2. Das S, Rai A, Rai SN. 2022; Differential expression analysis of single-cell RNA-Seq data: current statistical approaches and outstanding challenges. Entropy (Basel). 24:995. DOI:
10.3390/e24070995. PMID:
35885218. PMCID:
PMC9315519.
3. Malhotra A, Das S, Rai SN. 2022; Analysis of single-cell RNA-sequencing data: a step-by-step guide. BioMedInformatics. 2:43–61. DOI:
10.3390/biomedinformatics2010003.
4. Patra SK, Mishra S. 2006; Bibliometric study of bioinformatics literature. Scientometrics. 67:477–489. DOI:
10.1556/Scient.67.2006.3.9.
5. Glänzel W, Janssens F, Thijs B. 2009; A comparative analysis of publication activity and citation impact based on the core literature in bioinformatics. Scientometrics. 79:109–129. DOI:
10.1007/s11192-009-0407-1.
6. Song M, Kim SY. 2013; Detecting the knowledge structure of bioinformatics by mining full-text collections. Scientometrics. 96:183–201. DOI:
10.1007/s11192-012-0900-9.
7. Tranfield D, Denyer D, Smart P. 2003; Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag. 14:207–222. DOI:
10.1111/1467-8551.00375.
8. Mongeon P, Paul-Hus A. 2016; The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics. 106:213–228. DOI:
10.1007/s11192-015-1765-5.
9. Chadegani AA, Salehi H, Yunus MM, et al. 2013; A comparison between two main academic literature collections: Web of Science and Scopus databases. Asian Soc Sci. 9:18–26. DOI:
10.5539/ass.v9n5p18.
10. Altarturi HHM, Saadoon M, Anuar NB. 2020; Cyber parental control: a bibliometric study. Child Youth Serv Rev. 116:105134. DOI:
10.1016/j.childyouth.2020.105134.
11. Aria M, Cuccurullo C. 2017;
bibliometrix: an R-tool for comprehensive science mapping analysis. J Informetr. 11:959–975. DOI:
10.1016/j.joi.2017.08.007.
12. Echchakoui S. 2020; Why and how to merge Scopus and Web of Science during bibliometric analysis: the case of sales force literature from 1912 to 2019. J Market Anal. 8:165–184. DOI:
10.1057/s41270-020-00081-9.
13. Fahimnia B, Sarkis J, Davarzani H. 2015; Green supply chain management: a review and bibliometric analysis. Int J Prod Econom. 162:101–114. DOI:
10.1016/j.ijpe.2015.01.003.
14. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. 2018; Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 36:411–420. DOI:
10.1038/nbt.4096. PMID:
29608179. PMCID:
PMC6700744.
16. Trapnell C, Cacchiarelli D, Grimsby J, et al. 2014; The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 32:381–386. DOI:
10.1038/nbt.2859. PMID:
24658644. PMCID:
PMC4122333.
17. Kiselev VY, Kirschner K, Schaub MT, et al. 2017; SC3: consensus clustering of single-cell RNA-seq data. Nat Methods. 14:483–486. DOI:
10.1038/nmeth.4236. PMID:
28346451. PMCID:
PMC5410170.
18. Picelli S, Faridani OR, Björklund AK, Winberg G, Sagasser S, Sandberg R. 2014; Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 9:171–181. DOI:
10.1038/nprot.2014.006. PMID:
24385147.
19. Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. 2013; Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 10:1096–1098. DOI:
10.1038/nmeth.2639. PMID:
24056875.
20. Ziegenhain C, Vieth B, Parekh S, et al. 2017; Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 65:631–643.e4. DOI:
10.1016/j.molcel.2017.01.023. PMID:
28212749.
21. Stegle O, Teichmann SA, Marioni JC. 2015; Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 16:133–145. DOI:
10.1038/nrg3833. PMID:
25628217.
22. Islam S, Zeisel A, Joost S, et al. 2014; Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 11:163–166. DOI:
10.1038/nmeth.2772. PMID:
24363023.
23. Tabula Muris Consortium. Overall coordination. Logistical coordination. 2018; Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature. 562:367–372. DOI:
10.1038/s41586-018-0590-4. PMID:
30283141. PMCID:
PMC6642641.
26. Hwang B, Lee JH, Bang D. 2018; Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med. 50:1–14. DOI:
10.1038/s12276-018-0071-8.
28. McCarthy DJ, Campbell KR, Lun AT, Wills QF. 2017; Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics. 33:1179–1186. DOI:
10.1093/bioinformatics/btw777. PMID:
28088763. PMCID:
PMC5408845.
30. Kanton S, Boyle MJ, He Z, et al. 2019; Organoid single-cell genomic atlas uncovers human-specific features of brain deve-lopment. Nature. 574:418–422. DOI:
10.1038/s41586-019-1654-9. PMID:
31619793.
31. Lee JH, Shin H, Shaker MR, et al. 2022; Production of human spinal-cord organoids recapitulating neural-tube morphoge-nesis. Nat Biomed Eng. 6:435–448. DOI:
10.1038/s41551-022-00868-4. PMID:
35347276.
32. Shaker MR, Pietrogrande G, Martin S, Lee JH, Sun W, Wolvetang EJ. 2021; Rapid and efficient generation of myelinating human oligodendrocytes in organoids. Front Cell Neurosci. 15:631548. DOI:
10.3389/fncel.2021.631548. PMID:
33815061. PMCID:
PMC8010307.
33. Shaker MR, Hunter ZL, Wolvetang EJ. 2022; Robust and highly reproducible generation of cortical brain organoids for mo-delling brain neuronal senescence
in vitro. J Vis Exp. 183:e63714. DOI:
10.3791/63714. PMID:
35604169.
35. Shaker MR, Kahtan A, Prasad R, et al. 2022; Neural epidermal growth factor-like like protein 2 is expressed in human oligodendroglial cell types. Front Cell Dev Biol. 10:803061. DOI:
10.3389/fcell.2022.803061. PMID:
35265611. PMCID:
PMC8899196.
36. Fiorenzano A, Sozzi E, Birtele M, et al. 2021; Single-cell transcrip-tomics captures features of human midbrain development and dopamine neuron diversity in brain organoids. Nat Commun. 12:7302. DOI:
10.1038/s41467-021-27464-5. PMID:
34911939. PMCID:
PMC8674361.
37. Camp JG, Badsha F, Florio M, et al. 2015; Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci U S A. 112:15672–15677. DOI:
10.1073/pnas.1520760112. PMID:
26644564. PMCID:
PMC4697386.
38. Al-Mhanawi B, Marti MB, Morrison SD, et al. 2023; Protocol for generating embedding-free brain organoids enriched with oligodendrocytes. STAR Protoc. 4:102725. DOI:
10.1016/j.xpro.2023.102725. PMID:
37976154. PMCID:
PMC10692957.
39. Lee JH, Shaker MR, Park SH, Sun W. 2023; Transcriptional signature of valproic acid-induced neural tube defects in human spinal cord organoids. Int J Stem Cells. 16:385–393. DOI:
10.15283/ijsc23012. PMID:
37643760. PMCID:
PMC10686804.
40. Yan L, Yang M, Guo H, et al. 2013; Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 20:1131–1139. DOI:
10.1038/nsmb.2660. PMID:
23934149.
41. Kowalczyk MS, Tirosh I, Heckl D, et al. 2015; Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 25:1860–1872. DOI:
10.1101/gr.192237.115. PMID:
26430063. PMCID:
PMC4665007.
42. Zhang C, Han X, Liu J, et al. 2022; Single-cell transcriptomic analysis reveals the cellular heterogeneity of mesenchymal stem cells. Genom Proteom Bioinform. 20:70–86. DOI:
10.1016/j.gpb.2022.01.005. PMID:
35123072. PMCID:
PMC9510874.
43. Wang Z, Chai C, Wang R, et al. 2021; Single-cell transcriptome atlas of human mesenchymal stem cells exploring cellular heterogeneity. Clin Transl Med. 11:e650. DOI:
10.1002/ctm2.650. PMID:
34965030. PMCID:
PMC8715893.
44. Shen H, Yang M, Li S, et al. 2021; Mouse totipotent stem cells captured and maintained through spliceosomal repression. Cell. 184:2843–2859.e20. DOI:
10.1016/j.cell.2021.04.020. PMID:
33991488.
45. Yu L, Wei Y, Duan J, et al. 2021; Blastocyst-like structures generated from human pluripotent stem cells. Nature. 591:620–626. DOI:
10.1038/s41586-021-03356-y. PMID:
33731924.
46. Vieira Braga FA, Miragaia RJ. 2019; Tissue handling and disso-ciation for single-cell RNA-Seq. Methods Mol Biol. 1979:9–21. DOI:
10.1007/978-1-4939-9240-9_2. PMID:
31028629.
47. Denisenko E, Guo BB, Jones M, et al. 2020; Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 21:130. DOI:
10.1186/s13059-020-02048-6. PMID:
32487174. PMCID:
PMC7265231.
48. van den Brink SC, Sage F, Vértesy Á, et al. 2017; Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat Methods. 14:935–936. DOI:
10.1038/nmeth.4437. PMID:
28960196.
49. Burja B, Paul D, Tastanova A, et al. 2022; An optimized tissue dissociation protocol for single-cell RNA sequencing analysis of fresh and cultured human skin biopsies. Front Cell Dev Biol. 10:872688. DOI:
10.3389/fcell.2022.872688. PMID:
35573685. PMCID:
PMC9096112.
52. Heiser CN, Wang VM, Chen B, Hughey JJ, Lau KS. 2021; Automated quality control and cell identification of droplet-based single-cell data using dropkick. Genome Res. 31:1742–1752. DOI:
10.1101/gr.271908.120. PMID:
33837131. PMCID:
PMC8494217.
53. Clarke ZA, Andrews TS, Atif J, et al. 2021; Tutorial: guidelines for annotating single-cell transcriptomic maps using automated and manual methods. Nat Protoc. 16:2749–2764. DOI:
10.1038/s41596-021-00534-0. PMID:
34031612.
54. Chiaradia I, Imaz-Rosshandler I, Nilges BS, et al. 2023; Tissue morphology influences the temporal program of human brain organoid development. Cell Stem Cell. 30:1351–1367.e10. DOI:
10.1016/j.stem.2023.09.003. PMID:
37802039. PMCID:
PMC10765088.
57. Gierahn TM, Wadsworth MH 2nd, Hughes TK, et al. 2017; Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods. 14:395–398. DOI:
10.1038/nmeth.4179. PMID:
28192419. PMCID:
PMC5376227.
58. Zheng GX, Terry JM, Belgrader P, et al. 2017; Massively parallel digital transcriptional profiling of single cells. Nat Commun. 8:14049. DOI:
10.1038/ncomms14049. PMID:
28091601. PMCID:
PMC5241818.
59. Buettner F, Natarajan KN, Casale FP, et al. 2015; Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 33:155–160. DOI:
10.1038/nbt.3102. PMID:
25599176.
60. Spiro A, Shapiro E. 2016; Accuracy of answers to cell lineage questions depends on single-cell genomics data quality and quantity. PLoS Comput Biol. 12:e1004983. DOI:
10.1371/journal.pcbi.1004983. PMID:
27295404. PMCID:
PMC4905655.
61. Conrad S, Azizi H, Skutella T. 2018; Single-cell expression profiling and proteomics of primordial germ cells, spermatogonial stem cells, adult germ stem cells, and oocytes. Adv Exp Med Biol. 1083:77–87. DOI:
10.1007/5584_2017_117. PMID:
29299873.
64. Hao Y, Stuart T, Kowalski MH, et al. 2024; Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat Biotechnol. 42:293–304. DOI:
10.1038/s41587-023-01767-y. PMID:
37231261. PMCID:
PMC10928517.
65. Qiu X, Mao Q, Tang Y, et al. 2017; Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 14:979–982. DOI:
10.1038/nmeth.4402. PMID:
28825705. PMCID:
PMC5764547.
66. Kristján Eldjárn H, Delaney KS, Nikhila PS, Guillaume H, Páll M, Lior P. 2024. Accurate quantification of single-cell and single-nucleus RNA-seq transcripts using distinguishing flanking k-mers. bioRxiv 518832 [Preprint]. Available from:
https://doi.org/10.1101/2022.12.02.518832. cited 2023 Oct 18. DOI:
10.1101/2022.12.02.518832.
67. Srivastava A, Malik L, Smith T, Sudbery I, Patro R. 2019; Alevin efficiently estimates accurate gene abundances from dscRNA-seq data. Genome Biol. 20:65. DOI:
10.1186/s13059-019-1670-y. PMID:
30917859. PMCID:
PMC6437997.
69. Patel AP, Tirosh I, Trombetta JJ, et al. 2014; Single-cell RNA-seq highlights intratumoral heterogeneity in primary gliobla-stoma. Science. 344:1396–1401. DOI:
10.1126/science.1254257. PMID:
24925914. PMCID:
PMC4123637.
70. Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. 2020; CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc. 15:1484–1506. DOI:
10.1038/s41596-020-0292-x. PMID:
32103204.
71. Zeisel A, Muñoz-Manchado AB, Codeluppi S, et al. 2015; Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 347:1138–1142. DOI:
10.1126/science.aaa1934. PMID:
25700174.
72. Van de Sande B, Flerin C, Davie K, et al. 2020; A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat Protoc. 15:2247–2276. DOI:
10.1038/s41596-020-0336-2. PMID:
32561888.
73. Aibar S, González-Blas CB, Moerman T, et al. 2017; SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 14:1083–1086. DOI:
10.1038/nmeth.4463. PMID:
28991892. PMCID:
PMC5937676.
75. Haghverdi L, Lun ATL, Morgan MD, Marioni JC. 2018; Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat Biotechnol. 36:421–427. DOI:
10.1038/nbt.4091. PMID:
29608177. PMCID:
PMC6152897.
76. Korsunsky I, Millard N, Fan J, et al. 2019; Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 16:1289–1296. DOI:
10.1038/s41592-019-0619-0. PMID:
31740819. PMCID:
PMC6884693.
77. Finak G, McDavid A, Yajima M, et al. 2015; MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA seque-ncing data. Genome Biol. 16:278. DOI:
10.1186/s13059-015-0844-5. PMID:
26653891. PMCID:
PMC4676162.
79. Boyeau P, Regier J, Gayoso A, Jordan MI, Lopez R, Yosef N. 2023; An empirical Bayes method for differential expression analysis of single cells with deep generative models. Proc Natl Acad Sci U S A. 120:e2209124120. DOI:
10.1073/pnas.2209124120. PMID:
37192164. PMCID:
PMC10214125.
80. Fan J, Salathia N, Liu R, et al. 2016; Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat Methods. 13:241–244. DOI:
10.1038/nmeth.3734. PMID:
26780092. PMCID:
PMC4772672.
81. Williams CG, Lee HJ, Asatsuma T, Vento-Tormo R, Haque A. 2022; An introduction to spatial transcriptomics for biomedi-cal research. Genome Med. 14:68. DOI:
10.1186/s13073-022-01075-1. PMID:
35761361. PMCID:
PMC9238181.