SC3: consensus clustering of single-cell RNA-seq data. Nat Methods. 14:483–486. DOI: 10.1038/nmeth.4236. PMID: 28346451. PMCID: PMC5410170.
18. Picelli S, Faridani OR, Björklund AK, Winberg G, Sagasser S, Sandberg R. 2014; Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 9:171–181. DOI: 10.1038/nprot.2014.006. PMID: 24385147.
19. Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. 2013; Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 10:1096–1098. DOI: 10.1038/nmeth.2639. PMID: 24056875.
20. Ziegenhain C, Vieth B, Parekh S, et al. 2017; Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 65:631–643.e4. DOI: 10.1016/j.molcel.2017.01.023. PMID: 28212749.
21. Stegle O, Teichmann SA, Marioni JC. 2015; Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 16:133–145. DOI: 10.1038/nrg3833. PMID: 25628217.
22. Islam S, Zeisel A, Joost S, et al. 2014; Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 11:163–166. DOI: 10.1038/nmeth.2772. PMID: 24363023.
23. Tabula Muris Consortium. Overall coordination. Logistical coordination. 2018; Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature. 562:367–372. DOI: 10.1038/s41586-018-0590-4. PMID: 30283141. PMCID: PMC6642641.
24. Luecken MD, Theis FJ. 2019; Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol. 15:e8746. DOI: 10.15252/msb.20188746. PMID: 31217225. PMCID: PMC6582955.
25. Zappia L, Phipson B, Oshlack A. 2017; Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 18:174. DOI: 10.1186/s13059-017-1305-0. PMID: 28899397. PMCID: PMC5596896.
26. Hwang B, Lee JH, Bang D. 2018; Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med. 50:1–14. DOI: 10.1038/s12276-018-0071-8.
27. van Dijk D, Sharma R, Nainys J, et al. 2018; Recovering gene interactions from single-cell data using data diffusion. Cell. 174:716–729.e27. DOI: 10.1016/j.cell.2018.05.061. PMID: 29961576. PMCID: PMC6771278.
28. McCarthy DJ, Campbell KR, Lun AT, Wills QF. 2017; Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics. 33:1179–1186. DOI: 10.1093/bioinformatics/btw777. PMID: 28088763. PMCID: PMC5408845.
29. Shaker MR, Slonchak A, Al-mhanawi B, et al. 2023. Choroid plexus defects in Down syndrome brain organoids enhance neurotropism of SARS-CoV-2. bioRxiv 544552 [Preprint]. Available from: https://doi.org/10.1101/2023.06.12.544552. cited 2024 Feb 7. DOI: 10.1101/2023.06.12.544552.
30. Kanton S, Boyle MJ, He Z, et al. 2019; Organoid single-cell genomic atlas uncovers human-specific features of brain deve-lopment. Nature. 574:418–422. DOI: 10.1038/s41586-019-1654-9. PMID: 31619793.
31. Lee JH, Shin H, Shaker MR, et al. 2022; Production of human spinal-cord organoids recapitulating neural-tube morphoge-nesis. Nat Biomed Eng. 6:435–448. DOI: 10.1038/s41551-022-00868-4. PMID: 35347276.
32. Shaker MR, Pietrogrande G, Martin S, Lee JH, Sun W, Wolvetang EJ. 2021; Rapid and efficient generation of myelinating human oligodendrocytes in organoids. Front Cell Neurosci. 15:631548. DOI: 10.3389/fncel.2021.631548. PMID: 33815061. PMCID: PMC8010307.
33. Shaker MR, Hunter ZL, Wolvetang EJ. 2022; Robust and highly reproducible generation of cortical brain organoids for mo-delling brain neuronal senescence in vitro. J Vis Exp. 183:e63714. DOI: 10.3791/63714. PMID: 35604169.
34. Shaker MR, Aguado J, Chaggar HK, Wolvetang EJ. 2021; Klotho inhibits neuronal senescence in human brain organoids. npj Aging Mech Dis. 7:18. DOI: 10.1038/s41514-021-00070-x. PMID: 34341344. PMCID: PMC8329278.
35. Shaker MR, Kahtan A, Prasad R, et al. 2022; Neural epidermal growth factor-like like protein 2 is expressed in human oligodendroglial cell types. Front Cell Dev Biol. 10:803061. DOI: 10.3389/fcell.2022.803061. PMID: 35265611. PMCID: PMC8899196.
36. Fiorenzano A, Sozzi E, Birtele M, et al. 2021; Single-cell transcrip-tomics captures features of human midbrain development and dopamine neuron diversity in brain organoids. Nat Commun. 12:7302. DOI: 10.1038/s41467-021-27464-5. PMID: 34911939. PMCID: PMC8674361.
37. Camp JG, Badsha F, Florio M, et al. 2015; Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci U S A. 112:15672–15677. DOI: 10.1073/pnas.1520760112. PMID: 26644564. PMCID: PMC4697386.
38. Al-Mhanawi B, Marti MB, Morrison SD, et al. 2023; Protocol for generating embedding-free brain organoids enriched with oligodendrocytes. STAR Protoc. 4:102725. DOI: 10.1016/j.xpro.2023.102725. PMID: 37976154. PMCID: PMC10692957.
39. Lee JH, Shaker MR, Park SH, Sun W. 2023; Transcriptional signature of valproic acid-induced neural tube defects in human spinal cord organoids. Int J Stem Cells. 16:385–393. DOI: 10.15283/ijsc23012. PMID: 37643760. PMCID: PMC10686804.
40. Yan L, Yang M, Guo H, et al. 2013; Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 20:1131–1139. DOI: 10.1038/nsmb.2660. PMID: 23934149.
41. Kowalczyk MS, Tirosh I, Heckl D, et al. 2015; Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 25:1860–1872. DOI: 10.1101/gr.192237.115. PMID: 26430063. PMCID: PMC4665007.
42. Zhang C, Han X, Liu J, et al. 2022; Single-cell transcriptomic analysis reveals the cellular heterogeneity of mesenchymal stem cells. Genom Proteom Bioinform. 20:70–86. DOI: 10.1016/j.gpb.2022.01.005. PMID: 35123072. PMCID: PMC9510874.
43. Wang Z, Chai C, Wang R, et al. 2021; Single-cell transcriptome atlas of human mesenchymal stem cells exploring cellular heterogeneity. Clin Transl Med. 11:e650. DOI: 10.1002/ctm2.650. PMID: 34965030. PMCID: PMC8715893.
44. Shen H, Yang M, Li S, et al. 2021; Mouse totipotent stem cells captured and maintained through spliceosomal repression. Cell. 184:2843–2859.e20. DOI: 10.1016/j.cell.2021.04.020. PMID: 33991488.
45. Yu L, Wei Y, Duan J, et al. 2021; Blastocyst-like structures generated from human pluripotent stem cells. Nature. 591:620–626. DOI: 10.1038/s41586-021-03356-y. PMID: 33731924.
46. Vieira Braga FA, Miragaia RJ. 2019; Tissue handling and disso-ciation for single-cell RNA-Seq. Methods Mol Biol. 1979:9–21. DOI: 10.1007/978-1-4939-9240-9_2. PMID: 31028629.
47. Denisenko E, Guo BB, Jones M, et al. 2020; Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 21:130. DOI: 10.1186/s13059-020-02048-6. PMID: 32487174. PMCID: PMC7265231.
48. van den Brink SC, Sage F, Vértesy Á, et al. 2017; Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat Methods. 14:935–936. DOI: 10.1038/nmeth.4437. PMID: 28960196.
49. Burja B, Paul D, Tastanova A, et al. 2022; An optimized tissue dissociation protocol for single-cell RNA sequencing analysis of fresh and cultured human skin biopsies. Front Cell Dev Biol. 10:872688. DOI: 10.3389/fcell.2022.872688. PMID: 35573685. PMCID: PMC9096112.
50. Lun AT, McCarthy DJ, Marioni JC. 2016; A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res. 5:2122. DOI: 10.12688/f1000research.9501.2. PMID: 27909575. PMCID: PMC5112579.
51. Jiang P, Thomson JA, Stewart R. 2016; Quality control of single-cell RNA-seq by SinQC. Bioinformatics. 32:2514–2516. DOI: 10.1093/bioinformatics/btw176. PMID: 27153613. PMCID: PMC4978927.
52. Heiser CN, Wang VM, Chen B, Hughey JJ, Lau KS. 2021; Automated quality control and cell identification of droplet-based single-cell data using dropkick. Genome Res. 31:1742–1752. DOI: 10.1101/gr.271908.120. PMID: 33837131. PMCID: PMC8494217.
53. Clarke ZA, Andrews TS, Atif J, et al. 2021; Tutorial: guidelines for annotating single-cell transcriptomic maps using automated and manual methods. Nat Protoc. 16:2749–2764. DOI: 10.1038/s41596-021-00534-0. PMID: 34031612.
54. Chiaradia I, Imaz-Rosshandler I, Nilges BS, et al. 2023; Tissue morphology influences the temporal program of human brain organoid development. Cell Stem Cell. 30:1351–1367.e10. DOI: 10.1016/j.stem.2023.09.003. PMID: 37802039. PMCID: PMC10765088.
55. Zappia L, Theis FJ. 2021; Over 1000 tools reveal trends in the single-cell RNA-seq analysis landscape. Genome Biol. 22:301. DOI: 10.1186/s13059-021-02519-4. PMID: 34715899. PMCID: PMC8555270.
56. Macosko E. 2016. Novel technologies for single-cell resolution whole-transcriptome analysis in CNS tissue [Internet]. Society for Neuroscience;Washington, D.C.: Available from: https://www.sfn.org/-/media/Project/Neuronline/PDFs/2017/Novel-Technologies-for-Single-Cell-Resolution-Whole-Transcriptome-Analysis-in-CNS-Tissue.pdf. cited 2023 Oct 18.
57. Gierahn TM, Wadsworth MH 2nd, Hughes TK, et al. 2017; Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods. 14:395–398. DOI: 10.1038/nmeth.4179. PMID: 28192419. PMCID: PMC5376227.
58. Zheng GX, Terry JM, Belgrader P, et al. 2017; Massively parallel digital transcriptional profiling of single cells. Nat Commun. 8:14049. DOI: 10.1038/ncomms14049. PMID: 28091601. PMCID: PMC5241818.
59. Buettner F, Natarajan KN, Casale FP, et al. 2015; Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 33:155–160. DOI: 10.1038/nbt.3102. PMID: 25599176.
60. Spiro A, Shapiro E. 2016; Accuracy of answers to cell lineage questions depends on single-cell genomics data quality and quantity. PLoS Comput Biol. 12:e1004983. DOI: 10.1371/journal.pcbi.1004983. PMID: 27295404. PMCID: PMC4905655.
61. Conrad S, Azizi H, Skutella T. 2018; Single-cell expression profiling and proteomics of primordial germ cells, spermatogonial stem cells, adult germ stem cells, and oocytes. Adv Exp Med Biol. 1083:77–87. DOI: 10.1007/5584_2017_117. PMID: 29299873.
62. Chen T, Li J, Jia Y, et al. 2020; Single-cell sequencing in the field of stem cells. Curr Genomics. 21:576–584. DOI: 10.2174/1389202921999200624154445. PMID: 33414679. PMCID: PMC7770636.
63. Kaminow B, Yunusov D, Dobin A. 2021. Accurate quantification of single-cell and single-nucleus RNA-seq transcripts using distinguishing flanking k-mers. bioRxiv 442755 [Preprint]. Available from: https://doi.org/10.1101/2021.05.05.442755. cited 2023 Oct 18. DOI: 10.1101/2021.05.05.442755. PMID: 33095462.
64. Hao Y, Stuart T, Kowalski MH, et al. 2024; Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat Biotechnol. 42:293–304. DOI: 10.1038/s41587-023-01767-y. PMID: 37231261. PMCID: PMC10928517.
65. Qiu X, Mao Q, Tang Y, et al. 2017; Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 14:979–982. DOI: 10.1038/nmeth.4402. PMID: 28825705. PMCID: PMC5764547.
66. Kristján Eldjárn H, Delaney KS, Nikhila PS, Guillaume H, Páll M, Lior P. 2024. Accurate quantification of single-cell and single-nucleus RNA-seq transcripts using distinguishing flanking k-mers. bioRxiv 518832 [Preprint]. Available from: https://doi.org/10.1101/2022.12.02.518832. cited 2023 Oct 18. DOI: 10.1101/2022.12.02.518832.
67. Srivastava A, Malik L, Smith T, Sudbery I, Patro R. 2019; Alevin efficiently estimates accurate gene abundances from dscRNA-seq data. Genome Biol. 20:65. DOI: 10.1186/s13059-019-1670-y. PMID: 30917859. PMCID: PMC6437997.
68. Wolf FA, Angerer P, Theis FJ. 2018; SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19:15. DOI: 10.1186/s13059-017-1382-0. PMID: 29409532. PMCID: PMC5802054.
69. Patel AP, Tirosh I, Trombetta JJ, et al. 2014; Single-cell RNA-seq highlights intratumoral heterogeneity in primary gliobla-stoma. Science. 344:1396–1401. DOI: 10.1126/science.1254257. PMID: 24925914. PMCID: PMC4123637.
70. Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. 2020; CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc. 15:1484–1506. DOI: 10.1038/s41596-020-0292-x. PMID: 32103204.
71. Zeisel A, Muñoz-Manchado AB, Codeluppi S, et al. 2015; Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 347:1138–1142. DOI: 10.1126/science.aaa1934. PMID: 25700174.
72. Van de Sande B, Flerin C, Davie K, et al. 2020; A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat Protoc. 15:2247–2276. DOI: 10.1038/s41596-020-0336-2. PMID: 32561888.
73. Aibar S, González-Blas CB, Moerman T, et al. 2017; SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 14:1083–1086. DOI: 10.1038/nmeth.4463. PMID: 28991892. PMCID: PMC5937676.
74. La Manno G, Soldatov R, Zeisel A, et al. 2018; RNA velocity of single cells. Nature. 560:494–498. DOI: 10.1038/s41586-018-0414-6. PMID: 30089906. PMCID: PMC6130801.
75. Haghverdi L, Lun ATL, Morgan MD, Marioni JC. 2018; Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat Biotechnol. 36:421–427. DOI: 10.1038/nbt.4091. PMID: 29608177. PMCID: PMC6152897.
76. Korsunsky I, Millard N, Fan J, et al. 2019; Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 16:1289–1296. DOI: 10.1038/s41592-019-0619-0. PMID: 31740819. PMCID: PMC6884693.
77. Finak G, McDavid A, Yajima M, et al. 2015; MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA seque-ncing data. Genome Biol. 16:278. DOI: 10.1186/s13059-015-0844-5. PMID: 26653891. PMCID: PMC4676162.
78. Grün D. 2020; Revealing dynamics of gene expression variability in cell state space. Nat Methods. 17:45–49. DOI: 10.1038/s41592-019-0632-3. PMID: 31740822. PMCID: PMC6949127.
79. Boyeau P, Regier J, Gayoso A, Jordan MI, Lopez R, Yosef N. 2023; An empirical Bayes method for differential expression analysis of single cells with deep generative models. Proc Natl Acad Sci U S A. 120:e2209124120. DOI: 10.1073/pnas.2209124120. PMID: 37192164. PMCID: PMC10214125.
80. Fan J, Salathia N, Liu R, et al. 2016; Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat Methods. 13:241–244. DOI: 10.1038/nmeth.3734. PMID: 26780092. PMCID: PMC4772672.
81. Williams CG, Lee HJ, Asatsuma T, Vento-Tormo R, Haque A. 2022; An introduction to spatial transcriptomics for biomedi-cal research. Genome Med. 14:68. DOI: 10.1186/s13073-022-01075-1. PMID: 35761361. PMCID: PMC9238181.
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr