Ewha Med J.  2024 Oct;47(4):e56. 10.12771/emj.2024.e56.

Clinical indications and future directions of carbonion radiotherapy: a narrative review

Affiliations
  • 1Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Korea

Abstract

Carbon-ion radiotherapy (CIRT) offers superior dose distributions and greater biological effectiveness than conventional photon-based radiotherapy (RT). Due to its higher linear energy transfer and relative biological effectiveness, CIRT is particularly effective against radioresistant tumors and those located near critical organs. Since the first dedicated CIRT facility was established in Japan in 1994, CIRT has demonstrated remarkable efficacy against various malignancies, including head and neck tumors, skull base and upper cervical spine tumors, non-small-cell lung cancer, hepatocellular carcinoma, pancreatic cancer, prostate cancer, and bone and soft tissue sarcomas. This narrative review provides a comprehensive overview of the current status of CIRT, highlighting its clinical indications and future directions. According to clinical studies, CIRT achieves high local control rates with manageable toxicity across multiple cancer types. For instance, in head and neck tumors (e.g., adenoid cystic carcinoma and mucosal melanoma), CIRT has achieved local control rates exceeding 80%. In early-stage non-small-cell lung cancer, CIRT has resulted in local control rates over 90% with minimal toxicity. Moreover, CIRT has shown promise in treating challenging cases of hepatocellular carcinoma and pancreatic cancer, where conventional therapies are limited. Nonetheless, the global adoption of CIRT remains limited due to high costs and complexity. Future directions include conducting randomized controlled trials to establish high-level evidence, integrating new technologies such as ultrahigh-dose-rate (FLASH) therapy, and expanding CIRT facilities globally with strategic planning and cost-effectiveness analyses. If these challenges are addressed, CIRT is poised to play a transformative role in cancer treatment, improving survival rates and the quality of life.

Keyword

Carbon-ion radiotherapy; Charged particle therapy; Bragg peak; Review; Radioresistant tumors

Cited by  1 articles

Cutting-edge technologies in external radiation therapy
Jun Won Kim
Ewha Med J. 2024;47(4):e59.    doi: 10.12771/emj.2024.e59.


Reference

References

1. Byun HK, Han MC, Yang K, Kim JS, Yoo GS, Koom WS, et al. Physical and biological characteristics of particle therapy for oncologists. Cancer Res Treat. 2021; 53(3):611–620. DOI: 10.4143/crt.2021.066. PMID: 34139805. PMCID: PMC8291193.
Article
2. Durante M, Orecchia R, Loeffler JS. Charged-particle therapy in cancer: clinical uses and future perspectives. Nat Rev Clin Oncol. 2017; 14(8):483–495. DOI: 10.1038/nrclinonc.2017.30. PMID: 28290489.
Article
3. Yun JE, Kim S, Park KY, Lee W. Effectiveness and safety of carbon ion radiotherapy in solid tumors: a systematic review and meta-analysis. Yonsei Med J. 2024; 65(6):332–340. DOI: 10.3349/ymj.2023.0439. PMID: 38804027. PMCID: PMC11130593.
Article
4. Schulz-Ertner D, Nikoghosyan A, Jäkel O, Haberer T, Kraft G, Scholz M, et al. Feasibility and toxicity of combined photon and carbon ion radiotherapy for locally advanced adenoid cystic carcinomas. Int J Radiat Oncol Biol Phys. 2003; 56(2):391–398. DOI: 10.1016/S0360-3016(02)04511-X. PMID: 12738314.
Article
5. Mizoe J, Tsujii H, Kamada T, Matsuoka Y, Tsuji H, Osaka Y, et al. Dose escalation study of carbon ion radiotherapy for locally advanced head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2004; 60(2):358–364. DOI: 10.1016/j.ijrobp.2004.02.067. PMID: 15380567.
Article
6. Jensen AD, Nikoghosyan AV, Lossner K, Haberer T, Jäkel O, Münter MW, et al. COSMIC: a regimen of intensity modulated radiation therapy plus dose-escalated, raster-scanned carbon ion boost for malignant salivary gland tumors: results of the prospective phase 2 trial. Int J Radiat Oncol Biol Phys. 2015; 93(1):37–46. DOI: 10.1016/j.ijrobp.2015.05.013. PMID: 26279022.
Article
7. Jensen AD, Poulakis M, Nikoghosyan AV, Welzel T, Uhl M, Federspil PA, et al. High-LET radiotherapy for adenoid cystic carcinoma of the head and neck: 15 years' experience with raster-scanned carbon ion therapy. Radiother Oncol. 2016; 118(2):272–280. DOI: 10.1016/j.radonc.2015.05.010. PMID: 26164774.
Article
8. Mizoe J, Hasegawa A, Jingu K, Takagi R, Bessyo H, Morikawa T, et al. Results of carbon ion radiotherapy for head and neck cancer. Radiother Oncol. 2012; 103(1):32–37. DOI: 10.1016/j.radonc.2011.12.013. PMID: 22321201.
9. Sulaiman NS, Demizu Y, Koto M, Saitoh J, Suefuji H, Tsuji H, et al. Multicenter study of carbon-ion radiation therapy for adenoid cystic carcinoma of the head and neck: subanalysis of the Japan carbon-ion radiation oncology study group (J-CROS) study (1402 HN). Int J Radiat Oncol Biol Phys. 2018; 100(3):639–646. DOI: 10.1016/j.ijrobp.2017.11.010. PMID: 29413278.
Article
10. Demizu Y, Fujii O, Terashima K, Mima M, Hashimoto N, Niwa Y, et al. Particle therapy for mucosal melanoma of the head and neck: a single-institution retrospective comparison of proton and carbon ion therapy. Strahlenther Onkol. 2014; 190(2):186–191. DOI: 10.1007/s00066-013-0489-9. PMID: 24362502.
Article
11. Vitolo V, Fossati P, Bonora M, Iannalfi A, Fiore MR, Vischioni V, et al. Malignant mucosal melanoma in the upper aerodigestive tract treated with carbon ion RT at CNAO: preliminary results. Radiother Oncol. 2015; 115(1):S728. DOI: 10.1016/S0167-8140(15)41342-8.
12. Shirai K, Saitoh JI, Musha A, Abe T, Kobayashi D, Takayasu Y, et al. Hypofractionated carbon-ion radiation therapy for mucosal malignant melanoma in head and neck. Int J Radiat Oncol Biol Phys. 2017; 99(2):E372. DOI: 10.1016/j.ijrobp.2017.06.1489.
13. Mohr A, Chaudhri N, Hassel JC, Federspil PA, Vanoni V, Debus J, et al. Raster-scanned intensity-controlled carbon ion therapy for mucosal melanoma of the paranasal sinus. Head Neck. 2016; 38(S1):E1445–E1451. DOI: 10.1002/hed.24256. PMID: 26560744.
14. Koto M, Demizu Y, Saitoh J, Suefuji H, Tsuji H, Okimoto T, et al. Multicenter study of carbon-ion radiation therapy for mucosal melanoma of the head and neck: subanalysis of the Japan carbon-ion radiation oncology study group (J-CROS) study (1402 HN). Int J Radiat Oncol Biol Phys. 2017; 97(5):1054–1060. DOI: 10.1016/j.ijrobp.2016.12.028. PMID: 28332989.
Article
15. Tsuji H, Ishikawa H, Yanagi T, Hirasawa N, Kamada T, Mizoe JE, et al. Carbon-ion radiotherapy for locally advanced or unfavorably located choroidal melanoma: a phase I/II dose-escalation study. Int J Radiat Oncol Biol Phys. 2007; 67(3):857–862. DOI: 10.1016/j.ijrobp.2006.09.022. PMID: 17161555.
Article
16. Toyama S, Tsuji H, Mizoguchi N, Nomiya T, Kamada T, Tokumaru S, et al. Long-term results of carbon ion radiation therapy for locally advanced or unfavorably located choroidal melanoma: usefulness of CT-based 2-port orthogonal therapy for reducing the incidence of neovascular glaucoma. Int J Radiat Oncol Biol Phys. 2013; 86(2):270–276. DOI: 10.1016/j.ijrobp.2012.12.022. PMID: 23414768.
Article
17. Jingu K, Tsujii H, Mizoe JE, Hasegawa A, Bessho H, Takagi R, et al. Carbon ion radiation therapy improves the prognosis of unresectable adult bone and soft-tissue sarcoma of the head and neck. Int J Radiat Oncol Biol Phys. 2012; 82(5):2125–2131. DOI: 10.1016/j.ijrobp.2010.08.043. PMID: 21745719.
Article
18. Musha A, Kubo N, Kawamura H, Okano N, Sato H, Okada K, et al. Carbon-ion radiotherapy for inoperable head and neck bone and soft-tissue sarcoma: prospective observational study. Anticancer Res. 2022; 42(3):1439–1446. DOI: 10.21873/anticanres.15614. PMID: 35220237.
Article
19. Mendenhall WM, Morris CG, Amdur RJ, Werning JW, Villaret DB. Radiotherapy alone or combined with surgery for salivary gland carcinoma. Cancer. 2005; 103(12):2544–2550. DOI: 10.1002/cncr.21083. PMID: 15880750.
Article
20. Mercado CE, Holtzman AL, Rotondo R, Rutenberg MS, Mendenhall WM. Proton therapy for skull base tumors: a review of clinical outcomes for chordomas and chondrosarcomas. Head Neck. 2019; 41(2):536–541. DOI: 10.1002/hed.25479. PMID: 30537295.
Article
21. Uhl M, Mattke M, Welzel T, Roeder F, Oelmann J, Habl G, et al. Highly effective treatment of skull base chordoma with carbon ion irradiation using a raster scan technique in 155 patients: first long-term results. Cancer. 2014; 120(21):3410–3417. DOI: 10.1002/cncr.28877. PMID: 24948519.
Article
22. Mattke M, Ohlinger M, Bougatf N, Harrabi S, Wolf R, Seidensaal K, et al. Proton and carbon ion beam treatment with active raster scanning method in 147 patients with skull base chordoma at the Heidelberg Ion Beam Therapy Center: a single-center experience. Strahlenther Onkol. 2023; 199(2):160–168. DOI: 10.1007/s00066-022-02002-4. PMID: 36149438. PMCID: PMC9876873.
Article
23. Iannalfi A, D'Ippolito E, Riva G, Molinelli S, Gandini S, Viselner G, et al. Proton and carbon ion radiotherapy in skull base chordomas: a prospective study based on a dual particle and a patient-customized treatment strategy. Neuro-Oncology. 2020; 22(9):1348–1358. DOI: 10.1093/neuonc/noaa067. PMID: 32193546. PMCID: PMC7523440.
Article
24. Schulz-Ertner D, Nikoghosyan A, Hof H, Didinger B, Combs SE, Jäkel O, et al. Carbon ion radiotherapy of skull base chondrosarcomas. Int J Radiat Oncol Biol Phys. 2007; 67(1):171–177. DOI: 10.1016/j.ijrobp.2006.08.027. PMID: 17056193.
25. Uhl M, Mattke M, Welzel T, Oelmann J, Habl G, Jensen AD, et al. High control rate in patients with chondrosarcoma of the skull base after carbon ion therapy: first report of long-term results. Cancer. 2014; 120(10):1579–1585. DOI: 10.1002/cncr.28606. PMID: 24500784.
Article
26. Mattke M, Vogt K, Bougatf N, Welzel T, Oelmann-Avendano J, Hauswald H, et al. High control rates of proton- and carbon-ion–beam treatment with intensity-modulated active raster scanning in 101 patients with skull base chondrosarcoma at the Heidelberg Ion Beam Therapy Center. Cancer. 2018; 124(9):2036–2044. DOI: 10.1002/cncr.31298. PMID: 29469932.
Article
27. Kim E, Jang WI, Yang K, Kim MS, Yoo HJ, Paik EK, et al. Clinical utilization of radiation therapy in Korea between 2017 and 2019. Radiat Oncol J. 2022; 40(4):251–259. DOI: 10.3857/roj.2022.00500. PMID: 36606302. PMCID: PMC9830042.
Article
28. Miyamoto T, Yamamoto N, Nishimura H, Koto M, Tsujii H, Mizoe J, et al. Carbon ion radiotherapy for stage I non-small cell lung cancer. Radiother Oncol. 2003; 66(2):127–140. DOI: 10.1016/S0167-8140(02)00367-5. PMID: 12648784.
29. Miyamoto T, Baba M, Yamamoto N, Koto M, Sugawara T, Yashiro T, et al. Curative treatment of stage I non–small-cell lung cancer with carbon ion beams using a hypofractionated regimen. Int J Radiat Oncol Biol Phys. 2007; 67(3):750–758. DOI: 10.1016/j.ijrobp.2006.10.006. PMID: 17293232.
Article
30. Miyamoto T, Baba M, Sugane T, Nakajima M, Yashiro T, Kagei K, et al. Carbon ion radiotherapy for stage I non-small cell lung cancer using a regimen of four fractions during 1 week. J Thorac Oncol. 2007; 2(10):916–926. DOI: 10.1097/JTO.0b013e3181560a68. PMID: 17909354.
Article
31. Yamamoto N, Miyamoto T, Nakajima M, Karube M, Hayashi K, Tsuji H, et al. A dose escalation clinical trial of single-fraction carbon ion radiotherapy for peripheral stage I non-small cell lung cancer. J Thorac Oncol. 2017; 12(4):673–680. DOI: 10.1016/j.jtho.2016.12.012. PMID: 28007628.
Article
32. Saitoh J, Shirai K, Mizukami T, Abe T, Ebara T, Ohno T, et al. Hypofractionated carbon-ion radiotherapy for stage I peripheral nonsmall cell lung cancer (GUNMA0701): prospective phase II study. Cancer Med. 2019; 8(15):6644–6650. DOI: 10.1002/cam4.2561. PMID: 31532584. PMCID: PMC6825999.
Article
33. Ono T, Yamamoto N, Nomoto A, Nakajima M, Isozaki Y, Kasuya G, et al. Long term results of single-fraction carbon-ion radiotherapy for non-small cell lung cancer. Cancers. 2021; 13(1):112. DOI: 10.3390/cancers13010112. PMID: 33396455. PMCID: PMC7795673.
Article
34. Kubo N, Suefuji H, Nakajima M, Tokumaru S, Okano N, Yoshida D, et al. Clinical results of carbon ion radiotherapy for inoperable stage I non-small cell lung cancer: a Japanese national registry study (J-CROS-LUNG). Radiother Oncol. 2023; 183:109640. DOI: 10.1016/j.radonc.2023.109640. PMID: 36990390.
35. Miyasaka Y, Komatsu S, Abe T, Kubo N, Okano N, Shibuya K, et al. Comparison of oncologic outcomes between carbon ion radiotherapy and stereotactic body radiotherapy for early-stage non-small cell lung cancer. Cancers. 2021; 13(2):176. DOI: 10.3390/cancers13020176. PMID: 33419147. PMCID: PMC7825544.
Article
36. Okazaki S, Shibuya K, Takura T, Miyasaka Y, Kawamura H, Ohno T. Cost-effectiveness of carbon-ion radiotherapy versus stereotactic body radiotherapy for non-small-cell lung cancer. Cancer Sci. 2022; 113(2):674–683. DOI: 10.1111/cas.15216. PMID: 34820994. PMCID: PMC8819294.
Article
37. Takahashi W, Nakajima M, Yamamoto N, Yamashita H, Nakagawa K, Miyamoto T, et al. A prospective nonrandomized phase I/II study of carbon ion radiotherapy in a favorable subset of locally advanced non–small cell lung cancer (NSCLC). Cancer. 2015; 121(8):1321–1327. DOI: 10.1002/cncr.29195. PMID: 25641119.
Article
38. Hayashi K, Yamamoto N, Nakajima M, Nomoto A, Tsuji H, Ogawa K, et al. Clinical outcomes of carbon-ion radiotherapy for locally advanced non-small-cell lung cancer. Cancer Sci. 2019; 110(2):734–741. DOI: 10.1111/cas.13890. PMID: 30467928. PMCID: PMC6361552.
Article
39. Karube M, Yamamoto N, Shioyama Y, Saito J, Matsunobu A, Okimoto T, et al. Carbon-ion radiotherapy for patients with advanced stage non–small-cell lung cancer at multicenters. J Radiat Res. 2017; 58(5):761–764. DOI: 10.1093/jrr/rrx037. PMID: 28992088. PMCID: PMC5737392.
Article
40. Anzai M, Yamamoto N, Hayashi K, Nakajima M, Nomoto A, Ogawa K, et al. Safety and efficacy of carbon-ion radiotherapy alone for stage III non-small cell lung cancer. Anticancer Res. 2020; 40(1):379–386. DOI: 10.21873/anticanres.13963. PMID: 31892590.
Article
41. Seo SH, Pyo H, Ahn YC, Oh D, Yang K, Kim N, et al. Pulmonary function and toxicities of proton versus photon for limited-stage small cell lung cancer. Radiat Oncol J. 2023; 41(4):274–282. DOI: 10.3857/roj.2023.00773. PMID: 38185932. PMCID: PMC10772597.
Article
42. Okano N, Kubo N, Yamaguchi K, Kouno S, Miyasaka Y, Mizukami T, et al. Efficacy and safety of carbon-ion radiotherapy for stage I non-small cell lung cancer with coexisting interstitial lung disease. Cancers. 2021; 13(16):4204. DOI: 10.3390/cancers13164204. PMID: 34439358. PMCID: PMC8391416.
Article
43. Okano N, Suefuji H, Nakajima M, Tokumaru S, Kubo N, Yoshida D, et al. Clinical results of carbon-ion radiotherapy for stage I non-small cell lung cancer with concomitant interstitial lung disease: a Japanese national registry study (J-CROS-LUNG). J Radiat Res. 2023; 64(Supplement_1):i2–i7. DOI: 10.1093/jrr/rrad008. PMID: 37036751. PMCID: PMC10278880.
44. Kato H, Tsujii H, Miyamoto T, Mizoe J, Kamada T, Tsuji H, et al. Results of the first prospective study of carbon ion radiotherapy for hepatocellular carcinoma with liver cirrhosis. Int J Radiat Oncol Biol Phys. 2004; 59(5):1468–1476. DOI: 10.1016/j.ijrobp.2004.01.032. PMID: 15275734.
Article
45. Kasuya G, Kato H, Yasuda S, Tsuji H, Yamada S, Haruyama Y, et al. Progressive hypofractionated carbon-ion radiotherapy for hepatocellular carcinoma: combined analyses of 2 prospective trials. Cancer. 2017; 123(20):3955–3965. DOI: 10.1002/cncr.30816. PMID: 28662297. PMCID: PMC5655922.
Article
46. Shibuya K, Katoh H, Koyama Y, Shiba S, Okamoto M, Okazaki S, et al. Efficacy and safety of 4 fractions of carbon-ion radiation therapy for hepatocellular carcinoma: a prospective study. Liver Cancer. 2022; 11(1):61–74. DOI: 10.1159/000520277. PMID: 35222508. PMCID: PMC8820176.
Article
47. Shibuya K, Ohno T, Katoh H, Okamoto M, Shiba S, Koyama Y, et al. A feasibility study of high-dose hypofractionated carbon ion radiation therapy using four fractions for localized hepatocellular carcinoma measuring 3 cm or larger. Radiother Oncol. 2019; 132:230–235. DOI: 10.1016/j.radonc.2018.10.009. PMID: 30366726.
Article
48. Shibuya K, Ohno T, Terashima K, Toyama S, Yasuda S, Tsuji H, et al. Short-course carbon-ion radiotherapy for hepatocellular carcinoma: a multi-institutional retrospective study. Liver Int. 2018; 38(12):2239–2247. DOI: 10.1111/liv.13969. PMID: 30240527.
Article
49. Shiba S, Abe T, Shibuya K, Katoh H, Koyama Y, Shimada H, et al. Carbon ion radiotherapy for 80 years or older patients with hepatocellular carcinoma. BMC Cancer. 2017; 17(1):721. DOI: 10.1186/s12885-017-3724-4. PMID: 29115938. PMCID: PMC5678597.
50. Shiba S, Shibuya K, Katoh H, Kaminuma T, Miyazaki M, Kakizaki S, et al. A comparison of carbon ion radiotherapy and transarterial chemoembolization treatment outcomes for single hepatocellular carcinoma: a propensity score matching study. Radiat Oncol. 2019; 14(1):137. DOI: 10.1186/s13014-019-1347-4. PMID: 31375120. PMCID: PMC6679447.
51. Shiba S, Shibuya K, Okamoto M, Okazaki S, Komatsu S, Kubota Y, et al. Clinical impact of hypofractionated carbon ion radiotherapy on locally advanced hepatocellular carcinoma. Radiat Oncol. 2020; 15(1):195. DOI: 10.1186/s13014-020-01634-z. PMID: 32795340. PMCID: PMC7427730.
52. Tomizawa K, Shibuya K, Shiba S, Okazaki S, Miyasaka Y, Oishi M, et al. Repeated carbon-ion radiation therapy for intrahepatic recurrent hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2023; 116(5):1100–1109. DOI: 10.1016/j.ijrobp.2023.02.036. PMID: 36870514.
Article
53. Fujita N, Kanogawa N, Makishima H, Ogasawara S, Maruta S, Iino Y, et al. Carbon-ion radiotherapy versus radiofrequency ablation as initial treatment for early-stage hepatocellular carcinoma. Hepatol Res. 2022; 52(12):1060–1071. DOI: 10.1111/hepr.13827. PMID: 35951438.
Article
54. Komatsu S, Fukumoto T, Demizu Y, Miyawaki D, Terashima K, Sasaki R, et al. Clinical results and risk factors of proton and carbon ion therapy for hepatocellular carcinoma. Cancer. 2011; 117(21):4890–4904. DOI: 10.1002/cncr.26134. PMID: 21495022.
Article
55. Hiroshima Y, Wakatsuki M, Kaneko T, Makishima H, Okada NN, Yasuda S, et al. Clinical impact of carbon-ion radiotherapy on hepatocellular carcinoma with Child-Pugh B cirrhosis. Cancer Med. 2023; 12(13):14004–14014. DOI: 10.1002/cam4.6046. PMID: 37162312. PMCID: PMC10358263.
Article
56. Imada H, Kato H, Yasuda S, Yamada S, Yanagi T, Kishimoto R, et al. Comparison of efficacy and toxicity of short-course carbon ion radiotherapy for hepatocellular carcinoma depending on their proximity to the porta hepatis. Radiother Oncol. 2010; 96(2):231–235. DOI: 10.1016/j.radonc.2010.05.019. PMID: 20579756.
Article
57. Okazaki S, Shibuya K, Shiba S, Okamoto M, Miyasaka Y, Osu N, et al. Carbon ion radiotherapy for patients with hepatocellular carcinoma in the caudate lobe carbon ion radiotherapy for hepatocellular carcinoma in caudate lobe. Hepatol Res. 2021; 51(3):303–312. DOI: 10.1111/hepr.13606. PMID: 33350034.
Article
58. Charalampopoulou A, Barcellini A, Ciocca M, Di Liberto R, Pasi F, Pullia MG, et al. Factors released by low and high-LET irradiated fibroblasts modulate migration and invasiveness of pancreatic cancer cells. Front Oncol. 2022; 12:1003494. DOI: 10.3389/fonc.2022.1003494. PMID: 36313689. PMCID: PMC9597630.
59. Facoetti A, Di Gioia C, Pasi F, Di Liberto R, Corbella F, Nano R, et al. Morphological analysis of amoeboid–mesenchymal transition plasticity after low and high LET radiation on migrating and invading pancreatic cancer cells. Anticancer Res. 2018; 38(8):4585–4591. DOI: 10.21873/anticanres.12763. PMID: 30061225.
Article
60. Shinoto M, Yamada S, Terashima K, Yasuda S, Shioyama Y, Honda H, et al. Carbon ion radiation therapy with concurrent gemcitabine for patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2016; 95(1):498–504. DOI: 10.1016/j.ijrobp.2015.12.362. PMID: 26883565.
Article
61. Kawashiro S, Yamada S, Okamoto M, Ohno T, Nakano T, Shinoto M, et al. Multi-institutional study of carbon-ion radiotherapy for locally advanced pancreatic cancer: Japan carbon-ion radiation oncology study group (J-CROS) study 1403 pancreas. Int J Radiat Oncol Biol Phys. 2018; 101(5):1212–1221. DOI: 10.1016/j.ijrobp.2018.04.057. PMID: 29907490.
Article
62. Okamoto M, Shiba S, Kobayashi D, Miyasaka Y, Okazaki S, Shibuya K, et al. Carbon-ion radiotherapy combined with concurrent chemotherapy for locally advanced pancreatic cancer: a retrospective case series analysis. Cancers. 2023; 15(10):2857. DOI: 10.3390/cancers15102857. PMID: 37345195. PMCID: PMC10216480.
Article
63. Shinoto M, Yamada S, Yasuda S, Imada H, Shioyama Y, Honda H, et al. Phase 1 trial of preoperative, short-course carbon-ion radiotherapy for patients with resectable pancreatic cancer. Cancer. 2013; 119(1):45–51. DOI: 10.1002/cncr.27723. PMID: 22744973.
Article
64. Ebner DK, Shinoto M, Kawashiro S, Isozaki Y, Kamada T, Yamada S. Phase 1/2 trial of preoperative short-course carbon-ion radiation therapy for patients with resectable pancreatic cancer. Int J Radiat Oncol Biol Phys. 2017; 99(2):S144. DOI: 10.1016/j.ijrobp.2017.06.334.
65. Vitolo V, Cobianchi L, Brugnatelli S, Barcellini A, Peloso A, Facoetti A, et al. Preoperative chemotherapy and carbon ions therapy for treatment of resectable and borderline resectable pancreatic adenocarcinoma: a prospective, phase II. multicentre, single-arm study. BMC Cancer. 2019; 19(1):922. DOI: 10.1186/s12885-019-6108-0. PMID: 31521134. PMCID: PMC6744648.
66. Yadav BS, Gupta S, Dahiya D, Gupta A, Oinam AS. Accelerated hypofractionated breast radiotherapy with simultaneous integrated boost: a feasibility study. Radiat Oncol J. 2022; 40(2):127–140. DOI: 10.3857/roj.2021.01053. PMID: 35796116. PMCID: PMC9262700.
Article
67. Kim N, Kim YB. Journey to hypofractionation in radiotherapy for breast cancer: critical reviews for recent updates. Radiat Oncol J. 2022; 40(4):216–224. DOI: 10.3857/roj.2022.00577. PMID: 36606299. PMCID: PMC9830038.
Article
68. Nanos C, Souftas V, Zissimopoulos A, Koukourakis MI. Radiobiological analysis of preliminary results of a phase II study of pelvic hypofractionated and accelerated radiotherapy for high-risk prostate cancer patients. Radiat Oncol J. 2022; 40(2):151–161. DOI: 10.3857/roj.2021.01032. PMID: 35796118. PMCID: PMC9262698.
Article
69. Ishikawa H, Tsuji H, Kamada T, Akakura K, Suzuki H, Shimazaki J, et al. Carbon-ion radiation therapy for prostate cancer. Int J Urol. 2012; 19(4):296–305. DOI: 10.1111/j.1442-2042.2012.02961.x. PMID: 22320843.
Article
70. Akakura K, Tsujii H, Morita S, Tsuji H, Yagishita T, Isaka S, et al. Phase I/II clinical trials of carbon ion therapy for prostate cancer. Prostate. 2004; 58(3):252–258. DOI: 10.1002/pros.10328. PMID: 14743464.
71. Tsuji H, Yanagi T, Ishikawa H, Kamada T, Mizoe J, Kanai T, et al. Hypofractionated radiotherapy with carbon ion beams for prostate cancer. Int J Radiat Oncol Biol Phys. 2005; 63(4):1153–1160. DOI: 10.1016/j.ijrobp.2005.04.022. PMID: 15990247.
Article
72. Ishikawa H, Tsuji H, Kamada T, Yanagi T, Mizoe JE, Kanai T, et al. Carbon ion radiation therapy for prostate cancer: results of a prospective phase II study. Radiother Oncol. 2006; 81(1):57–64. DOI: 10.1016/j.radonc.2006.08.015. PMID: 16971008.
Article
73. Okada T, Tsuji H, Kamada T, Akakura K, Suzuki H, Shimazaki J, et al. Carbon ion radiotherapy in advanced hypofractionated regimens for prostate cancer: from 20 to 16 fractions. Int J Radiat Oncol Biol Phys. 2012; 84(4):968–972. DOI: 10.1016/j.ijrobp.2012.01.072. PMID: 22898380.
Article
74. Nomiya T, Tsuji H, Maruyama K, Toyama S, Suzuki H, Akakura K, et al. Phase I/II trial of definitive carbon ion radiotherapy for prostate cancer: evaluation of shortening of treatment period to 3 weeks. Br J Cancer. 2014; 110(10):2389–2395. DOI: 10.1038/bjc.2014.191. PMID: 24722181. PMCID: PMC4021525.
Article
75. Nomiya T, Tsuji H, Kawamura H, Ohno T, Toyama S, Shioyama Y, et al. A multi-institutional analysis of prospective studies of carbon ion radiotherapy for prostate cancer: a report from the Japan Carbon ion Radiation Oncology Study Group (J-CROS). Radiother Oncol. 2016; 121(2):288–293. DOI: 10.1016/j.radonc.2016.10.009. PMID: 27836119.
Article
76. Habl G, Uhl M, Katayama S, Kessel KA, Hatiboglu G, Hadaschik B, et al. Acute toxicity and quality of life in patients with prostate cancer treated with protons or carbon ions in a prospective randomized phase II study—the IPI trial. Int J Radiat Oncol Biol Phys. 2016; 95(1):435–443. DOI: 10.1016/j.ijrobp.2016.02.025. PMID: 27084659.
Article
77. Marvaso G, Jereczek-Fossa BA, Vischioni B, Ciardo D, Giandini T, Hasegawa A, et al. Phase II multi-institutional clinical trial on a new mixed beam RT scheme of IMRT on pelvis combined with a carbon ion boost for high-risk prostate cancer patients. Tumori J. 2017; 103(3):314–318. DOI: 10.5301/tj.5000587. PMID: 28009421.
Article
78. Marvaso G, Jereczek-Fossa BA, Riva G, Bassi C, Fodor C, Ciardo D, et al. High-risk prostate cancer and radiotherapy: the past and the future. A benchmark for a new mixed beam radiotherapy approach. Clin Genitourin Cancer. 2017; 15(3):376–383. DOI: 10.1016/j.clgc.2017.01.007. PMID: 28190704.
Article
79. Zhang Y, Li P, Yu Q, Wu S, Chen X, Zhang Q, et al. Preliminary exploration of clinical factors affecting acute toxicity and quality of life after carbon ion therapy for prostate cancer. Radiat Oncol. 2019; 14(1):94. DOI: 10.1186/s13014-019-1303-3. PMID: 31164172. PMCID: PMC6549341.
80. Maruyama K, Tsuji H, Nomiya T, Katoh H, Ishikawa H, Kamada T, et al. Five-year quality of life assessment after carbon ion radiotherapy for prostate cancer. J Radiat Res. 2017; 58(2):260–266. DOI: 10.1093/jrr/rrw122. PMID: 28043947. PMCID: PMC5439371.
Article
81. Imai R, Kamada T, Araki N; Working Group for Bone and Soft Tissue Sarcomas. Carbon ion radiation therapy for unresectable sacral chordoma: an analysis of 188 cases. Int J Radiat Oncol Biol Phys. 2016; 95(1):322–327. DOI: 10.1016/j.ijrobp.2016.02.012. PMID: 27084649.
Article
82. Imai R, Kamada T, Araki N; The Working Group for Bone and Soft-Tissue Sarcomas. Clinical efficacy of carbon ion radiotherapy for unresectable chondrosarcomas. Anticancer Res. 2017; 37(12):6959–6964. DOI: 10.21873/anticanres.12162.
83. Wu S, Li P, Cai X, Hong Z, Yu Z, Zhang Q, et al. Carbon ion radiotherapy for patients with extracranial chordoma or chondrosarcoma - initial experience from Shanghai Proton and Heavy Ion Center. J Cancer. 2019; 10(15):3315–3322. DOI: 10.7150/jca.29667. PMID: 31293634. PMCID: PMC6603407.
Article
84. Bostel T, Mattke M, Nicolay NH, Welzel T, Wollschläger D, Akbaba S, et al. High-dose carbon-ion based radiotherapy of primary and recurrent sacrococcygeal chordomas: long-term clinical results of a single particle therapy center. Radiat Oncol. 2020; 15(1):206. DOI: 10.1186/s13014-020-01647-8. PMID: 32831113. PMCID: PMC7447564.
85. Shiba S, Okamoto M, Kiyohara H, Okazaki S, Kaminuma T, Shibuya K, et al. Impact of carbon ion radiotherapy on inoperable bone sarcoma. Cancers. 2021; 13(5):1099. DOI: 10.3390/cancers13051099. PMID: 33806515. PMCID: PMC7961536.
Article
86. Matsunobu A, Imai R, Kamada T, Imaizumi T, Tsuji H, Tsujii H, et al. Impact of carbon ion radiotherapy for unresectable osteosarcoma of the trunk. Cancer. 2012; 118(18):4555–4563. DOI: 10.1002/cncr.27451. PMID: 22359113.
Article
87. Matsumoto K, Imai R, Kamada T, Maruyama K, Tsuji H, Tsujii H, et al. Impact of carbon ion radiotherapy for primary spinal sarcoma. Cancer. 2013; 119(19):3496–3503. DOI: 10.1002/cncr.28177. PMID: 23939877.
Article
88. Sugahara S, Kamada T, Imai R, Tsuji H, Kameda N, Okada T, et al. Carbon ion radiotherapy for localized primary sarcoma of the extremities: results of a phase I/II trial. Radiother Oncol. 2012; 105(2):226–231. DOI: 10.1016/j.radonc.2012.09.010. PMID: 23068710.
Article
89. Mohamad O, Imai R, Kamada T, Nitta Y, Araki N; the Working Group for Bone and Soft Tissue Sarcoma. Carbon ion radiotherapy for inoperable pediatric osteosarcoma. Oncotarget. 2018; 9(33):22976–22985. DOI: 10.18632/oncotarget.25165. PMID: 29796166. PMCID: PMC5955418.
Article
90. Combs SE, Nikoghosyan A, Jaekel O, Karger CP, Haberer T, Munter MW, et al. Carbon ion radiotherapy for pediatric patients and young adults treated for tumors of the skull base. Cancer. 2009; 115(6):1348–1355. DOI: 10.1002/cncr.24153. PMID: 19156905.
Article
91. Serizawa I, Kagei K, Kamada T, Imai R, Sugahara S, Okada T, et al. Carbon ion radiotherapy for unresectable retroperitoneal sarcomas. Int J Radiat Oncol Biol Phys. 2009; 75(4):1105–1110. DOI: 10.1016/j.ijrobp.2008.12.019. PMID: 19467578.
92. Imai R, Kamada T, Araki N; Working Group for Carbon Ion Radiotherapy for Bone and Soft Tissue Sarcomas. Carbon ion radiotherapy for unresectable localized axial soft tissue sarcoma. Cancer Med. 2018; 7(9):4308–4314. DOI: 10.1002/cam4.1679. PMID: 30030906. PMCID: PMC6143931.
Article
93. Shiba S, Okamoto M, Tashiro M, Ogawa H, Osone K, Yanagawa T, et al. Rectal dose-sparing effect with bioabsorbable spacer placement in carbon ion radiotherapy for sacral chordoma: dosimetric comparison of a simulation study. J Radiat Res. 2021; 62(3):549–555. DOI: 10.1093/jrr/rrab013. PMID: 33783533. PMCID: PMC8127650.
Article
94. Sasaki R, Demizu Y, Yamashita T, Komatsu S, Akasaka H, Miyawaki D, et al. First-in-human phase 1 study of a nonwoven fabric bioabsorbable spacer for particle therapy: space-making particle therapy (SMPT). Adv Radiat Oncol. 2019; 4(4):729–737. DOI: 10.1016/j.adro.2019.05.002. PMID: 31673666. PMCID: PMC6817542.
Article
Full Text Links
  • EMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr