Ann Lab Med.  2024 Sep;44(5):450-454. 10.3343/alm.2023.0430.

Prevalence and Molecular Characterization of Vancomycin Variable Enterococcus faecium Isolated From Clinical Specimens

Affiliations
  • 1Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
  • 2Department of Biochemistry, Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, Korea
  • 3Department of Laboratory Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
  • 4Infectious Disease Laboratory Research Center, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
  • 5Department of Health and Safety Convergence Science, Graduate School, Korea University, Seoul, Korea

Abstract

Vancomycin variable Enterococcus (VVE) bacteria are phenotypically susceptible to vancomycin, but they harbor the vanA gene. We aimed to ascertain the prevalence of VVE among clinically isolated vancomycin-susceptible Enterococcus faecium (VSE) isolates, as well as elucidate the molecular characteristics of the vanA gene cluster within these isolates. Notably, we investigated the prevalence and structure of the vanA gene cluster of VVE. Between June 2021 and May 2022, we collected consecutive, non-duplicated vancomycin-susceptible Enterococcus faecium (VSE) samples. Real-time PCR was performed to detect the presence of vanA, vanB, and vanC. Overlapping PCR with sequencing and whole -genome sequencing were performed for structural analysis. Sequence types (STs) were determined by multilocus sequence typing. Exposure testing was performed to assess the ability of the isolates to acquire vancomycin resistance. Among 282 VSE isolates tested, 20 isolates (7.1%) were VVE. Among them, 17 isolates had partial deletions in the IS1216 or IS1542 sequences in vanS (N = 10), vanR (N = 5), or vanH (N = 2). All VVE isolates belonged to the CC17 complex and comprised five STs, namely ST17 (40.0%), ST1421 (25.0%), ST80 (25.0%), ST787 (5.0%), and ST981 (5.0%). Most isolates were related to three hospital-associated clones (ST17, ST1421, and ST80). After vancomycin exposure, 18 of the 20 VVEs acquired vancomycin resistance. Considering the high reversion rate, detecting VVE by screening VSE for vanA is critical for appropriate treatment and infection control.

Keyword

Multilocus sequence typing; Prevalence; Reversion; ST1421; Vancomycin variable enterococci; Whole-genome sequencing

Reference

References

1. Wagner TM, Janice J, Sivertsen A, Sjögren I, Sundsfjord A, Hegstad K. 2021; Alternative vanHAX promoters and increased vanA-plasmid copy number resurrect silenced glycopeptide resistance in Enterococcus faecium. J Antimicrob Chemother. 76:876–82. DOI: 10.1093/jac/dkaa541. PMID: 33367710. PMCID: PMC7953315.
2. Azzam A, Elkafas H, Khaled H, Ashraf A, Yousef M, Elkashef AA. 2023; Prevalence of vancomycin-resistant enterococci (VRE) in Egypt (2010-2022): a systematic review and meta-analysis. J Egypt Public Health Assoc. 98:8. DOI: 10.1186/s42506-023-00133-9. PMID: 37037955. PMCID: PMC10086090. PMID: d58864063564431b8e3efb86079d409c.
Article
3. Arthur M, Courvalin P. 1993; Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob Agents Chemother. 37:1563–71. DOI: 10.1128/AAC.37.8.1563. PMID: 8215264. PMCID: PMC188020.
Article
4. Gagnon S, Lévesque S, Lefebvre B, Bourgault AM, Labbé AC, Roger M. 2011; vanA-containing Enterococcus faecium susceptible to vancomycin and teicoplanin because of major nucleotide deletions in Tn1546. J Antimicrob Chemother. 66:2758–62. DOI: 10.1093/jac/dkr379. PMID: 21926081.
5. Thaker MN, Kalan L, Waglechner N, Eshaghi A, Patel SN, Poutanen S, et al. 2015; Vancomycin-variable enterococci can give rise to constitutive resistance during antibiotic therapy. Antimicrob Agents Chemother. 59:1405–10. DOI: 10.1128/AAC.04490-14. PMID: 25512425. PMCID: PMC4325790.
Article
6. CLSI. 2023. Performance standards for antimicrobial susceptibility testing. 33rd ed. Clinical and Laboratory Standards Institute;Wayne, PA: CLSI M100. DOI: 10.1016/s0196-4399(01)88009-0.
7. Huh JY, Lee WG, Lee K, Shin WS, Yoo JH. 2004; Distribution of insertion sequences associated with Tn1546-like elements among Enterococcus faecium isolates from patients in Korea. J Clin Microbiol. 42:1897–902. DOI: 10.1128/JCM.42.5.1897-1902.2004. PMID: 15131146. PMCID: PMC404624.
Article
8. Homan WL, Tribe D, Poznanski S, Li M, Hogg G, Spalburg E, et al. 2002; Multilocus sequence typing scheme for Enterococcus faecium. J Clin Microbiol. 40:1963–71. DOI: 10.1128/JCM.40.6.1963-1971.2002. PMID: 12037049. PMCID: PMC130786.
Article
9. Jung YH, Lee YS, Lee SY, Yoo JS, Yoo JI, Kim HS, et al. 2014; Structure and transfer of the vanA cluster in vanA-positive, vancomycin-susceptible Enterococcus faecium, and its revertant mutant. Diagn Microbiol Infect Dis. 80:148–50. DOI: 10.1016/j.diagmicrobio.2014.06.012. PMID: 25139845.
10. Viswanath LS, Sugumar M, Chandra Murthy Peela S, Walia K, Sistla S. 2022; Detection of vancomycin variable enterococci (VVE) among clinical isolates of Enterococcus faecium collected across India-first report from the subcontinent. Indian J Med Microbiol. 40:285–8. DOI: 10.1016/j.ijmmb.2021.12.011. PMID: 34996658.
11. Sivertsen A, Pedersen T, Larssen KW, Bergh K, Rønning TG, Radtke A, et al. 2016; A silenced vanA gene cluster on a transferable plasmid caused an outbreak of vancomycin-variable enterococci. Antimicrob Agents Chemother. 60:4119–27. DOI: 10.1128/AAC.00286-16. PMID: 27139479. PMCID: PMC4914660.
Article
12. Kohler P, Eshaghi A, Kim HC, Plevneshi A, Green K, Willey BM, et al. 2018; Prevalence of vancomycin-variable Enterococcus faecium (VVE) among vanA-positive sterile site isolates and patient factors associated with VVE bacteremia. PLoS One. 13:e0193926. DOI: 10.1371/journal.pone.0193926. PMID: 29566004. PMCID: PMC5863957. PMID: 3e15c85315814e72b55ac17c826be59b.
13. O'Toole RF, Leong KWC, Cumming V, Van Hal SJ. 2023; Vancomycin-resistant Enterococcus faecium and the emergence of new sequence types associated with hospital infection. Res Microbiol. 174:104046. DOI: 10.1016/j.resmic.2023.104046. PMID: 36858192.
14. Kim JW, Lee KJ. 2023; Development of a single-nucleotide polymorphism genotyping assay for the rapid detection of vancomycin-intermediate resistance in Staphylococcus aureus epidemic lineage ST5. Ann Lab Med. 43:355–63. DOI: 10.3343/alm.2023.43.4.355. PMID: 36843404. PMCID: PMC9989536.
15. Saito N, Kitazawa J, Horiuchi H, Yamamoto T, Kimura M, Inoue F, et al. 2022; Interhospital transmission of vancomycin-resistant Enterococcus faecium in Aomori, Japan. Antimicrob Resist Infect Control. 11:99. DOI: 10.1186/s13756-022-01136-5. PMID: 35871001. PMCID: PMC9308179. PMID: 44853222e16d4a408d3f42ed2b9734f4.
16. Hansen TA, Pedersen MS, Nielsen LG, Ma CMG, Søes LM, Worning P, et al. 2018; Emergence of a vancomycin-variable Enterococcus faecium ST1421 strain containing a deletion in vanX. J Antimicrob Chemother. 73:2936–40. DOI: 10.1093/jac/dky308. PMID: 30113682.
17. Wagner TM, Janice J, Schulz M, Ballard SA, da Silva AG, Coombs GW, et al. 2023; Reversible vancomycin susceptibility within emerging ST1421 Enterococcus faecium strains is associated with rearranged vanA-gene clusters and increased vanA plasmid copy number. Int J Antimicrob Agents. 62:106849. DOI: 10.1016/j.ijantimicag.2023.106849. PMID: 37187337.
18. Dimitriu T, Matthews AC, Buckling A. 2021; Increased copy number couples the evolution of plasmid horizontal transmission and plasmid-encoded antibiotic resistance. Proc Natl Acad Sci U S A. 118:e2107818118. DOI: 10.1073/pnas.2107818118. PMID: 34326267. PMCID: PMC8346908.
Article
19. Sun L, Qu T, Wang D, Chen Y, Fu Y, Yang Q, et al. 2019; Characterization of vanM carrying clinical Enterococcus isolates and diversity of the suppressed vanM gene cluster. Infect Genet Evol. 68:145–52. DOI: 10.1016/j.meegid.2018.12.015. PMID: 30553064.
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr