1. Song D, Fang G, Greenberg H, Liu SF. 2015; Chronic intermittent hypoxia exposure-induced atherosclerosis: a brief review. Immunol Res. 63:121–130. DOI:
10.1007/s12026-015-8703-8. PMID:
26407987.
2. Li MM, Zheng YL, Wang WD, Lin S, Lin HL. 2021; Neuropeptide Y: an update on the mechanism underlying chronic intermittent hypoxia-induced endothelial dysfunction. Front Physiol. 12:712281. DOI:
10.3389/fphys.2021.712281. PMID:
34512386. PMCID:
PMC8430344.
3. Oyarce MP, Iturriaga R. 2018; Contribution of oxidative stress and inflammation to the neurogenic hypertension induced by intermittent hypoxia. Front Physiol. 9:893. DOI:
10.3389/fphys.2018.00893. PMID:
30050461. PMCID:
PMC6050421.
4. Marciante AB, Shell B, Farmer GE, Cunningham JT. 2021; Role of angiotensin II in chronic intermittent hypoxia-induced hypertension and cognitive decline. Am J Physiol Regul Integr Comp Physiol. 320:R519–R525. DOI:
10.1152/ajpregu.00222.2020. PMID:
33595364. PMCID:
PMC8238144.
5. Chen L, Guo QH, Chang Y, Zhao YS, Li AY, Ji ES. 2017; Tanshinone IIA ameliorated endothelial dysfunction in rats with chronic intermittent hypoxia. Cardiovasc Pathol. 31:47–53. DOI:
10.1016/j.carpath.2017.06.008. PMID:
28985491.
6. Yang YY, Yu HH, Jiao XL, Li LY, Du YH, Li J, Lv QW, Zhang HN, Zhang J, Hu CW, Zhang XP, Wei YX, Qin YW. 2021; Angiopoietin-like proteins 8 knockout reduces intermittent hypoxia-induced vascular remodeling in a murine model of obstructive sleep apnea. Biochem Pharmacol. 186:114502. DOI:
10.1016/j.bcp.2021.114502. PMID:
33684391.
8. Chen G, Li Q, Webb TI, Hollywood MA, Yan J. 2023; BK channel modulation by positively charged peptides and auxiliary γ subunits mediated by the Ca2+-bowl site. J Gen Physiol. 155:e202213237. DOI:
10.1085/jgp.202213237. PMID:
37130264. PMCID:
PMC10163825.
9. Sachse G, Faulhaber J, Seniuk A, Ehmke H, Pongs O. 2014; Smooth muscle BK channel activity influences blood pressure independent of vascular tone in mice. J Physiol. 592:2563–2574. DOI:
10.1113/jphysiol.2014.272880. PMID:
24687584. PMCID:
PMC4080938.
10. Granados ST, Latorre R, Torres YP. 2021; The membrane cholesterol modulates the interaction between 17-βEstradiol and the BK channel. Front Pharmacol. 12:687360. DOI:
10.3389/fphar.2021.687360. PMID:
34177597. PMCID:
PMC8226216.
11. Hu XQ, Xiao D, Zhu R, Huang X, Yang S, Wilson SM, Zhang L. 2012; Chronic hypoxia suppresses pregnancy-induced upregulation of large-conductance Ca2+-activated K+ channel activity in uterine arteries. Hypertension. 60:214–222. DOI:
10.1161/HYPERTENSIONAHA.112.196097. PMID:
22665123. PMCID:
PMC3562497.
12. Ochoa SV, Otero L, Aristizabal-Pachon AF, Hinostroza F, Carvacho I, Torres YP. 2021; Hypoxic regulation of the large-conductance, calcium and voltage-activated potassium channel, BK. Front Physiol. 12:780206. DOI:
10.3389/fphys.2021.780206. PMID:
35002762. PMCID:
PMC8727448.
13. Tjong YW, Li M, Hung MW, Wang K, Fung ML. 2008; Nitric oxide deficit in chronic intermittent hypoxia impairs large conductance calcium-activated potassium channel activity in rat hippocampal neurons. Free Radic Biol Med. 44:547–557. DOI:
10.1016/j.freeradbiomed.2007.10.033. PMID:
17996205.
14. Hu XQ, Huang X, Xiao D, Zhang L. 2016; Direct effect of chronic hypoxia in suppressing large conductance Ca(2+)-activated K(+) channel activity in ovine uterine arteries via increasing oxidative stress. J Physiol. 594:343–356. DOI:
10.1113/JP271626. PMID:
26613808. PMCID:
PMC4713733.
15. Yan YR, Zhang L, Lin YN, Sun XW, Ding YJ, Li N, Li HP, Li SQ, Zhou JP, Li QY. 2021; Chronic intermittent hypoxia-induced mitochondrial dysfunction mediates endothelial injury via the TXNIP/NLRP3/IL-1β signaling pathway. Free Radic Biol Med. 165:401–410. DOI:
10.1016/j.freeradbiomed.2021.01.053. PMID:
33571641.
16. Ning FL, Tao J, Li DD, Tian LL, Wang ML, Reilly S, Liu C, Cai H, Xin H, Zhang XM. 2022; Activating BK channels ameliorates vascular smooth muscle calcification through Akt signaling. Acta Pharmacol Sin. 43:624–633. DOI:
10.1038/s41401-021-00704-6. PMID:
34163023. PMCID:
PMC8888620.
17. Gu Y, Yu X, Li X, Wang X, Gao X, Wang M, Wang S, Li X, Zhang Y. 2019; Inhibitory effect of mabuterol on proliferation of rat ASMCs induced by PDGF-BB via regulating [Ca
2+]i and mitochondrial fission/fusion. Chem Biol Interact. 307:63–72. DOI:
10.1016/j.cbi.2019.04.023. PMID:
31009640.
18. Li JR, Zhao YS, Chang Y, Yang SC, Guo YJ, Ji ES. 2018; Fasudil improves endothelial dysfunction in rats exposed to chronic intermittent hypoxia through RhoA/ROCK/NFATc3 pathway. PLoS One. 13:e0195604. DOI:
10.1371/journal.pone.0195604. PMID:
29641598. PMCID:
PMC5895022.
19. Zhu J, Kang J, Li X, Wang M, Shang M, Luo Y, Xiong M, Hu K. 2020; Chronic intermittent hypoxia vs chronic continuous hypoxia: effects on vascular endothelial function and myocardial contractility. Clin Hemorheol Microcirc. 74:417–427. DOI:
10.3233/CH-190706. PMID:
31683472.
20. Rong Y, Wu Q, Tang J, Liu Z, Lv Q, Ye X, Dong Y, Zhang Y, Li G, Wang S. 2022; Danlou tablet may alleviate vascular injury caused by chronic intermittent hypoxia through regulating FIH-1, HIF-1, and Angptl4. Evid Based Complement Alternat Med. 2022:4463108. DOI:
10.1155/2022/4463108. PMID:
36285165. PMCID:
PMC9588356.
21. Knight WD, Little JT, Carreno FR, Toney GM, Mifflin SW, Cunningham JT. 2011; Chronic intermittent hypoxia increases blood pressure and expression of FosB/DeltaFosB in central autonomic regions. Am J Physiol Regul Integr Comp Physiol. 301:R131–R139. DOI:
10.1152/ajpregu.00830.2010. PMID:
21543638. PMCID:
PMC3129875.
22. Coelho NR, Tomkiewicz C, Correia MJ, Gonçalves-Dias C, Barouki R, Pereira SA, Coumoul X, Monteiro EC. 2020; First evidence of aryl hydrocarbon receptor as a druggable target in hypertension induced by chronic intermittent hypoxia. Pharmacol Res. 159:104869. DOI:
10.1016/j.phrs.2020.104869. PMID:
32416216.
23. Busse R, Trogisch G, Bassenge E. 1985; The role of endothelium in the control of vascular tone. Basic Res Cardiol. 80:475–490. DOI:
10.1007/BF01907912. PMID:
3000343.
24. Krause BJ, Casanello P, Dias AC, Arias P, Velarde V, Arenas GA, Preite MD, Iturriaga R. 2018; Chronic intermittent hypoxia-induced vascular dysfunction in rats is reverted by
N-acetylcysteine supplementation and arginase inhibition. Front Physiol. 9:901. DOI:
10.3389/fphys.2018.00901. PMID:
30087615. PMCID:
PMC6066978.
25. Tjong YW, Li MF, Hung MW, Fung ML. 2008; Melatonin ameliorates hippocampal nitric oxide production and large conductance calcium-activated potassium channel activity in chronic intermittent hypoxia. J Pineal Res. 44:234–243. DOI:
10.1111/j.1600-079X.2007.00515.x. PMID:
18339118.
26. Meza CA, La Favor JD, Kim DH, Hickner RC. 2019; Endothelial dysfunction: is there a hyperglycemia-induced imbalance of NOX and NOS? Int J Mol Sci. 20:3775. DOI:
10.3390/ijms20153775. PMID:
31382355. PMCID:
PMC6696313.
27. Kwok W, Clemens MG. 2010; Targeted mutation of Cav-1 alleviates the effect of endotoxin in the inhibition of ET-1-mediated eNOS activation in the liver. Shock. 33:392–398. DOI:
10.1097/SHK.0b013e3181be3e99. PMID:
19730165.
28. Zou L, Xiong L, Wu T, Wei T, Liu N, Bai C, Huang X, Hu Y, Xue Y, Zhang T, Tang M. 2022; NADPH oxidases regulate endothelial inflammatory injury induced by PM
2.5via AKT/eNOS/NO axis. J Appl Toxicol. 42:738–749. DOI:
10.1002/jat.4254. PMID:
34708887.
29. Martins AF, Neto AC, Rodrigues AR, Oliveira SM, Sousa-Mendes C, Leite-Moreira A, Gouveia AM, Almeida H, Neves D. 2022; Metformin prevents endothelial dysfunction in endometriosis through downregulation of ET-1 and upregulation of eNOS. Biomedicines. 10:2782. DOI:
10.3390/biomedicines10112782. PMID:
36359302. PMCID:
PMC9687337.
30. Wang Z, Li AY, Guo QH, Zhang JP, An Q, Guo YJ, Chu L, Weiss JW, Ji ES. 2013; Effects of cyclic intermittent hypoxia on ET-1 responsiveness and endothelial dysfunction of pulmonary arteries in rats. PLoS One. 8:e58078. DOI:
10.1371/journal.pone.0058078. PMID:
23555567. PMCID:
PMC3589442.
31. Alhowail A, Alsikhan R, Alsaud M, Aldubayan M, Rabbani SI. 2022; Protective effects of pioglitazone on cognitive impairment and the underlying mechanisms: a review of literature. Drug Des Devel Ther. 16:2919–2931. DOI:
10.2147/DDDT.S367229. PMID:
36068789. PMCID:
PMC9441149.
32. Moldogazieva NT, Mokhosoev IM, Mel'nikova TI, Porozov YB, Terentiev AA. 2019; Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in aging and age-related diseases. Oxid Med Cell Longev. 2019:3085756. DOI:
10.1155/2019/3085756. PMID:
31485289. PMCID:
PMC6710759.
33. Wang W, Gu H, Li W, Lin Y, Yao X, Luo W, Lu F, Huang S, Shi Y, Huang Z. 2021; SRC-3 knockout attenuates myocardial injury induced by chronic intermittent hypoxia in mice. Oxid Med Cell Longev. 2021:6372430. DOI:
10.1155/2021/6372430. PMID:
34777690. PMCID:
PMC8580638.
34. Caballero-Eraso C, Muñoz-Hernández R, Asensio Cruz MI, Moreno Luna R, Carmona Bernal C, López-Campos JL, Stiefel P, Sánchez Armengol Á. 2019; Relationship between the endothelial dysfunction and the expression of the β1-subunit of BK channels in a non-hypertensive sleep apnea group. PLoS One. 14:e0217138. DOI:
10.1371/journal.pone.0217138. PMID:
31216297. PMCID:
PMC6584007.
35. Tsuruma K, Tanaka Y, Shimazawa M, Mashima Y, Hara H. 2011; Unoprostone reduces oxidative stress- and light-induced retinal cell death, and phagocytotic dysfunction, by activating BK channels. Mol Vis. 17:3556–3565.
36. Zyrianova T, Zou K, Lopez B, Liao A, Gu C, Olcese R, Schwingshackl A. 2023; Activation of endothelial large conductance potassium channels protects against TNF-α-induced inflammation. Int J Mol Sci. 24:4087. DOI:
10.3390/ijms24044087. PMID:
36835507. PMCID:
PMC9961193.
37. Shi L, Liu B, Li N, Xue Z, Liu X. 2013; Aerobic exercise increases BK(Ca) channel contribution to regulation of mesenteric arterial tone by upregulating β1-subunit. Exp Physiol. 98:326–336. DOI:
10.1113/expphysiol.2012.066225. PMID:
22660813.
38. Carlton-Carew SRE, Greenberg HZE, Connor EJ, Zadeh P, Greenwood IA, Albert AP. 2024; Stimulation of the calcium-sensing receptor induces relaxations of rat mesenteric arteries by endothelium-dependent and -independent pathways via BK
Caand K
ATPchannels. Physiol Rep. 12:e15926. DOI:
10.14814/phy2.15926. PMID:
38281732. PMCID:
PMC10822715.
39. Ishida H, Ishikawa T, Saito SY. 2023; Enhanced contraction of arterial smooth muscle cell in skin artery is sensitive to hyperpolarization mediated by BK
Cachannel in chronic constriction injury model rat. Biol Pharm Bull. 46:399–403. DOI:
10.1248/bpb.b22-00603. PMID:
36858567.
40. Feng D, Guo YY, Wang W, Yan LF, Sun T, Liu QQ, Cui GB, Nan HY. 2022; α-Subunit tyrosine phosphorylation is required for activation of the large conductance Ca
2+-activated potassium channel in the rabbit sphincterof Oddi. Am J Pathol. 192:1725–1744. DOI:
10.1016/j.ajpath.2022.08.005. PMID:
36150507.
41. Sahinturk S. 2023; Cilostazol induces vasorelaxation through the activation of the eNOS/NO/cGMP pathway, prostanoids, AMPK, PKC, potassium channels, and calcium channels. Prostaglandins Other Lipid Mediat. 169:106782. DOI:
10.1016/j.prostaglandins.2023.106782. PMID:
37741358.