1. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009; 30:293–342.
Article
2. Tabb MM, Blumberg B. New modes of action for endocrine-disrupting chemicals. Mol Endocrinol. 2006; 20:475–82.
Article
3. Hoffman K, Hammel SC, Phillips AL, Lorenzo AM, Chen A, Calafat AM, et al. Biomarkers of exposure to SVOCs in children and their demographic associations: the TESIE Study. Environ Int. 2018; 119:26–36.
Article
4. Groh KJ, Backhaus T, Carney-Almroth B, Geueke B, Inostroza PA, Lennquist A, et al. Overview of known plastic packaging-associated chemicals and their hazards. Sci Total Environ. 2019; 651(Pt 2):3253–68.
Article
5. Biasiotto G, Zanella I, Masserdotti A, Pedrazzani R, Papa M, Caimi L, et al. Municipal wastewater affects adipose deposition in male mice and increases 3T3-L1 cell differentiation. Toxicol Appl Pharmacol. 2016; 297:32–40.
Article
6. Barber LB, Vajda AM, Douville C, Norris DO, Writer JH. Fish endocrine disruption responses to a major wastewater treatment facility upgrade. Environ Sci Technol. 2012; 46:2121–31.
Article
7. Ding D, Xu L, Fang H, Hong H, Perkins R, Harris S, et al. The EDKB: an established knowledge base for endocrine disrupting chemicals. BMC Bioinformatics. 2010; 11 Suppl 6:S5.
Article
8. Schantz SL, Widholm JJ. Cognitive effects of endocrine-disrupting chemicals in animals. Environ Health Perspect. 2001; 109:1197–206.
Article
9. La Merrill MA, Vandenberg LN, Smith MT, Goodson W, Browne P, Patisaul HB, et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat Rev Endocrinol. 2020; 16:45–57.
Article
10. Agas D, Sabbieti MG, Marchetti L. Endocrine disruptors and bone metabolism. Arch Toxicol. 2013; 87:735–51.
Article
11. Brunetti G, D’Amelio P, Wasniewska M, Mori G, Faienza MF. Editorial: bone: endocrine target and organ. Front Endocrinol (Lausanne). 2017; 8:354.
Article
12. Lee HR, Jeung EB, Cho MH, Kim TH, Leung PC, Choi KC. Molecular mechanism(s) of endocrine-disrupting chemicals and their potent oestrogenicity in diverse cells and tissues that express oestrogen receptors. J Cell Mol Med. 2013; 17:1–11.
Article
13. Agas D, Lacava G, Sabbieti MG. Bone and bone marrow disruption by endocrine-active substances. J Cell Physiol. 2018; 234:192–213.
Article
14. Turan S. Endocrine disrupting chemicals and bone. Best Pract Res Clin Endocrinol Metab. 2021; 35:101495.
Article
15. Yaglova NV, Yaglov VV. Endocrine disruptors as a new etiologic factor of bone tissue diseases (review). Sovrem Tekhnologii Med. 2021; 13:84–94.
Article
16. Chin KY, Pang KL, Mark-Lee WF. A review on the effects of bisphenol A and its derivatives on skeletal health. Int J Med Sci. 2018; 15:1043–50.
17. Almeida M, Laurent MR, Dubois V, Claessens F, O’Brien CA, Bouillon R, et al. Estrogens and androgens in skeletal physiology and pathophysiology. Physiol Rev. 2017; 97:135–87.
Article
18. Emmanuelle NE, Marie-Cecile V, Florence T, Jean-Francois A, Francoise L, Coralie F, et al. Critical role of estrogens on bone homeostasis in both male and female: from physiology to medical implications. Int J Mol Sci. 2021; 22:1568.
Article
19. Khosla S, Oursler MJ, Monroe DG. Estrogen and the skeleton. Trends Endocrinol Metab. 2012; 23:576–81.
Article
20. Kopras E, Potluri V, Bermudez ML, Williams K, Belcher S, Kasper S. Actions of endocrine-disrupting chemicals on stem/progenitor cells during development and disease. Endocr Relat Cancer. 2014; 21:T1–12.
Article
21. Iwobi N, Sparks NR. Endocrine disruptor-induced bone damage due to hormone dysregulation: a review. Int J Mol Sci. 2023; 24:8263.
22. Eriksen EF. Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord. 2010; 11:219–27.
Article
23. Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH. Osteoblast-osteoclast communication and bone homeostasis. Cells. 2020; 9:2073.
Article
24. Bateman ME, Strong AL, McLachlan JA, Burow ME, Bunnell BA. The effects of endocrine disruptors on adipogenesis and osteogenesis in mesenchymal stem cells: a review. Front Endocrinol (Lausanne). 2017; 7:171.
Article
25. Detsch R, Boccaccini AR. The role of osteoclasts in bone tissue engineering. J Tissue Eng Regen Med. 2015; 9:1133–49.
Article
26. Tai V, Leung W, Grey A, Reid IR, Bolland MJ. Calcium intake and bone mineral density: systematic review and meta-analysis. BMJ. 2015; 351:h4183.
Article
27. Vannucci L, Fossi C, Quattrini S, Guasti L, Pampaloni B, Gronchi G, et al. Calcium intake in bone health: a focus on calcium-rich mineral waters. Nutrients. 2018; 10:1930.
Article
28. Veldurthy V, Wei R, Oz L, Dhawan P, Jeon YH, Christakos S. Vitamin D, calcium homeostasis and aging. Bone Res. 2016; 4:16041.
Article
29. Babic Leko M, Pleic N, Gunjaca I, Zemunik T. Environmental factors that affect parathyroid hormone and calcitonin levels. Int J Mol Sci. 2021; 23:44.
Article
30. Zhao E, Xu H, Wang L, Kryczek I, Wu K, Hu Y, et al. Bone marrow and the control of immunity. Cell Mol Immunol. 2012; 9:11–9.
Article
31. Adamopoulos IE. Inflammation in bone physiology and pathology. Curr Opin Rheumatol. 2018; 30:59–64.
Article
32. Peng X, Zhou X, Yin Y, Luo B, Liu Y, Yang C. Inflammatory microenvironment accelerates bone marrow mesenchymal stem cell aging. Front Bioeng Biotechnol. 2022; 10:870324.
Article
33. Terkawi MA, Matsumae G, Shimizu T, Takahashi D, Kadoya K, Iwasaki N. Interplay between inflammation and pathological bone resorption: insights into recent mechanisms and pathways in related diseases for future perspectives. Int J Mol Sci. 2022; 23:1786.
Article
34. Bahadar H, Abdollahi M, Maqbool F, Baeeri M, Niaz K. Mechanistic overview of immune modulatory effects of environmental toxicants. Inflamm Allergy Drug Targets. 2015; 13:382–6.
Article
35. Bansal A, Henao-Mejia J, Simmons RA. Immune system: an emerging player in mediating effects of endocrine disruptors on metabolic health. Endocrinology. 2018; 159:32–45.
Article
36. Nowak K, Jablonska E, Ratajczak-Wrona W. Immunomodulatory effects of synthetic endocrine disrupting chemicals on the development and functions of human immune cells. Environ Int. 2019; 125:350–64.
37. Wang X, Nag R, Brunton NP, Siddique MA, Harrison SM, Monahan FJ, et al. Human health risk assessment of bisphenol A (BPA) through meat products. Environ Res. 2022; 213:113734.
Article
38. Chen WY, Shen YP, Chen SC. Assessing bisphenol A (BPA) exposure risk from long-term dietary intakes in Taiwan. Sci Total Environ. 2016; 543(Pt A):140–6.
Article
39. Genuis SJ, Beesoon S, Birkholz D, Lobo RA. Human excretion of bisphenol A: blood, urine, and sweat (BUS) study. J Environ Public Health. 2012; 2012:185731.
Article
40. Thayer KA, Doerge DR, Hunt D, Schurman SH, Twaddle NC, Churchwell MI, et al. Pharmacokinetics of bisphenol A in humans following a single oral administration. Environ Int. 2015; 83:107–15.
Article
41. Fernandez MF, Arrebola JP, Taoufiki J, Navalon A, Ballesteros O, Pulgar R, et al. Bisphenol-A and chlorinated derivatives in adipose tissue of women. Reprod Toxicol. 2007; 24:259–64.
42. Ma Y, Liu H, Wu J, Yuan L, Wang Y, Du X, et al. The adverse health effects of bisphenol A and related toxicity mechanisms. Environ Res. 2019; 176:108575.
Article
43. Wozniak AL, Bulayeva NN, Watson CS. Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-alpha-mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells. Environ Health Perspect. 2005; 113:431–9.
Article
44. Bolli A, Galluzzo P, Ascenzi P, Del Pozzo G, Manco I, Vietri MT, et al. Laccase treatment impairs bisphenol A-induced cancer cell proliferation affecting estrogen receptor alpha-dependent rapid signals. IUBMB Life. 2008; 60:843–52.
Article
45. Suzuki N, Hattori A. Bisphenol A suppresses osteoclastic and osteoblastic activities in the cultured scales of goldfish. Life Sci. 2003; 73:2237–47.
Article
46. Akingbemi BT, Sottas CM, Koulova AI, Klinefelter GR, Hardy MP. Inhibition of testicular steroidogenesis by the xenoestrogen bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells. Endocrinology. 2004; 145:592–603.
47. Nakamura D, Yanagiba Y, Duan Z, Ito Y, Okamura A, Asaeda N, et al. Bisphenol A may cause testosterone reduction by adversely affecting both testis and pituitary systems similar to estradiol. Toxicol Lett. 2010; 194:16–25.
Article
48. Nikula H, Talonpoika T, Kaleva M, Toppari J. Inhibition of hCG-stimulated steroidogenesis in cultured mouse Leydig tumor cells by bisphenol A and octylphenols. Toxicol Appl Pharmacol. 1999; 157:166–73.
Article
49. Kim JY, Han EH, Kim HG, Oh KN, Kim SK, Lee KY, et al. Bisphenol A-inducedaromatase activation is mediated by cyclooxygenase-2 up-regulation in rat testicular Leydig cells. Toxicol Lett. 2010; 193:200–8.
50. Lejonklou MH, Christiansen S, Orberg J, Shen L, Larsson S, Boberg J, et al. Low-dose developmental exposure to bisphenol A alters the femoral bone geometry in Wistar rats. Chemosphere. 2016; 164:339–46.
Article
51. Kim JC, Shin HC, Cha SW, Koh WS, Chung MK, Han SS. Evaluation of developmental toxicity in rats exposed to the environmental estrogen bisphenol A during pregnancy. Life Sci. 2001; 69:2611–25.
52. Kim S, An BS, Yang H, Jeung EB. Effects of octylphenol and bisphenol A on the expression of calcium transport genes in the mouse duodenum and kidney during pregnancy. Toxicology. 2013; 303:99–106.
Article
53. Otsuka H, Sugimoto M, Ikeda S, Kume S. Effects of bisphenol A administration to pregnant mice on serum Ca and intestinal Ca absorption. Anim Sci J. 2012; 83:232–7.
Article
54. Kim DH, Oh CH, Hwang YC, Jeong IK, Ahn KJ, Chung HY, et al. Serum bisphenol a concentration in postmenopausal women with osteoporosis. J Bone Metab. 2012; 19:87–93.
Article
55. Zhao HY, Bi YF, Ma LY, Zhao L, Wang TG, Zhang LZ, et al. The effects of bisphenol A (BPA) exposure on fat mass and serum leptin concentrations have no impact on bone mineral densities in non-obese premenopausal women. Clin Biochem. 2012; 45:1602–6.
Article
56. Yang YJ, Hong YC, Oh SY, Park MS, Kim H, Leem JH, et al. Bisphenol A exposure is associated with oxidative stress and inflammation in postmenopausal women. Environ Res. 2009; 109:797–801.
57. Savastano S, Tarantino G, D’Esposito V, Passaretti F, Cabaro S, Liotti A, et al. Bisphenol-A plasma levels are related to inflammatory markers, visceral obesity and insulin-resistance: a cross-sectional study on adult male population. J Transl Med. 2015; 13:169.
Article
58. Wang Z, Cousins IT, Scheringer M, Buck RC, Hungerbuhler K. Global emission inventories for C4-C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, part I: production and emissions from quantifiable sources. Environ Int. 2014; 70:62–75.
Article
59. Kirk AB, DeStefano A, Martin A, Kirk KC, Martin CF. A new interpretation of relative importance on an analysis of per and polyfluorinated alkyl substances (PFAS) exposures on bone mineral density. Int J Environ Res Public Health. 2023; 20:4539.
Article
60. Fan S, Wu Y, Bloom MS, Lv J, Chen L, Wang W, et al. Associations of per- and polyfluoroalkyl substances and their alternatives with bone mineral density levels and osteoporosis prevalence: a community-based population study in Guangzhou, Southern China. Sci Total Environ. 2023; 862:160617.
Article
61. Banjabi AA, Li AJ, Kumosani TA, Yousef JM, Kannan K. Serum concentrations of perfluoroalkyl substances and their association with osteoporosis in a population in Jeddah, Saudi Arabia. Environ Res. 2020; 187:109676.
62. Hu Y, Liu G, Rood J, Liang L, Bray GA, de Jonge L, et al. Perfluoroalkyl substances and changes in bone mineral density: a prospective analysis in the POUNDS-LOST study. Environ Res. 2019; 179(Pt A):108775.
Article
63. Khalil N, Ebert JR, Honda M, Lee M, Nahhas RW, Koskela A, et al. Perfluoroalkyl substances, bone density, and cardio-metabolic risk factors in obese 8-12 year old children: a pilot study. Environ Res. 2018; 160:314–21.
Article
64. Yamamoto J, Yamane T, Oishi Y, Kobayashi-Hattori K. Perfluorooctanoic acid binds to peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation in 3T3-L1 adipocytes. Biosci Biotechnol Biochem. 2015; 79:636–9.
Article
65. Greenhill C. Endocrine disruptors: PFASs, sex hormones and asthma. Nat Rev Endocrinol. 2017; 13:377.
66. Kim MJ, Moon S, Oh BC, Jung D, Ji K, Choi K, et al. Association between perfluoroalkyl substances exposure and thyroid function in adults: a meta-analysis. PLoS One. 2018; 13:e0197244.
Article
67. Venken K, Callewaert F, Boonen S, Vanderschueren D. Sex hormones, their receptors and bone health. Osteoporos Int. 2008; 19:1517–25.
Article
68. Bassett JH, Williams GR. Role of thyroid hormones in skeletal development and bone maintenance. Endocr Rev. 2016; 37:135–87.
Article
69. Koskela A, Koponen J, Lehenkari P, Viluksela M, Korkalainen M, Tuukkanen J. Perfluoroalkyl substances in human bone: concentrations in bones and effects on bone cell differentiation. Sci Rep. 2017; 7:6841.
Article
70. Shi X, Zhou B. The role of Nrf2 and MAPK pathways in PFOS-induced oxidative stress in zebrafish embryos. Toxicol Sci. 2010; 115:391–400.
Article
71. Zhang B, He Y, Huang Y, Hong D, Yao Y, Wang L, et al. Novel and legacy poly- and perfluoroalkyl substances (PFASs) in indoor dust from urban, industrial, and e-waste dismantling areas: the emergence of PFAS alternatives in China. Environ Pollut. 2020; 263(Pt A):114461.
Article
72. Sunderland EM, Hu XC, Dassuncao C, Tokranov AK, Wagner CC, Allen JG. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J Expo Sci Environ Epidemiol. 2019; 29:131–47.
Article
73. Cong J, Chu C, Li QQ, Zhou Y, Min Qian Z, Dee Geiger S, et al. Associations of perfluorooctane sulfonate alternatives and serum lipids in Chinese adults. Environ Int. 2021; 155:106596.
Article
74. Sheng N, Wang J, Guo Y, Wang J, Dai J. Interactions of perfluorooctanesulfonate and 6:2 chlorinated polyfluorinated ether sulfonate with human serum albumin: a comparative study. Chem Res Toxicol. 2020; 33:1478–86.
Article
75. Zheng P, Liu Y, An Q, Yang X, Yin S, Ma LQ, et al. Prenatal and postnatal exposure to emerging and legacy per-/polyfluoroalkyl substances: levels and transfer in maternal serum, cord serum, and breast milk. Sci Total Environ. 2022; 812:152446.
Article
76. Sheng N, Zhou X, Zheng F, Pan Y, Guo X, Guo Y, et al. Comparative hepatotoxicity of 6:2 fluorotelomer carboxylic acid and 6:2 fluorotelomer sulfonic acid, two fluorinated alternatives to long-chain perfluoroalkyl acids, on adult male mice. Arch Toxicol. 2017; 91:2909–19.
Article
77. Wang Y, Qian H. Phthalates and their impacts on human health. Healthcare (Basel). 2021; 9:603.
Article
78. Basso CG, de Araujo-Ramos AT, Martino-Andrade AJ. Exposure to phthalates and female reproductive health: a literature review. Reprod Toxicol. 2022; 109:61–79.
Article
79. Filardi T, Panimolle F, Lenzi A, Morano S. Bisphenol A and phthalates in diet: an emerging link with pregnancy complications. Nutrients. 2020; 12:525.
Article
80. Basak S, Das MK, Duttaroy AK. Plastics derived endocrinedisrupting compounds and their effects on early development. Birth Defects Res. 2020; 112:1308–25.
Article
81. Mallozzi M, Bordi G, Garo C, Caserta D. The effect of maternal exposure to endocrine disrupting chemicals on fetal and neonatal development: a review on the major concerns. Birth Defects Res C Embryo Today. 2016; 108:224–42.
82. Heilmann NZ, Reeves KW, Hankinson SE. Phthalates and bone mineral density: a systematic review. Environ Health. 2022; 21:108.
Article
83. DeFlorio-Barker SA, Turyk ME. Associations between bone mineral density and urinary phthalate metabolites among post-menopausal women: a cross-sectional study of NHANES data 2005-2010. Int J Environ Health Res. 2016; 26:326–45.
Article
84. Reeves KW, Vieyra G, Grimes NP, Meliker J, Jackson RD, Wactawski-Wende J, et al. Urinary phthalate biomarkers and bone mineral density in postmenopausal women. J Clin Endocrinol Metab. 2021; 106:e2567–79.
Article
85. Min KB, Min JY. Urinary phthalate metabolites and the risk of low bone mineral density and osteoporosis in older women. J Clin Endocrinol Metab. 2014; 99:E1997–2003.
Article
86. Bielanowicz A, Johnson RW, Goh H, Moody SC, Poulton IJ, Croce N, et al. Prepubertal di-n-butyl phthalate exposure alters sertoli and leydig cell function and lowers bone density in adult male mice. Endocrinology. 2016; 157:2595–603.
Article
87. Chiu CY, Sun SC, Chiang CK, Wang CC, Chan DC, Chen HJ, et al. Plasticizer di(2-ethylhexyl)phthalate interferes with osteoblastogenesis and adipogenesis in a mouse model. J Orthop Res. 2018; 36:1124–34.
Article
88. Choi JI, Cho HH. Effects of di(2-ethylhexyl)phthalate on bone metabolism in ovariectomized mice. J Bone Metab. 2019; 26:169–77.
Article
89. Hwang YH, Son YJ, Paik MJ, Yee ST. Effects of diisononyl phthalate on osteopenia in intact mice. Toxicol Appl Pharmacol. 2017; 334:120–8.
Article
90. Sabbieti MG, Agas D, Santoni G, Materazzi S, Menghi G, Marchetti L. Involvement of p53 in phthalate effects on mouse and rat osteoblasts. J Cell Biochem. 2009; 107:316–27.
Article
91. Ferguson KK, Loch-Caruso R, Meeker JD. Exploration of oxidative stress and inflammatory markers in relation to urinary phthalate metabolites: NHANES 1999-2006. Environ Sci Technol. 2012; 46:477–85.
Article
92. Ferguson KK, McElrath TF, Chen YH, Mukherjee B, Meeker JD. Urinary phthalate metabolites and biomarkers of oxidative stress in pregnant women: a repeated measures analysis. Environ Health Perspect. 2015; 123:210–6.
Article
93. Johns LE, Ferguson KK, Meeker JD. Relationships between urinary phthalate metabolite and bisphenol a concentrations and vitamin D levels in U.S. adults: National Health and Nutrition Examination Survey (NHANES), 2005-2010. J Clin Endocrinol Metab. 2016; 101:4062–9.
Article
94. Johns LE, Ferguson KK, Cantonwine DE, McElrath TF, Mukherjee B, Meeker JD. Urinary BPA and phthalate metabolite concentrations and plasma vitamin D levels in pregnant women: a repeated measures analysis. Environ Health Perspect. 2017; 125:087026.
Article
95. Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, et al. The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci. 2006; 93:223–41.
Article
96. Cripps DJ, Peters HA, Gocmen A, Dogramici I. Porphyria turcica due to hexachlorobenzene: a 20 to 30 year follow-up study on 204 patients. Br J Dermatol. 1984; 111:413–22.
Article
97. Jones KC, de Voogt P. Persistent organic pollutants (POPs): state of the science. Environ Pollut. 1999; 100:209–21.
Article
98. Tuomisto J. Are dioxins a health problem in Finland? Duodecim. 2001; 117:245–6.
99. Fukushi J, Tokunaga S, Nakashima Y, Motomura G, Mitoma C, Uchi H, et al. Effects of dioxin-related compounds on bone mineral density in patients affected by the Yusho incident. Chemosphere. 2016; 145:25–33.
Article
100. Todaka T, Hori T, Hirakawa H, Kajiwara J, Yasutake D, Onozuka D, et al. Concentrations of polychlorinated biphenyls in blood of Yusho patients over 35 years after the incident. Chemosphere. 2009; 74:902–9.
Article
101. Akamine A, Hashiguchi I, Maeda K, Hara Y, Chinjiu N, Iwamoto Y, et al. Prevalence of periodontal disease in patients with yusho. Fukuoka Igaku Zasshi. 1985; 76:248–52.
102. Shimizu K, Nakata S, Murakami T, Tamari K, Takahama Y, Akamine A, et al. Long-term occlusal guidance of a severely intoxicated patient with yusho (PCB poisoning): a case report. Am J Orthod Dentofacial Orthop. 1992; 101:393–402.
Article
103. Eskenazi B, Warner M, Sirtori M, Fuerst T, Rauch SA, Brambilla P, et al. Serum dioxin concentrations and bone density and structure in the Seveso Women’s Health Study. Environ Health Perspect. 2014; 122:51–7.
Article
104. Paunescu AC, Dewailly E, Dodin S, Nieboer E, Ayotte P. Dioxin-like compounds and bone quality in Cree women of Eastern James Bay (Canada): a cross-sectional study. Environ Health. 2013; 12:54.
Article
105. TenHave-Opbroek AA, Shi XB, Gumerlock PH. 3-Methylcholanthrene triggers the differentiation of alveolar tumor cells from canine bronchial basal cells and an altered p53 gene promotes their clonal expansion. Carcinogenesis. 2000; 21:1477–84.
Article
106. Naruse M, Ishihara Y, Miyagawa-Tomita S, Koyama A, Hagiwara H. 3-Methylcholanthrene, which binds to the arylhydrocarbon receptor, inhibits proliferation and differentiation of osteoblasts in vitro and ossification in vivo. Endocrinology. 2002; 143:3575–81.
Article
107. Naruse M, Otsuka E, Naruse M, Ishihara Y, Miyagawa-Tomita S, Hagiwara H. Inhibition of osteoclast formation by 3-methylcholanthrene, a ligand for arylhydrocarbon receptor: suppression of osteoclast differentiation factor in osteogenic cells. Biochem Pharmacol. 2004; 67:119–27.
Article
108. Monnouchi S, Maeda H, Yuda A, Serita S, Wada N, Tomokiyo A, et al. Benzo[a]pyrene/aryl hydrocarbon receptor signaling inhibits osteoblastic differentiation and collagen synthesis of human periodontal ligament cells. J Periodontal Res. 2016; 51:779–88.
Article
109. Tsai KS, Yang RS, Liu SH. Benzo[a]pyrene regulates osteoblast proliferation through an estrogen receptor-related cyclooxygenase-2 pathway. Chem Res Toxicol. 2004; 17:679–84.
110. Voronov I, Li K, Tenenbaum HC, Manolson MF. Benzo[a] pyrene inhibits osteoclastogenesis by affecting RANKL-induced activation of NF-kappaB. Biochem Pharmacol. 2008; 75:2034–44.
111. Kung MH, Yukata K, O’Keefe RJ, Zuscik MJ. Aryl hydrocarbon receptor-mediated impairment of chondrogenesis and fracture healing by cigarette smoke and benzo(a)pyrene. J Cell Physiol. 2012; 227:1062–70.
112. Lind PM, Larsson S, Oxlund H, Hakansson H, Nyberg K, Eklund T, et al. Change of bone tissue composition and impaired bone strength in rats exposed to 3,3’,4,4’,5-pentachlorobiphenyl (PCB126). Toxicology. 2000; 150:41–51.
Article
113. Alvarez-Lloret P, Lind PM, Nyberg I, Orberg J, Rodriguez-Navarro AB. Effects of 3,3’,4,4’,5-pentachlorobiphenyl (PCB126) on vertebral bone mineralization and on thyroxin and vitamin D levels in Sprague-Dawley rats. Toxicol Lett. 2009; 187:63–8.
Article
114. Den Hond E, Roels HA, Hoppenbrouwers K, Nawrot T, Thijs L, Vandermeulen C, et al. Sexual maturation in relation to polychlorinated aromatic hydrocarbons: Sharpe and Skakkebaek’s hypothesis revisited. Environ Health Perspect. 2002; 110:771–6.
Article