Korean J Orthod.  2024 Sep;54(5):325-341. 10.4041/kjod24.089.

Correlations of temporomandibular joint morphology and position using cone-beam computed tomography and dynamic functional analysis in orthodontic patients: A cross-sectional study

Affiliations
  • 1Department of Orthodontics, School of Dentistry, Kyung Hee University, Seoul, Korea
  • 2Department of Orthodontics, Dental Hospital, Kyung Hee University Hospital at Gangdong, Seoul, Korea

Abstract


Objective
To correlate temporomandibular joint (TMJ) morphology and position with cone-beam computed tomography (CBCT) images, Joint Vibration Analysis (JVA), and Jaw Tracker (JT) to develop a radiation-free, dynamic method for screening and monitoring the TMJ in orthodontic patients.
Methods
A total of 236 orthodontic patients without symptoms of TMJ disorders who had undergone CBCT were selected for the JVA and JT tests in this cross-sectional study. TMJ position and morphology were measured using a three-dimensional analysis software. JT measurements involved six opening–closing cycles, and JVA measurements were performed using a metronome to guide the mouth opening–closing movements of the patients. The correlations among the three measuring devices were evaluated.
Results
Abnormalities in condylar surface morphology affected the mandibular range of motion. The cut-off value results show that when various measurement groups are within a certain range, abnormalities may be observed in morphology (area under the curve, 0.81; P < 0.001). A 300/< 300 Hz ratio ≥ 0.09 suggested abnormal morphology (P < 0.05). Correlations were observed among the maximum opening velocity, maximum vertical opening position, and joint spaces in the JT measurements. Correlations were also observed between the > 300/< 300 Hz ratio, median frequency, total integral, integral < 300 Hz, and peak frequency with joint spaces in the JVA measurements.
Conclusions
JT and JVA may serve as rapid, non-invasive, and radiation-free dynamic diagnostic tools for monitoring and screening TMJ abnormalities before and during orthodontic treatment.

Keyword

Temporomandibular joint; Cone-beam computed tomography; Joint vibration analysis; Jaw tracker

Figure

  • Figure 1 Definitions of reference planes. All the radiographs were oriented in the coronal, sagittal, and axial planes. The horizontal plane (FH Plane) passes through the bilateral orbitale points and the midpoint of the bilateral porion points. The coronal plane was perpendicular to the FH plane, passing through the nasion. The sagittal plane was perpendicular to the coronal plane, passing through the nasion. Definition of the reference planes is provided by the ON3D program. FH, Frankfurt horizontal.

  • Figure 2 Landmarks and definitions of condylar reference planes. A, F, Cd-L in the axial plane; B, G, Cd-L in the coronal plane; C, H, Cd-M in the axial plane; D, I, Cd-M in the coronal plane; and E, J, the plane passing through the Cd-M and Cd-L and perpendicular to the FH plane is defined as the condylar coronal plane. The plane perpendicular to the condylar coronal and FH planes and passing through the condyle center is defined as the condylar sagittal plane. Definition of landmarks was provided by the ON3D program. Cd-L, condylar lateral pole; Cd-M, condylar medial pole; FH, Frankfurt horizontal.

  • Figure 3 Landmarks and measurements of condylar sagittal plane joint spaces. A, B, The condylar landmarks of the joint spaces in the condylar sagittal plane; C-F, measurements of the condyle in the condylar sagittal plane: anterior joint space (AJS), posterior joint space (PJS), and sagittal superior joint space (SSJS). Definition of landmarks was provided by the ON3D program. See Table 1 for definitions of each landmark or measurement.

  • Figure 4 Landmarks and measurements of condylar coronal plane joint spaces. A, B, Condylar landmarks of the joint spaces in the condylar coronal plane; C-F, measurements of the condyle in the condylar coronal plane: lateral joint space (LJS), medial joint space (MJS), and coronal superior joint space (CSJS). Definition of landmarks was provided by the ON3D program. See Table 1 for definitions of each landmark or measurement.

  • Figure 5 Condylar surface morphology. A, Normal, no changes; B, flattening, a flat bony contour deviating from the convex form; C, osteophytes, marginal bony outgrowths on the condyle; D, surface erosion, an area of decreased density of the cortical bone and adjacent subcortical bone; E, sclerosis, increased density of the cortical plate or bone under the cortical plate; and F, pseudocysts, osteolytic, well-delimited changes localized in the subcortical area.

  • Figure 6 Multiple measurement group’s workflow chart for judging condylar surface abnormality.


Reference

1. Adèrn B, Stenvinkel C, Sahlqvist L, Tegelberg Å. 2014; Prevalence of temporomandibular dysfunction and pain in adult general practice patients. Acta Odontol Scand. 72:585–90. https://doi.org/10.3109/00016357.2013.878390. DOI: 10.3109/00016357.2013.878390. PMID: 24866918.
2. de Leeuw R, Klasser GD. 2013. Orofacial pain: guidelines for assessment, diagnosis, and management. 5th ed. Quintessence Publishing Co.;Chicago: https://www.amazon.com/Orofacial-Pain-Guidelines-Assessment-Management/dp/0867156104. DOI: 10.1097/00008505-199600540-00043.
3. Talaat W, Al Bayatti S, Al Kawas S. 2016; CBCT analysis of bony changes associated with temporomandibular disorders. Cranio. 34:88–94. https://doi.org/10.1179/2151090315y.0000000002. DOI: 10.1179/2151090315Y.0000000002.
4. Kandasamy S, Greene CS, Rinchuse DJ, Stockstill JW. 2015. TMD and orthodontics: a clinical guide for the orthodontist. Springer;Cham: https://search.worldcat.org/ko/title/918983957. DOI: 10.1007/978-3-319-19782-1.
5. Mohlin B, Axelsson S, Paulin G, Pietilä T, Bondemark L, Brattström V, et al. 2007; TMD in relation to malocclusion and orthodontic treatment. Angle Orthod. 77:542–8. https://doi.org/10.2319/0003-3219(2007)077[0542:Tirtma]2.0.Co;2. DOI: 10.2319/0003-3219(2007)077[0542:TIRTMA]2.0.CO;2.
6. Fernández-González FJ, Cañigral A, López-Caballo JL, Brizuela A, Moreno-Hay I, Del Río-Highsmith J, et al. 2015; Influence of orthodontic treatment on temporomandibular disorders. A systematic review. J Clin Exp Dent. 7:e320–7. https://doi.org/10.4317/jced.52037. DOI: 10.4317/jced.52037. PMID: 26155354. PMCID: PMC4483345.
7. Leite RA, Rodrigues JF, Sakima MT, Sakima T. 2013; Relationship between temporomandibular disorders and orthodontic treatment: a literature review. Dental Press J Orthod. 18:150–7. https://doi.org/10.1590/s2176-94512013000100027. DOI: 10.1590/S2176-94512013000100027.
8. Wyatt WE. 1987; Preventing adverse effects on the temporomandibular joint through orthodontic treatment. Am J Orthod Dentofacial Orthop. 91:493–9. https://doi.org/10.1016/0889-5406(87)90006-0. DOI: 10.1016/0889-5406(87)90006-0.
9. Derwich M, Mitus-Kenig M, Pawlowska E. 2020; Interdisciplinary approach to the temporomandibular joint osteoarthritis-review of the literature. Medicina (Kaunas). 56:225. https://doi.org/10.3390/medicina56050225. DOI: 10.3390/medicina56050225. PMID: 155a792dd60744d0b1dcff177335e078.
10. Radke JC, Kamyszek GJ, Kull RS, Velasco GR. 2019; TMJ symptoms reduce chewing amplitude and velocity, and increase variability. Cranio. 37:12–9. https://doi.org/10.1080/08869634.2017.1365421. DOI: 10.1080/08869634.2017.1365421.
11. Huang ZS, Lin XF, Li XL. 2011; Characteristics of temporomandibular joint vibrations in anterior disk displacement with reduction in adults. Cranio. 29:276–83. https://doi.org/10.1179/crn.2011.041. DOI: 10.1179/crn.2011.041.
12. Sutter B, Radke J. 2020; The complementary diagnostic relationship between jaw tracking and MR Imaging. Adv Dent Tech. 12067. https://adtt.scholasticahq.com/article/12067-the-complementary-diagnostic-relationship-between-jaw-tracking-and-mr-imaging.
13. Celic R, Jerolimov V, Knezovic Zlataric D. 2004; Relationship of slightly limited mandibular movements to temporomandibular disorders. Braz Dent J. 15:151–4. https://doi.org/10.1590/s0103-64402004000200012. DOI: 10.1590/S0103-64402004000200012.
14. Look JO, Schiffman EL, Truelove EL, Ahmad M. 2010; Reliability and validity of Axis I of the research Diagnostic Criteria For Temporomandibular Disorders (RDC/TMD) with proposed revisions. J Oral Rehabil. 37:744–59. https://doi.org/10.1111/j.1365-2842.2010.02121.x. DOI: 10.1111/j.1365-2842.2010.02121.x. PMID: 20663019. PMCID: PMC3133763.
15. Schiffman E, Ohrbach R, Truelove E, Look J, Anderson G, Goulet JP, et al. 2014; Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) for Clinical and Research Applications: recommendations of the International RDC/TMD Consortium Network* and Orofacial Pain Special Interest Group†. J Oral Facial Pain Headache. 28:6–27. https://doi.org/10.11607/jop.1151. DOI: 10.11607/jop.1151.
16. Woodford SC, Robinson DL, Mehl A, Lee PVS, Ackland DC. 2020; Measurement of normal and pathological mandibular and temporomandibular joint kinematics: a systematic review. J Biomech. 111:109994. https://doi.org/10.1016/j.jbiomech.2020.109994. DOI: 10.1016/j.jbiomech.2020.109994. PMID: 32971491.
17. Barão VA, Gallo AK, Zuim PR, Garcia AR, Assunção WG. 2011; Effect of occlusal splint treatment on the temperature of different muscles in patients with TMD. J Prosthodont Res. 55:19–23. https://doi.org/10.1016/j.jpor.2010.06.001. DOI: 10.1016/j.jpor.2010.06.001.
18. Matsubara R, Yanagi Y, Oki K, Hisatomi M, Santos KC, Bamgbose BO, et al. 2018; Assessment of MRI findings and clinical symptoms in patients with temporomandibular joint disorders. Dentomaxillofac Radiol. 47:20170412. https://doi.org/10.1259/dmfr.20170412. DOI: 10.1259/dmfr.20170412. PMID: 29451403. PMCID: PMC5991762.
19. Jeon KJ, Kim YH, Ha EG, Choi HS, Ahn HJ, Lee JR, et al. 2022; Quantitative analysis of the mouth opening movement of temporomandibular joint disorder patients according to disc position using computer vision: a pilot study. Quant Imaging Med Surg. 12:1909–18. https://doi.org/10.21037/qims-21-629. DOI: 10.21037/qims-21-629. PMID: 35284273. PMCID: PMC8899952.
20. Henderson SE, Tudares MA, Tashman S, Almarza AJ. 2015; Decreased temporomandibular joint range of motion in a model of early osteoarthritis in the rabbit. J Oral Maxillofac Surg. 73:1695–705. https://doi.org/10.1016/j.joms.2015.03.042. DOI: 10.1016/j.joms.2015.03.042.
21. Cömert Kiliç S, Kiliç N, Sümbüllü MA. 2015; Temporomandibular joint osteoarthritis: cone beam computed tomography findings, clinical features, and correlations. Int J Oral Maxillofac Surg. 44:1268–74. https://doi.org/10.1016/j.ijom.2015.06.023. DOI: 10.1016/j.ijom.2015.06.023.
22. Lee YH, Hong IK, An JS. 2019; Anterior joint space narrowing in patients with temporomandibular disorder. J Orofac Orthop. 80:116–27. https://doi.org/10.1007/s00056-019-00172-y. DOI: 10.1007/s00056-019-00172-y.
23. Muto T, Kanazawa M. 1996; The relationship between maximal jaw opening and size of skeleton: a cephalometric study. J Oral Rehabil. 23:22–4. https://doi.org/10.1111/j.1365-2842.1996.tb00807.x. DOI: 10.1111/j.1365-2842.1996.tb00807.x.
24. Dijkstra PU, de Bont LG, Stegenga B, Boering G. 1995; Temporomandibular joint mobility assessment: a comparison between four methods. J Oral Rehabil. 22:439–44. https://doi.org/10.1111/j.1365-2842.1995.tb00798.x. DOI: 10.1111/j.1365-2842.1995.tb00798.x.
25. Fukui T, Tsuruta M, Murata K, Wakimoto Y, Tokiwa H, Kuwahara Y. 2002; Correlation between facial morphology, mouth opening ability, and condylar movement during opening-closing jaw movements in female adults with normal occlusion. Eur J Orthod. 24:327–36. https://doi.org/10.1093/ejo/24.4.327. DOI: 10.1093/ejo/24.4.327.
26. Tamimi DF, Hatcher D. 2016. Specialty imaging: temporomandibular joint. Elsevier;Philadelphia: https://search.worldcat.org/ko/title/956278042.
27. Liu ZJ, Wang HY, Pu WY. 1989; A comparative electromyographic study of the lateral pterygoid muscle and arthrography in patients with temporomandibular joint disturbance syndrome sounds. J Prosthet Dent. 62:229–33. https://doi.org/10.1016/0022-3913(89)90319-3. DOI: 10.1016/0022-3913(89)90319-3.
28. Gage JP. 1985; Collagen biosynthesis related to temporomandibular joint clicking in childhood. J Prosthet Dent. 53:714–7. https://doi.org/10.1016/0022-3913(85)90030-7. DOI: 10.1016/0022-3913(85)90030-7.
29. Čimić S, Žaja M, Kraljević Šimunković S, Kopić M, Ćatić A. 2016; Influence of occlusal interference on the mandibular condylar position. Acta Stomatol Croat. 50:116–21. https://doi.org/10.1564/asc50/2/3. DOI: 10.15644/asc50/2/3. PMID: 27789908. PMCID: PMC5080563. PMID: 5a1a7a1c181b4d4e88dc4c608287660a.
30. Harris MD, Van Sickels JE, Alder M. 1999; Factors influencing condylar position after the bilateral sagittal split osteotomy fixed with bicortical screws. J Oral Maxillofac Surg. 57:650–4. discussion 654–5. https://doi.org/10.1016/s0278-2391(99)90422-6. DOI: 10.1016/S0278-2391(99)90422-6.
31. Schellhas KP, Wilkes CH. 1989; Temporomandibular joint inflammation: comparison of MR fast scanning with T1- and T2-weighted imaging techniques. AJR Am J Roentgenol. 153:93–8. https://doi.org/10.2214/ajr.153.1.93. DOI: 10.2214/ajr.153.1.93.
32. Oberg T, Carlsson GE, Fajers CM. 1971; The temporomandibular joint. A morphologic study on a human autopsy material. Acta Odontol Scand. 29:349–84. https://doi.org/10.3109/00016357109026526. DOI: 10.3109/00016357109026526.
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr