1. Nguyen L, Garcia J, Gruenberg K, MacDougall C. 2018; Multidrug-resistant
Pseudomonas infections: hard to treat, but hope on the horizon? Curr Infect Dis Rep. 20:23. DOI:
10.1007/s11908-018-0629-6. PMID:
29876674.
2. Shortridge D, Gales AC, Streit JM, Huband MD, Tsakris A, Jones RN. 2019; Geographic and temporal patterns of antimicrobial resistance in
Pseudomonas aeruginosa over 20 years from the SENTRY Antimicrobial Surveillance Program, 1997-2016. Open Forum Infect Dis. 6:S63–8. DOI:
10.1093/ofid/ofy343. PMID:
30895216. PMCID:
PMC6419917.
3. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. 2009; Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 48:1–12. DOI:
10.1086/595011. PMID:
19035777.
Article
4. Botelho J, Grosso F, Peixe L. 2019; Antibiotic resistance in
Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution. Drug Resist Updat. 44:100640. DOI:
10.1016/j.drup.2019.07.002. PMID:
31492517.
5. Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, et al. 2019; Epidemiology and treatment of multidrug-resistant and extensively drug-resistant
Pseudomonas aeruginosa infections. Clin Microbiol Rev. 32:e00031–19. DOI:
10.1128/CMR.00031-19. PMID:
31462403. PMCID:
PMC6730496.
6. del Barrio-Tofiño E, López-Causapé C, Oliver A. 2020;
Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. Int J Antimicrob Agents. 56:106196. DOI:
10.1016/j.ijantimicag.2020.106196. PMID:
33045347.
7. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. 2018; Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 18:318–27. DOI:
10.1016/S1473-3099(17)30753-3. PMID:
29276051.
8. Breidenstein EBM, de la Fuente-Núñez C, Hancock REW. 2011;
Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 19:419–26. DOI:
10.1016/j.tim.2011.04.005. PMID:
21664819.
9. Li H, Luo YF, Williams BJ, Blackwell TS, Xie CM. 2012; Structure and function of OprD protein in
Pseudomonas aeruginosa: from antibiotic resistance to novel therapies. Int J Med Microbiol. 302:63–8. DOI:
10.1016/j.ijmm.2011.10.001. PMID:
22226846. PMCID:
PMC3831278.
10. Diene SM, Rolain JM. 2014; Carbapenemase genes and genetic platforms in Gram-negative bacilli:
Enterobacteriaceae,
Pseudomonas and
Acinetobacter species. Clin Microbiol Infect. 20:831–8. DOI:
10.1111/1469-0691.12655. PMID:
24766097.
13. Lister PD, Wolter DJ, Hanson ND. 2009; Antibacterial-resistant
Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 22:582–610. DOI:
10.1128/CMR.00040-09. PMID:
19822890. PMCID:
PMC2772362.
Article
14. Farra A, Islam S, Stralfors A, Sorberg M, Wretlind B. 2008; Role of outer membrane protein OprD and penicillin-binding proteins in resistance of
Pseudomonas aeruginosa to imipenem and meropenem. Int J Antimicrob Agents. 31:427–33. DOI:
10.1016/j.ijantimicag.2007.12.016. PMID:
18375104.
15. Rodríguez-Martínez JM, Poirel L, Nordmann P. 2009; Molecular epidemiology and mechanisms of carbapenem resistance in
Pseudomonas aeruginosa. Antimicrob Agents Chemother. 53:4783–8. DOI:
10.1128/AAC.00574-09. PMID:
19738025. PMCID:
PMC2772299.
16. Oliver A, Mulet X, López-Causapé C, Juan C. 2015; The increasing threat of
Pseudomonas aeruginosa high-risk clones. Drug Resist Updat. 21-22:41–59. DOI:
10.1016/j.drup.2015.08.002. PMID:
26304792.
17. Treepong P, Kos VN, Guyeux C, Blanc DS, Bertrand X, Valot B, et al. 2018; Global emergence of the widespread
Pseudomonas aeruginosa ST235 clone. Clin Microbiol Infect. 24:258–66. DOI:
10.1016/j.cmi.2017.06.018. PMID:
28648860.
18. Cho HH, Kwon GC, Kim S, Koo SH. 2015; Distribution of
Pseudomonas-derived cephalosporinase and metallo-β-lactamases in carbapenem-resistant
Pseudomonas aeruginosa isolates from Korea. J Microbiol Biotechnol. 25:1154–62. DOI:
10.4014/jmb.1503.03065. PMID:
25907063.
19. Kim CH, Kang HY, Kim BR, Jeon H, Lee YC, Lee SH, et al. 2016; Mutational inactivation of OprD in carbapenem-resistant
Pseudomonas aeruginosa isolates from Korean hospitals. J Microbiol. 54:44–9. DOI:
10.1007/s12275-016-5562-5. PMID:
26727901.
20. Park Y, Koo SH. 2022; Epidemiology, molecular characteristics, and virulence factors of carbapenem-resistant
Pseudomonas aeruginosa isolated from patients with urinary tract infections. Infect Drug Resist. 15:141–51. DOI:
10.2147/IDR.S346313. PMID:
35058697. PMCID:
PMC8765443.
21. CLSI. 2020. Performance standards for antimicrobial susceptibility testing. 30th ed. Clinical and Laboratory Standards Institute;Wayne, PA: CLSI M100. DOI:
10.1016/s0196-4399(01)88009-0.
22. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. 2012; Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 18:268–81. DOI:
10.1111/j.1469-0691.2011.03570.x. PMID:
21793988.
Article
24. Fournier D, Richardot C, Müller E, Robert-Nicoud M, Llanes C, Plésiat P, et al. 2013; Complexity of resistance mechanisms to imipenem in intensive care unit strains of
Pseudomonas aeruginosa. J Antimicrob Chemother. 68:1772–80. DOI:
10.1093/jac/dkt098. PMID:
23587654.
25. Mendes RE, Kiyota KA, Monteiro J, Castanheira M, Andrade SS, Gales AC, et al. 2007; Rapid detection and identification of metallo-β-lactamase-encoding genes by multiplex real-time PCR assay and melt curve analysis. J Clin Microbiol. 45:544–7. DOI:
10.1128/JCM.01728-06. PMID:
17093019. PMCID:
PMC1829038.
Article
26. Monteiro J, Widen RH, Pignatari AC, Kubasek C, Silbert S. 2012; Rapid detection of carbapenemase genes by multiplex real-time PCR. J Antimicrob Chemother. 67:906–9. DOI:
10.1093/jac/dkr563. PMID:
22232516.
Article
27. Asghar A, Ahmed O. 2018; Prevalence of aminoglycoside resistance genes in
Pseudomonas aeruginosa isolated from a tertiary care hospital in Makkah, KSA. Clin Pract. 15:541–7. DOI:
10.4172/clinical-practice.1000391.
28. Kawahara R, Watahiki M, Matsumoto Y, Uchida K, Noda M, Masuda K, et al. 2021; Subtype screening of
blaIMP genes using bipartite primers for DNA sequencing. Jpn J Infect Dis. 74:592–9. DOI:
10.7883/yoken.JJID.2020.926. PMID:
33790070.
Article
29. Fiett J, Baraniak A, Mrówka A, Fleischer M, Drulis-Kawa Z, Naumiuk L, et al. 2006; Molecular epidemiology of acquired-metallo-β-lactamase-producing bacteria in Poland. Antimicrob Agents Chemother. 50:880–6. DOI:
10.1128/AAC.50.3.880-886.2006. PMID:
16495246. PMCID:
PMC1426447.
Article
30. Juan C, Moyá B, Pérez JL, Oliver A. 2006; Stepwise upregulation of the
Pseudomonas aeruginosa chromosomal cephalosporinase conferring high-level β-lactam resistance involves three AmpD homologues. Antimicrob Agents Chemother. 50:1780–7. DOI:
10.1128/AAC.50.5.1780-1787.2006. PMID:
16641450. PMCID:
PMC1472203.
Article
31. Livak KJ, Schmittgen TD. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods. 25:402–8. DOI:
10.1006/meth.2001.1262. PMID:
11846609.
Article
32. Cho HH, Kwon KC, Kim S, Koo SH. 2014; Correlation between virulence genotype and fluoroquinolone resistance in carbapenem-resistant
Pseudomonas aeruginosa. Ann Lab Med. 34:286–92. DOI:
10.3343/alm.2014.34.4.286. PMID:
24982833. PMCID:
PMC4071185.
Article
33. Hong JS, Kim JO, Lee H, Bae IK, Jeong SH, Lee K. 2015; Characteristics of metallo-β-lactamase-producing
Pseudomonas aeruginosa in Korea. Infect Chemother. 47:33–40. DOI:
10.3947/ic.2015.47.1.33. PMID:
25844261. PMCID:
PMC4384452.
Article
34. Lee JY, Peck KR, Ko KS. 2013; Selective advantages of two major clones of carbapenem-resistant
Pseudomonas aeruginosa isolates (CC235 and CC641) from Korea: antimicrobial resistance, virulence and biofilm-forming activity. J Med Microbiol. 62:1015–24. DOI:
10.1099/jmm.0.055426-0. PMID:
23558139.
35. Hammoudi Halat D, Ayoub Moubareck C. 2022; The Intriguing carbapenemases of Pseudomonas aeruginosa: current status, genetic profile, and global epidemiology. Yale J Biol Med. 95:507–15.
36. Bae IK, Suh B, Jeong SH, Wang KK, Kim YR, Yong D, et al. 2014; Molecular epidemiology of
Pseudomonas aeruginosa clinical isolates from Korea producing β-lactamases with extended-spectrum activity. Diagn Microbiol Infect Dis. 79:373–7. DOI:
10.1016/j.diagmicrobio.2014.03.007. PMID:
24792837.
37. Choi YJ, Kim YA, Junglim K, Jeong SH, Shin JH, Shin KS, et al. 2023; Emergence of NDM-1-producing
Pseudomonas aeruginosa sequence type 773 clone: shift of carbapenemase molecular epidemiology and spread of 16S rRNA methylase genes in Korea. Ann Lab Med. 43:196–9. DOI:
10.3343/alm.2023.43.2.196. PMID:
36281514. PMCID:
PMC9618910.
Article
38. Hong JS, Song W, Park MJ, Jeong S, Lee N, Jeong SH. 2021; Molecular characterization of the first emerged NDM-1-producing
Pseudomonas aeruginosa isolates in South Korea. Microb Drug Resist. 27:1063–70. DOI:
10.1089/mdr.2020.0374. PMID:
33332204.