Ewha Med J.  2024 Oct;47(4):e54. 10.12771/emj.2024.e54.

FLASH radiotherapy: bridging revolutionary mechanisms and clinical frontiers in cancer treatment – a narrative review

Affiliations
  • 1Department of Radiation Oncology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
  • 2Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
  • 3Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea

Abstract

FLASH radiotherapy (FLASH-RT) is an innovative approach that delivers ultra-high dose rates exceeding 40 Gy in less than a second, aiming to widen the therapeutic window by minimizing damage to normal tissue while maintaining tumor control. This review explores the advancements, mechanisms, and clinical applications of FLASH-RT across various radiation sources. Electrons have been predominantly used due to technical feasibility, but their limited penetration depth restricts clinical application. Protons, offering deeper tissue penetration, are considered promising for treating deep-seated tumors despite challenges in beam delivery. Preclinical studies demonstrate that FLASHRT reduces normal tissue toxicity in the lung, brain, skin, intestine, and heart without compromising antitumor efficacy. The mechanisms underlying the FLASH effect may involve oxygen depletion leading to transient hypoxia, reduced DNA damage in normal tissues, and modulation of immune and inflammatory responses. However, these mechanisms are incompletely understood, and inconsistent results across studies highlight the need for further research. Initial clinical studies, including treatment of cutaneous lymphoma and bone metastases, indicate the feasibility and potential benefits of FLASH-RT in patients. Challenges for clinical implementation include technical issues in dosimetry accuracy at ultra-high dose rates, adaptations in treatment planning systems, beam delivery methods, and economic considerations due to specialized equipment requirements. Future directions will involve comprehensive preclinical studies to optimize irradiation parameters, large-scale clinical trials to establish standardized protocols, and technological advancements to overcome limitations. FLASHRT holds the potential to revolutionize radiotherapy by reducing normal tissue toxicity and improving therapeutic outcomes, but significant research is required for real-world clinical applications.

Keyword

FLASH radiotherapy; Radiobiology; Oxygen; Normal tissue sparing

Cited by  1 articles

Cutting-edge technologies in external radiation therapy
Jun Won Kim
Ewha Med J. 2024;47(4):e59.    doi: 10.12771/emj.2024.e59.


Reference

References

1. Kim E, Jang WI, Yang K, Kim MS, Yoo HJ, Paik EK, et al. Clinical utilization of radiation therapy in Korea between 2017 and 2019. Radiat Oncol J. 2022; 40(4):251–259. DOI: 10.3857/roj.2022.00500. PMID: 36606302. PMCID: PMC9830042.
Article
2. Carlos-Reyes A, Muñiz-Lino MA, Romero-Garcia S, López-Camarillo C, Hernández-de la Cruz ON. Biological adaptations of tumor cells to radiation therapy. Front Oncol. 2021; 11:718636. DOI: 10.3389/fonc.2021.718636. PMID: 34900673. PMCID: PMC8652287.
3. Embring A, Onjukka E, Mercke C, Lax I, Berglund A, Bornedal S, et al. Re-irradiation for head and neck cancer: cumulative dose to organs at risk and late side effects. Cancers. 2021; 13(13):3173. DOI: 10.3390/cancers13133173. PMID: 34202135. PMCID: PMC8269009.
Article
4. Florez MA, De B, Chapman BV, Prayongrat A, Thomas JG, Beckham TH, et al. Safety and efficacy of salvage conventional re-irradiation following stereotactic radiosurgery for spine metastases. Radiat Oncol J. 2023; 41(1):12–22. DOI: 10.3857/roj.2022.00353. PMID: 37013414. PMCID: PMC10073838.
Article
5. Ren H, Wu Q, Sun Z, Fang M, Liu J, Luo J. Research progress and treatment of radiation enteritis and gut microbiota. Radiat Oncol J. 2023; 41(2):61–68. DOI: 10.3857/roj.2023.00346. PMID: 37403348. PMCID: PMC10326510.
Article
6. Chen HHW, Kuo MT. Improving radiotherapy in cancer treatment: promises and challenges. Oncotarget. 2017; 8(37):62742–62758. DOI: 10.18632/oncotarget.18409. PMID: 28977985. PMCID: PMC5617545.
Article
7. Song JY, Chie EK, Kang SH, Jeon YJ, Ko YA, Kim DY, et al. Dosimetric evaluation of magnetic resonance imaging-guided adaptive radiation therapy in pancreatic cancer by extent of re-contouring of organs-at-risk. Radiat Oncol J. 2022; 40(4):242–250. DOI: 10.3857/roj.2022.00332. PMID: 36606301. PMCID: PMC9830039.
Article
8. Şenkesen Ö, Tezcanlı E, Abacıoğlu MU, Özen Z, Çöne D, Küçücük H, et al. Limited field adaptive radiotherapy for glioblastoma: changes in target volume and organ at risk doses. Radiat Oncol J. 2022; 40(1):9–19. DOI: 10.3857/roj.2021.00542. PMID: 35368196. PMCID: PMC8984129.
Article
9. Jia-Mahasap B, Madla C, Sripan P, Chitapanarux I, Tharavichitkul E, Chakrabandhu S, et al. Stereotactic radiosurgery for limited brain metastasis using three different techniques: helical tomotherapy, volumetric modulated arc therapy, and cone-based LINAC radiosurgery. Radiat Oncol J. 2022; 40(4):232–241. DOI: 10.3857/roj.2022.00136. PMID: 36606300. PMCID: PMC9830036.
Article
10. Lee J, Kim HJ, Kim WC. CyberKnife-based stereotactic radiosurgery or fractionated stereotactic radiotherapy in older patients with brain metastases from non-small cell lung cancer. Radiat Oncol J. 2023; 41(4):258–266. DOI: 10.3857/roj.2023.00563. PMID: 38185930. PMCID: PMC10772598.
Article
11. Lee Y, Choi HJ, Kim H, Kim S, Kim MS, Cha H, et al. Feasibility of artificial intelligence-driven interfractional monitoring of organ changes by mega-voltage computed tomography in intensity-modulated radiotherapy of prostate cancer. Radiat Oncol J. 2023; 41(3):186–198. DOI: 10.3857/roj.2023.00444. PMID: 37793628. PMCID: PMC10556843.
Article
12. Lin B, Gao F, Yang Y, Wu D, Zhang Y, Feng G, et al. FLASH radiotherapy: history and future. Front Oncol. 2021; 11:644400. DOI: 10.3389/fonc.2021.644400. PMID: 34113566. PMCID: PMC8185194.
Article
13. Dewey DL, Boag JW. Modification of the oxygen effect when bacteria are given large pulses of radiation. Nature. 1959; 183:1450–1451. DOI: 10.1038/1831450a0. PMID: 13657161.
Article
14. Favaudon V, Caplier L, Monceau V, Pouzoulet F, Sayarath M, Fouillade C, et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med. 2014; 6(245):245ra93. DOI: 10.1126/scitranslmed.3008973. PMID: 25031268.
15. Bourhis J, Sozzi WJ, Jorge PG, Gaide O, Bailat C, Duclos F, et al. Treatment of a first patient with FLASH-radiotherapy. Radiother Oncol. 2019; 139:18–22. DOI: 10.1016/j.radonc.2019.06.019. PMID: 31303340.
16. Vozenin MC, Hendry JH, Limoli CL. Biological benefits of ultra-high dose rate FLASH radiotherapy: sleeping beauty awoken. Clin Oncol. 2019; 31(7):407–415. DOI: 10.1016/j.clon.2019.04.001. PMID: 31010708. PMCID: PMC6850216.
Article
17. Hageman E, Che PP, Dahele M, Slotman BJ, Sminia P. Radiobiological aspects of FLASH radiotherapy. Biomolecules. 2022; 12(10):1376. DOI: 10.3390/biom12101376. PMID: 36291585. PMCID: PMC9599153.
Article
18. Vozenin MC, Bourhis J, Durante M. Towards clinical translation of FLASH radiotherapy. Nat Rev Clin Oncol. 2022; 19(12):791–803. DOI: 10.1038/s41571-022-00697-z. PMID: 36303024.
19. MacKay R, Burnet N, Lowe M, Rothwell B, Kirkby N, Kirkby K, et al. FLASH radiotherapy: considerations for multibeam and hypofractionation dose delivery. Radiother Oncol. 2021; 164:122–127. DOI: 10.1016/j.radonc.2021.09.011. PMID: 34563608.
Article
20. Schüler E, Acharya M, Montay-Gruel P, Loo BW Jr, Vozenin MC, Maxim PG. Ultra-high dose rate electron beams and the FLASH effect: from preclinical evidence to a new radiotherapy paradigm. Med Phys. 2022; 49(3):2082–2095. DOI: 10.1002/mp.15442. PMID: 34997969. PMCID: PMC9032195.
Article
21. Kim MM, Zou W. Ultra-high dose rate FLASH radiation therapy for cancer. Med Phys. 2023; 50(S1):58–61. DOI: 10.1002/mp.16271. PMID: 36758965. PMCID: PMC11056953.
22. Matuszak N, Suchorska WM, Milecki P, Kruszyna-Mochalska M, Misiarz A, Pracz J, et al. FLASH radiotherapy: an emerging approach in radiation therapy. Rep Pract Oncol Radiother. 2022; 27(2):343–351. DOI: 10.5603/RPOR.a2022.0038. PMID: 36299375. PMCID: PMC9591027.
23. Lagzda A, Angal-Kalinin D, Jones J, Aitkenhead A, Kirkby KJ, MacKay R, et al. Influence of heterogeneous media on very high energy electron (VHEE) dose penetration and a Monte Carlo-based comparison with existing radiotherapy modalities. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms. 2020; 482:70–81. DOI: 10.1016/j.nimb.2020.09.008.
Article
24. Whitmore L, Mackay RI, van Herk M, Jones JK, Jones RM. Focused VHEE (very high energy electron) beams and dose delivery for radiotherapy applications. Sci Rep. 2021; 11(1):14013. DOI: 10.1038/s41598-021-93276-8. PMID: 34234203. PMCID: PMC8263594.
25. Montay-Gruel P, Bouchet A, Jaccard M, Patin D, Serduc R, Aim W, et al. X-rays can trigger the FLASH effect: ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice. Radiother Oncol. 2018; 129(3):582–588. DOI: 10.1016/j.radonc.2018.08.016. PMID: 30177374.
Article
26. Rezaee M, Iordachita I, Wong JW. Ultrahigh dose-rate (FLASH) X-ray irradiator for pre-clinical laboratory research. Phys Med Biol. 2021; 66(9):095006. DOI: 10.1088/1361-6560/abf2fa. PMID: 33780922.
27. Nangia S, Burela N, Noufal MP, Patro K, Wakde MG, Sharma DS. Proton therapy for reducing heart and cardiac substructure doses in Indian breast cancer patients. Radiat Oncol J. 2023; 41(2):69–80. DOI: 10.3857/roj.2023.00073. PMID: 37403349. PMCID: PMC10326511.
Article
28. Mandava A, Koppula V, Kandati M, Raju KVVN. Synchronous radiation-induced enterovesical and enterocervical fistulas in carcinoma of the uterine cervix. Radiat Oncol J. 2023; 41(4):297–300. DOI: 10.3857/roj.2023.00500. PMID: 38185935. PMCID: PMC10772593.
Article
29. Seo SH, Pyo H, Ahn YC, Oh D, Yang K, Kim N, et al. Pulmonary function and toxicities of proton versus photon for limited-stage small cell lung cancer. Radiat Oncol J. 2023; 41(4):274–282. DOI: 10.3857/roj.2023.00773. PMID: 38185932. PMCID: PMC10772597.
Article
30. Ellahham S, Khalouf A, Elkhazendar M, Dababo N, Manla Y. An overview of radiation-induced heart disease. Radiat Oncol J. 2022; 40(2):89–102. DOI: 10.3857/roj.2021.00766. PMID: 35796112. PMCID: PMC9262704.
Article
31. Dai Y, Liang R, Wang J, Zhang J, Wu D, Zhao R, et al. Fractionated FLASH radiation in xenografted lung tumors induced FLASH effect at a split dose of 2 Gy. Int J Radiat Biol. 2023; 99(10):1542–1549. DOI: 10.1080/09553002.2023.2194403. PMID: 36952604.
Article
32. Gao F, Yang Y, Zhu H, Wang J, Xiao D, Zhou Z, et al. First demonstration of the FLASH effect with ultrahigh dose rate high-energy X-rays. Radiother Oncol. 2022; 166:44–50. DOI: 10.1016/j.radonc.2021.11.004. PMID: 34774651.
Article
33. Fouillade C, Curras-Alonso S, Giuranno L, Quelennec E, Heinrich S, Bonnet-Boissinot S, et al. FLASH irradiation spares lung progenitor cells and limits the incidence of radio-induced senescence. Clin Cancer Res. 2020; 26(6):1497–1506. DOI: 10.1158/1078-0432.CCR-19-1440. PMID: 31796518.
Article
34. Montay-Gruel P, Petersson K, Jaccard M, Boivin G, Germond JF, Petit B, et al. Irradiation in a flash: unique sparing of memory in mice after whole brain irradiation with dose rates above 100Gy/s. Radiother Oncol. 2017; 124(3):365–369. DOI: 10.1016/j.radonc.2017.05.003. PMID: 28545957.
Article
35. Montay-Gruel P, Markarian M, Allen BD, Baddour JD, Giedzinski E, Jorge PG, et al. Ultra-high-dose-rate FLASH irradiation limits reactive gliosis in the brain. Radiat Res. 2020; 194(6):636–645. DOI: 10.1667/RADE-20-00067.1. PMID: 32853387. PMCID: PMC7856066.
36. Montay-Gruel P, Acharya MM, Petersson K, Alikhani L, Yakkala C, Allen BD, et al. Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species. Proc Natl Acad Sci USA. 2019; 116(22):10943–10951. DOI: 10.1073/pnas.1901777116. PMID: 31097580. PMCID: PMC6561167.
Article
37. Dokic I, Meister S, Bojcevski J, Tessonnier T, Walsh D, Knoll M, et al. Neuroprotective effects of ultra-high dose rate FLASH Bragg peak proton irradiation. Int J Radiat Oncol. 2022; 113(3):614–623. DOI: 10.1016/j.ijrobp.2022.02.020. PMID: 35196536. PMCID: PMC11034835.
Article
38. Alaghband Y, Cheeks SN, Allen BD, Montay-Gruel P, Doan NL, Petit B, et al. Neuroprotection of radiosensitive juvenile mice by ultra-high dose rate FLASH irradiation. Cancers. 2020; 12(6):1671. DOI: 10.3390/cancers12061671. PMID: 32599789. PMCID: PMC7352849.
Article
39. Allen BD, Alaghband Y, Kramár EA, Ru N, Petit B, Grilj V, et al. Elucidating the neurological mechanism of the FLASH effect in juvenile mice exposed to hypofractionated radiotherapy. Neuro-Oncology. 2023; 25(5):927–939. DOI: 10.1093/neuonc/noac248. PMID: 36334265. PMCID: PMC10158064.
Article
40. Montay-Gruel P, Acharya MM, Gonçalves Jorge P, Petit B, Petridis IG, Fuchs P, et al. Hypofractionated FLASH-RT as an effective treatment against glioblastoma that reduces neurocognitive side effects in mice. Clin Cancer Res. 2021; 27(3):775–784. DOI: 10.1158/1078-0432.CCR-20-0894. PMID: 33060122. PMCID: PMC7854480.
Article
41. Simmons DA, Lartey FM, Schüler E, Rafat M, King G, Kim A, et al. Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation. Radiother Oncol. 2019; 139:4–10. DOI: 10.1016/j.radonc.2019.06.006. PMID: 31253467.
Article
42. Limoli CL, Kramár EA, Almeida A, Petit B, Grilj V, Baulch JE, et al. The sparing effect of FLASH-RT on synaptic plasticity is maintained in mice with standard fractionation. Radiother Oncol. 2023; 186:109767. DOI: 10.1016/j.radonc.2023.109767. PMID: 37385377. PMCID: PMC11045040.
43. Iturri L, Bertho A, Lamirault C, Juchaux M, Gilbert C, Espenon J, et al. Proton FLASH radiation therapy and immune infiltration: evaluation in an orthotopic glioma rat model. Int J Radiat Oncol Biol Phys. 2023; 116(3):655–665. DOI: 10.1016/j.ijrobp.2022.12.018. PMID: 36563907.
Article
44. Allen BD, Acharya MM, Montay-Gruel P, Jorge PG, Bailat C, Petit B, et al. Maintenance of tight junction integrity in the absence of vascular dilation in the brain of mice exposed to ultra-high-dose-rate FLASH irradiation. Radiat Res. 2020; 194(6):625–635. DOI: 10.1667/RADE-20-00060.1. PMID: 33348373. PMCID: PMC7773228.
45. Soto LA, Casey KM, Wang J, Blaney A, Manjappa R, Breitkreutz D, et al. FLASH irradiation results in reduced severe skin toxicity compared to conventional-dose-rate irradiation. Radiat Res. 2020; 194(6):618–624. DOI: 10.1667/RADE-20-00090. PMID: 32853385. PMCID: PMC7855987.
46. Velalopoulou A, Karagounis IV, Cramer GM, Kim MM, Skoufos G, Goia D, et al. FLASH proton radiotherapy spares normal epithelial and mesenchymal tissues while preserving sarcoma response. Cancer Res. 2021; 81(18):4808–4821. DOI: 10.1158/0008-5472.CAN-21-1500. PMID: 34321243. PMCID: PMC8715480.
Article
47. Cunningham S, McCauley S, Vairamani K, Speth J, Girdhani S, Abel E, et al. FLASH proton pencil beam scanning irradiation minimizes radiation-induced leg contracture and skin toxicity in mice. Cancers. 2021; 13(5):1012. DOI: 10.3390/cancers13051012. PMID: 33804336. PMCID: PMC7957631.
Article
48. Zhang Q, Gerweck LE, Cascio E, Yang Q, Huang P, Niemierko A, et al. Proton FLASH effects on mouse skin at different oxygen tensions. Phys Med Biol. 2023; 68(5):055010. DOI: 10.1088/1361-6560/acb888. PMID: 36731139. PMCID: PMC11164666.
49. Sørensen BS, Sitarz MK, Ankjærgaard C, Johansen JG, Andersen CE, Kanouta E, et al. Pencil beam scanning proton FLASH maintains tumor control while normal tissue damage is reduced in a mouse model. Radiother Oncol. 2022; 175:178–184. DOI: 10.1016/j.radonc.2022.05.014. PMID: 35595175.
Article
50. Rudigkeit S, Schmid TE, Dombrowsky AC, Stolz J, Bartzsch S, Chen CB, et al. Proton-FLASH: effects of ultra-high dose rate irradiation on an in-vivo mouse ear model. Sci Rep. 2024; 14(1):1418. DOI: 10.1038/s41598-024-51951-6. PMID: 38228747. PMCID: PMC10791610.
51. Vozenin MC, De Fornel P, Petersson K, Favaudon V, Jaccard M, Germond JF, et al. The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients. Clin Cancer Res. 2019; 25(1):35–42. DOI: 10.1158/1078-0432.CCR-17-3375. PMID: 29875213.
Article
52. Rohrer Bley C, Wolf F, Gonçalves Jorge P, Grilj V, Petridis I, Petit B, et al. Dose- and volume-limiting late toxicity of FLASH radiotherapy in cats with squamous cell carcinoma of the nasal planum and in mini pigs. Clin Cancer Res. 2022; 28(17):3814–3823. DOI: 10.1158/1078-0432.CCR-22-0262. PMID: 35421221. PMCID: PMC9433962.
Article
53. Moser C, Jensen PØ, Pressler T, Frederiksen B, Lanng S, Kharazmi A, et al. Serum concentrations of GM-CSF and G-CSF correlate with the Th1/Th2 cytokine response in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. APMIS. 2005; 113(6):400–409. DOI: 10.1111/j.1600-0463.2005.apm_142.x. PMID: 15996157.
Article
54. Ruan JL, Lee C, Wouters S, Tullis IDC, Verslegers M, Mysara M, et al. Irradiation at ultra-high (FLASH) dose rates reduces acute normal tissue toxicity in the mouse gastrointestinal system. Int J Radiat Oncol Biol Phys. 2021; 111(5):1250–1261. DOI: 10.1016/j.ijrobp.2021.08.004. PMID: 34400268. PMCID: PMC7612009.
Article
55. Diffenderfer ES, Verginadis II, Kim MM, Shoniyozov K, Velalopoulou A, Goia D, et al. Design, implementation, and in vivo validation of a novel proton FLASH radiation therapy system. Int J Radiat Oncol Biol Phys. 2020; 106(2):440–448. DOI: 10.1016/j.ijrobp.2019.10.049. PMID: 31928642. PMCID: PMC7325740.
Article
56. Kim MM, Verginadis II, Goia D, Haertter A, Shoniyozov K, Zou W, et al. Comparison of FLASH proton entrance and the spread-out Bragg peak dose regions in the sparing of mouse intestinal crypts and in a pancreatic tumor model. Cancers. 2021; 13(16):4244. DOI: 10.3390/cancers13164244. PMID: 34439398. PMCID: PMC8392865.
Article
57. Levy K, Natarajan S, Wang J, Chow S, Eggold JT, Loo PE, et al. Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice. Sci Rep. 2020; 10(1):21600. DOI: 10.1038/s41598-020-78017-7. PMID: 33303827. PMCID: PMC7728763.
58. Shi X, Yang Y, Zhang W, Wang J, Xiao D, Ren H, et al. FLASH X-ray spares intestinal crypts from pyroptosis initiated by cGAS-STING activation upon radioimmunotherapy. Proc Natl Acad Sci USA. 2022; 119(43):e2208506119. DOI: 10.1073/pnas.2208506119. PMID: 36256824. PMCID: PMC9618056.
Article
59. Zhu H, Xie D, Yang Y, Huang S, Gao X, Peng Y, et al. Radioprotective effect of X-ray abdominal FLASH irradiation: adaptation to oxidative damage and inflammatory response may be benefiting factors. Med Phys. 2022; 49(7):4812–4822. DOI: 10.1002/mp.15680. PMID: 35451077.
Article
60. Kim K, Kim MM, Skoufos G, Diffenderfer ES, Motlagh SAO, Kokkorakis M, et al. FLASH proton radiation therapy mitigates inflammatory and fibrotic pathways and preserves cardiac function in a preclinical mouse model of radiation-induced heart disease. Int J Radiat Oncol Biol Phys. 2024; 119(4):1234–1247. DOI: 10.1016/j.ijrobp.2024.01.224. PMID: 38364948. PMCID: PMC11209795.
Article
61. Padilla O, Minns HE, Wei HJ, Fan W, Webster-Carrion A, Tazhibi M, et al. Immune response following FLASH and conventional radiation in diffuse midline glioma. Int J Radiat Oncol Biol Phys. 2024; 119(4):1248–1260. DOI: 10.1016/j.ijrobp.2024.01.219. PMID: 38364947.
Article
62. Kim YE, Gwak SH, Hong BJ, Oh JM, Choi HS, Kim MS, et al. Effects of ultra-high doserate FLASH irradiation on the tumor microenvironment in Lewis lung carcinoma: role of myosin light chain. Int J Radiat Oncol Biol Phys. 2021; 109(5):1440–1453. DOI: 10.1016/j.ijrobp.2020.11.012. PMID: 33186615.
Article
63. Konradsson E, Liljedahl E, Gustafsson E, Adrian G, Beyer S, Ilaahi SE, et al. Comparable long-term tumor control for hypofractionated FLASH versus conventional radiation therapy in an immunocompetent rat glioma model. Adv Radiat Oncol. 2022; 7(6):101011. DOI: 10.1016/j.adro.2022.101011. PMID: 36092986. PMCID: PMC9449779.
64. Cao N, Erickson DPJ, Ford EC, Emery RC, Kranz M, Goff P, et al. Preclinical ultra-high dose rate (FLASH) proton radiation therapy system for small animal studies. Adv Radiat Oncol. 2024; 9(3):101425. DOI: 10.1016/j.adro.2023.101425. PMID: 38379895. PMCID: PMC10877683.
65. Almeida A, Godfroid C, Leavitt RJ, Montay-Gruel P, Petit B, Romero J, et al. Antitumor effect by either FLASH or conventional dose rate irradiation involves equivalent immune responses. Int J Radiat Oncol Biol Phys. 2024; 118(4):1110–1122. DOI: 10.1016/j.ijrobp.2023.10.031. PMID: 37951550. PMCID: PMC11093276.
Article
66. Liljedahl E, Konradsson E, Gustafsson E, Jonsson KF, Olofsson JK, Ceberg C, et al. Long-term anti-tumor effects following both conventional radiotherapy and FLASH in fully immunocompetent animals with glioblastoma. Sci Rep. 2022; 12(1):12285. DOI: 10.1038/s41598-022-16612-6. PMID: 35853933. PMCID: PMC9296533.
67. Liljedahl E, Konradsson E, Linderfalk K, Gustafsson E, Petersson K, Ceberg C, et al. Comparable survival in rats with intracranial glioblastoma irradiated with single-fraction conventional radiotherapy or FLASH radiotherapy. Front Oncol. 2024; 13:1309174. DOI: 10.3389/fonc.2023.1309174. PMID: 38322292. PMCID: PMC10845047.
68. Shukla S, Saha T, Rama N, Acharya A, Le T, Bian F, et al. Ultra-high dose-rate proton FLASH improves tumor control. Radiother Oncol. 2023; 186:109741. DOI: 10.1016/j.radonc.2023.109741. PMID: 37315577. PMCID: PMC10527231.
69. Konradsson E, Arendt ML, Bastholm Jensen K, Børresen B, Hansen AE, Bäck S, et al. Establishment and initial experience of clinical FLASH radiotherapy in canine cancer patients. Front Oncol. 2021; 11:658004. DOI: 10.3389/fonc.2021.658004. PMID: 34055624. PMCID: PMC8155542.
70. Børresen B, Arendt ML, Konradsson E, Bastholm Jensen K, Bäck SÅ, Munck af Rosenschöld P, et al. Evaluation of single-fraction high dose FLASH radiotherapy in a cohort of canine oral cancer patients. Front Oncol. 2023; 13:1256760. DOI: 10.3389/fonc.2023.1256760. PMID: 37766866. PMCID: PMC10520273.
71. Gjaldbæk BW, Arendt ML, Konradsson E, Bastholm Jensen K, Bäck SÅJ, Munck af Rosenschöld P, et al. Long-term toxicity and efficacy of FLASH radiotherapy in dogs with superficial malignant tumors. Front Oncol. 2024; 14:1425240. DOI: 10.3389/fonc.2024.1425240. PMID: 39077466. PMCID: PMC11284943.
72. Gaide O, Herrera F, Jeanneret Sozzi W, Gonçalves Jorge P, Kinj R, Bailat C, et al. Comparison of ultra-high versus conventional dose rate radiotherapy in a patient with cutaneous lymphoma. Radiother Oncol. 2022; 174:87–91. DOI: 10.1016/j.radonc.2021.12.045. PMID: 34998899.
Article
73. Mascia AE, Daugherty EC, Zhang Y, Lee E, Xiao Z, Sertorio M, et al. Proton FLASH radiotherapy for the treatment of symptomatic bone metastases. JAMA Oncol. 2023; 9(1):62–69. DOI: 10.1001/jamaoncol.2022.5843. PMID: 36273324. PMCID: PMC9589460.
Article
74. Lin B, Huang D, Gao F, Yang Y, Wu D, Zhang Y, et al. Mechanisms of FLASH effect. Front Oncol. 2022; 12:995612. DOI: 10.3389/fonc.2022.995612. PMID: 36212435. PMCID: PMC9537695.
Article
75. Spiro IJ, Ling CC, Stickler R, Gaskill J. Oxygen radiosensitisation at low dose rate. Br J Radiol. 1985; 58(688):357–363. DOI: 10.1259/0007-1285-58-688-357. PMID: 4063678.
Article
76. Lv Y, Lv Y, Wang Z, Lan T, Feng X, Chen H, et al. FLASH radiotherapy: a promising new method for radiotherapy. Oncol Lett. 2022; 24(6):419. DOI: 10.3892/ol.2022.13539. PMID: 36284652. PMCID: PMC9580247.
77. Jansen J, Knoll J, Beyreuther E, Pawelke J, Skuza R, Hanley R, et al. Does FLASH deplete oxygen? Experimental evaluation for photons, protons, and carbon ions. Med Phys. 2021; 48(7):3982–3990. DOI: 10.1002/mp.14917. PMID: 33948958.
Article
78. Forster JC, Douglass MJJ, Phillips WM, Bezak E. Stochastic multicellular modeling of X-ray irradiation, DNA damage induction, DNA free-end misrejoining and cell death. Sci Rep. 2019; 9(1):18888. DOI: 10.1038/s41598-019-54941-1. PMID: 31827107. PMCID: PMC6906404.
79. Jin JY, Gu A, Wang W, Oleinick NL, Machtay M, Kong FM. Ultra-high dose rate effect on circulating immune cells: a potential mechanism for FLASH effect? Radiother Oncol. 2020; 149:55–62. DOI: 10.1016/j.radonc.2020.04.054. PMID: 32387486. PMCID: PMC7442672.
Article
80. Venkatesulu BP, Sharma A, Pollard-Larkin JM, Sadagopan R, Symons J, Neri S, et al. Ultra high dose rate (35 Gy/sec) radiation does not spare the normal tissue in cardiac and splenic models of lymphopenia and gastrointestinal syndrome. Sci Rep. 2019; 9(1):17180. DOI: 10.1038/s41598-019-53562-y. PMID: 31748640. PMCID: PMC6868225.
81. Tang R, Yin J, Liu Y, Xue J. FLASH radiotherapy: a new milestone in the field of cancer radiotherapy. Cancer Lett. 2024; 587:216651. DOI: 10.1016/j.canlet.2024.216651. PMID: 38342233.
82. Kim BG, Malek E, Choi SH, Ignatz-Hoover JJ, Driscoll JJ. Novel therapies emerging in oncology to target the TGF-β pathway. J Hematol Oncol. 2021; 14(1):55. DOI: 10.1186/s13045-021-01053-x. PMID: 33823905. PMCID: PMC8022551.
83. Zheng Y, Liu X, Li N, Zhao A, Sun Z, Wang M, et al. Radiotherapy combined with immunotherapy could improve the immune infiltration of melanoma in mice and enhance the abscopal effect. Radiat Oncol J. 2023; 41(2):129–139. DOI: 10.3857/roj.2023.00185. PMID: 37403355. PMCID: PMC10326504.
Article
84. Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 2019; 18(1):10. DOI: 10.1186/s12943-018-0928-4. PMID: 30646912. PMCID: PMC6332843.
85. Eggold JT, Chow S, Melemenidis S, Wang J, Natarajan S, Loo PE, et al. Abdominopelvic FLASH irradiation improves PD-1 immune checkpoint inhibition in preclinical models of ovarian cancer. Mol Cancer Ther. 2022; 21(2):371–381. DOI: 10.1158/1535-7163.MCT-21-0358. PMID: 34866044. PMCID: PMC9229218.
Article
86. Smyth LML, Donoghue JF, Ventura JA, Livingstone J, Bailey T, Day LRJ, et al. Comparative toxicity of synchrotron and conventional radiation therapy based on total and partial body irradiation in a murine model. Sci Rep. 2018; 8(1):12044. DOI: 10.1038/s41598-018-30543-1. PMID: 30104646. PMCID: PMC6089899.
87. Zhang Q, Gerweck LE, Cascio E, Gu L, Yang Q, Dong X, et al. Absence of tissue-sparing effects in partial proton FLASH irradiation in murine intestine. Cancers. 2023; 15(8):2269. DOI: 10.3390/cancers15082269. PMID: 37190197. PMCID: PMC10137009.
Article
88. Beyreuther E, Brand M, Hans S, Hideghéty K, Karsch L, Leßmann E, et al. Feasibility of proton FLASH effect tested by zebrafish embryo irradiation. Radiother Oncol. 2019; 139:46–50. DOI: 10.1016/j.radonc.2019.06.024. PMID: 31266652.
Article
89. Kacem H, Almeida A, Cherbuin N, Vozenin MC. Understanding the FLASH effect to unravel the potential of ultra-high dose rate irradiation. Int J Radiat Biol. 2022; 98(3):506–516. DOI: 10.1080/09553002.2021.2004328. PMID: 34788193.
Article
90. Marcu LG, Bezak E, Peukert DD, Wilson P. Translational research in FLASH radiotherapy—from radiobiological mechanisms to in vivo results. Biomedicines. 2021; 9(2):181. DOI: 10.3390/biomedicines9020181. PMID: 33670409. PMCID: PMC7918545.
Article
Full Text Links
  • EMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr