1. Alanazi R. Identification and prediction of chronic diseases using machine learning approach. J Healthc Eng. 2022; 2022:2826127.
Article
2. Kumar A, Satyanarayana Reddy SS, Mahommad GB, Khan B, Sharma R. Smart healthcare: disease prediction using the cuckoo‐enabled deep classifier in IoT framework. Sci Program. 2022; 2022:2090681.
Article
3. Talukdar J, Singh TP. Early prediction of cardiovascular disease using artificial neural network. Paladyn J Behav Robot. 2023; 14:20220107.
Article
4. Tomasev N, Glorot X, Rae JW, Zielinski M, Askham H, Saraiva A, et al. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature. 2019; 572:116–9.
Article
5. Kavitha C, Mani V, Srividhya SR, Khalaf OI, Tavera Romero CA. Early-stage Alzheimer’s disease prediction using machine learning models. Front Public Health. 2022; 10:853294.
Article
6. Basu S, Sussman JB, Hayward RA. Detecting heterogeneous treatment effects to guide personalized blood pressure treatment: a modeling study of randomized clinical trials. Ann Intern Med. 2017; 166:354–60.
Article
7. Govindaraj M, Asha V, Saju B, Sagar M, Rahul. Machine learning algorithms for disease prediction analysis. In: 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT). Tirunelveli, India; 2023. p. 879-88.
8. Verma VK, Lin WY. A machine learning-based predictive model for 30-day hospital readmission prediction for COPD patients. In: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Toronto, Canada; 2020. p. 994-9.
9. Anurag, Vyas N, Sharma V, Balla D. Chronic kidney disease prediction using robust approach in machine learning. In: 2023 3rd International Conference on Innovative Sustainable Computational Technologies (CISCT). Dehradun, India; 2023. p. 1-5.
10. Pearl J. Causal inference in statistics: an overview. Stat Surv. 2009; 3:96–146.
Article
11. Prosperi M, Guo Y, Sperrin M, Koopman JS, Min JS, He X, et al. Causal inference and counterfactual prediction in machine learning for actionable healthcare. Nat Mach Intell. 2020; 2:369–75.
Article
12. Shen X, Ma S, Vemuri P, Castro MR, Caraballo PJ, Simon GJ. A novel method for causal structure discovery from EHR data and its application to type-2 diabetes mellitus. Sci Rep. 2021; 11:21025.
Article
13. Sanchez P, Voisey JP, Xia T, Watson HI, O’Neil AQ, Tsaftaris SA. Causal machine learning for healthcare and precision medicine. R Soc Open Sci. 2022; 9:220638.
Article
14. Phillips DP, Liu GC, Kwok K, Jarvinen JR, Zhang W, Abramson IS. The Hound of the Baskervilles effect: natural experiment on the influence of psychological stress on timing of death. BMJ. 2001; 323:1443–6.
Article
15. Arif S, MacNeil MA. Predictive models aren’t for causal inference. Ecol Lett. 2022; 25:1741–5.
Article
16. Breiman L. Random forests. Mach Learn. 2001; 45:5–32.
17. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci. 1997; 55:119–39.
Article
18. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995; 20:273–97.
Article
19. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998; 86:2278–324.
Article
20. Oh TR, Song SH, Choi HS, Suh SH, Kim CS, Jung JY, et al. Predictive model for high coronary artery calcium score in young patients with non-dialysis chronic kidney disease. J Pers Med. 2021; 11:1372.
Article
21. Xu Y, Hosny A, Zeleznik R, Parmar C, Coroller T, Franco I, et al. Deep learning predicts lung cancer treatment response from serial medical imaging. Clin Cancer Res. 2019; 25:3266–75.
Article
22. Linardatos P, Papastefanopoulos V, Kotsiantis S. Explainable AI: a review of machine learning interpretability methods. Entropy (Basel). 2020; 23:18.
Article
24. Ichimura H, Taber C. Propensity-score matching with instrumental variables. Am Econ Rev. 2001; 91:119–24.
Article
25. Heckman J, Navarro-Lozano S. Using matching, instrumental variables, and control functions to estimate economic choice models. Rev Econ Stat. 2004; 86:30–57.
Article
26. Hariton E, Locascio JJ. Randomised controlled trials: the gold standard for effectiveness research: Study design: randomised controlled trials. BJOG. 2018; 125:1716.
Article
27. Deaton A, Cartwright N. Understanding and misunderstanding randomized controlled trials. Soc Sci Med. 2018; 210:2–21.
Article
28. Rekkas A, Paulus JK, Raman G, Wong JB, Steyerberg EW, Rijnbeek PR, et al. Predictive approaches to heterogeneous treatment effects: a scoping review. BMC Med Res Methodol. 2020; 20:264.
Article
29. Messalas A, Kanellopoulos Y, Makris C. Model-agnostic interpretability with Shapley values. In: 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA). Patras, Greece; 2019. p. 1-7.
Article
30. Zafar MR, Khan NM. DLIME: a deterministic Local Interpretable Model-Agnostic Explanations approach for computer-aided diagnosis systems. arXiv [Preprint] 2019 Jun 24.
https://doi.org/10.48550/arXiv.1906.10263.
31. Li X, Wu R, Zhao W, Shi R, Zhu Y, Wang Z, et al. Machine learning algorithm to predict mortality in critically ill patients with sepsis-associated acute kidney injury. Sci Rep. 2023; 13:5223.
Article
32. Raghavan S, Josey K, Bahn G, Reda D, Basu S, Berkowitz SA, et al. Generalizability of heterogeneous treatment effects based on causal forests applied to two randomized clinical trials of intensive glycemic control. Ann Epidemiol. 2022; 65:101–8.
Article
34. Kutcher SA, Brophy JM, Banack HR, Kaufman JS, Samuel M. Emulating a randomised controlled trial with observational data: an introduction to the target trial framework. Can J Cardiol. 2021; 37:1365–77.
Article
35. Gianicolo EA, Eichler M, Muensterer O, Strauch K, Blettner M. Methods for evaluating causality in observational studies. Dtsch Arztebl Int. 2020; 116:101–7.
Article
36. Rasouli B, Chubak J, Floyd JS, Psaty BM, Nguyen M, Walker RL, et al. Combining high quality data with rigorous methods: emulation of a target trial using electronic health records and a nested case-control design. BMJ. 2023; 383:e072346.
Article
37. Sengupta S, Ntambwe I, Tan K, Liang Q, Paulucci D, Castellanos E, et al. Emulating randomized controlled trials with hybrid control arms in oncology: a case study. Clin Pharmacol Ther. 2023; 113:867–77.
Article