Korean J Gastroenterol.  2024 Aug;84(2):51-64. 10.4166/kjg.2024.064.

Small Molecule Therapy for Inflammatory Bowel Disease: JAK Inhibitors and S1PR Modulators

Affiliations
  • 1Department of Gastroenterology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea

Abstract

Small molecules, including Janus kinase (JAK) inhibitors and sphingosine-1-phosphate receptor modulators (S1PRMs), are promising new treatments for inflammatory bowel disease (IBD). Small molecules exhibit more predictable pharmacokinetics than biologics, are less likely to induce immune responses, and can be administered orally. JAK inhibitors function by blocking the activity of JAK enzymes, which prevents the subsequent phosphorylation and activation of signal transducer and activator of transcription (STAT) proteins. Tofacitinib and filgotinib are approved for treating ulcerative colitis (UC), while upadacitinib is approved for UC and Crohn’s disease. Nevertheless, JAK inhibitors can increase the risk of herpes zoster, cancer, major adverse cardiovascular events, and venous thromboembolism. S1PRMs bind to S1PRs, particularly S1PR1, on lymphocytes. This interaction inhibits lymphocytes from exiting the lymph nodes and migrating to the gut, thereby reducing inflammation and the immune response in the intestinal mucosa. Ozanimod and etrasimod are S1PRMs approved for the treatment of UC, but they can cause side effects such as bradycardia, conduction disorder, and macular edema. Overall, JAK inhibitors and S1PRMs offer significant benefits in managing IBD, although their potential side effects require careful monitoring.

Keyword

Inflammatory bowel diseases; Janus kinase inhibitors; Sphingosine 1 phosphate receptor modulators

Reference

1. Raine T, Bonovas S, Burisch J, et al. 2022; ECCO Guidelines on therapeutics in ulcerative colitis: Medical treatment. J Crohns Colitis. 16:2–17. DOI: 10.1093/ecco-jcc/jjab178. PMID: 34635919.
2. Feuerstein JD, Ho EY, Shmidt E, et al. 2021; AGA Clinical practice guidelines on the medical management of moderate to severe luminal and perianal fistulizing Crohn's disease. Gastroenterology. 160:2496–2508. DOI: 10.1053/j.gastro.2021.04.022. PMID: 34051983. PMCID: PMC8988893.
3. Turner D, Ricciuto A, Lewis A, et al. 2021; STRIDE-II: An update on the selecting therapeutic targets in inflammatory bowel disease (STRIDE) initiative of the international organization for the study of IBD (IOIBD): Determining therapeutic goals for treat-to-target strategies in IBD. Gastroenterology. 160:1570–1583. DOI: 10.1053/j.gastro.2020.12.031. PMID: 33359090.
4. Olivera P, Danese S, Peyrin-Biroulet L. 2017; Next generation of small molecules in inflammatory bowel disease. Gut. 66:199–209. DOI: 10.1136/gutjnl-2016-312912. PMID: 27856614.
5. Shivaji UN, Nardone OM, Cannatelli R, Smith SC, Ghosh S, Iacucci M. 2020; Small molecule oral targeted therapies in ulcerative colitis. Lancet Gastroenterol Hepatol. 5:850–861. DOI: 10.1016/S2468-1253(19)30414-5. PMID: 32171056.
6. Li J, Huang Y, Zhang Y, et al. 2023; S1P/S1PR signaling pathway advancements in autoimmune diseases. Biomol Biomed. 23:922–935.
7. Lefevre PLC, Vande Casteele N. 2020; Clinical pharmacology of janus kinase inhibitors in inflammatory bowel disease. J Crohns Colitis. 14(Supplement_2):S725–S736. DOI: 10.1093/ecco-jcc/jjaa014. PMID: 32160283. PMCID: PMC7395308.
8. Rawla P, Sunkara T, Raj JP. 2018; Role of biologics and biosimilars in inflammatory bowel disease: current trends and future perspectives. J Inflamm Res. 11:215–226. DOI: 10.2147/JIR.S165330. PMID: 29844695. PMCID: PMC5961645.
9. Misra A. 2010; Are biosimilars really generics? Expert Opin Biol Ther. 10:489–494. DOI: 10.1517/14712591003662615. PMID: 20146636.
10. Rawlings JS, Rosler KM, Harrison DA. 2004; The JAK/STAT signaling pathway. J Cell Sci. 117:1281–1283. DOI: 10.1242/jcs.00963. PMID: 15020666.
11. Boland BS, Sandborn WJ, Chang JT. 2014; Update on Janus kinase antagonists in inflammatory bowel disease. Gastroenterol Clin North Am. 43:603–617. DOI: 10.1016/j.gtc.2014.05.011. PMID: 25110261. PMCID: PMC4129380.
12. Clark JD, Flanagan ME, Telliez JB. 2014; Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J Med Chem. 57:5023–5038. DOI: 10.1021/jm401490p. PMID: 24417533.
13. Kwon S. 2022; Molecular dissection of Janus kinases as drug targets for inflammatory diseases. Front Immunol. 13:1075192. DOI: 10.3389/fimmu.2022.1075192. PMID: 36569926. PMCID: PMC9773558.
14. Lin CM, Cooles FA, Isaacs JD. 2020; Basic mechanisms of JAK inhibition. Mediterr J Rheumatol. 31(Suppl 1):100–104. DOI: 10.31138/mjr.31.1.100. PMID: 32676567. PMCID: PMC7361186.
15. Fanizza J, D'Amico F, Lauri G, et al. 2024; The role of filgotinib in ulcerative colitis and Crohn's disease. Immunotherapy. 16:59–74. DOI: 10.2217/imt-2023-0116. PMID: 38009327.
16. Honap S, Agorogianni A, Colwill MJ, et al. 2023; JAK inhibitors for inflammatory bowel disease: recent advances. Frontline Gastroenterol. 15:59–69. DOI: 10.1136/flgastro-2023-102400. PMID: 38487554.
17. Traves PG, Murray B, Campigotto F, Galien R, Meng A, Di Paolo JA. 2021; JAK selectivity and the implications for clinical inhibition of pharmacodynamic cytokine signalling by filgotinib, upadacitinib, tofacitinib and baricitinib. Ann Rheum Dis. 80:865–875. DOI: 10.1136/annrheumdis-2020-219012. PMID: 33741556. PMCID: PMC8237188.
18. Sanachai K, Mahalapbutr P, Choowongkomon K, Poo-Arporn RP, Wolschann P, Rungrotmongkol T. 2020; Insights into the binding recognition and susceptibility of tofacitinib toward Janus kinases. ACS Omega. 5:369–377. DOI: 10.1021/acsomega.9b02800. PMID: 31956784. PMCID: PMC6964278.
19. Biggioggero M, Becciolini A, Crotti C, Agape E, Favalli EG. 2019; Upadacitinib and filgotinib: the role of JAK1 selective inhibition in the treatment of rheumatoid arthritis. Drugs Context. 8:212595. DOI: 10.7573/dic.212595. PMID: 31692920. PMCID: PMC6821397.
20. Sandborn WJ, Su C, Sands BE, et al. 2017; Tofacitinib as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 376:1723–1736. DOI: 10.1056/NEJMoa1606910. PMID: 28467869.
21. Panés J, Sandborn WJ, Schreiber S, et al. 2017; Tofacitinib for induction and maintenance therapy of Crohn's disease: results of two phase IIb randomised placebo-controlled trials. Gut. 66:1049–1059. DOI: 10.1136/gutjnl-2016-312735. PMID: 28209624. PMCID: PMC5532457.
22. Feagan BG, Danese S, Loftus EV Jr, et al. 2021; Filgotinib as induction and maintenance therapy for ulcerative colitis (SELECTION): a phase 2b/3 double-blind, randomised, placebo-controlled trial. Lancet. 397:2372–2384. DOI: 10.1016/S0140-6736(21)00666-8. PMID: 34090625.
23. Vermeire S, Rubin DT, Watanabe M, et al. 2023; S904 Efficacy and safety of filgotinib as induction and maintenance therapy for Crohn's disease: Results from the phase 3 randomized, double-blind, placebo-controlled DIVERSITY1 study. Am J Gastroenterol. 118(10S):S673–S675. DOI: 10.14309/01.ajg.0000953256.64368.ac.
24. Danese S, Vermeire S, Zhou W, et al. 2022; Upadacitinib as induction and maintenance therapy for moderately to severely active ulcerative colitis: results from three phase 3, multicentre, double-blind, randomised trials. Lancet. 399:2113–2128. DOI: 10.1016/S0140-6736(22)00581-5. PMID: 35644166.
25. Sandborn WJ, Ghosh S, Panes J, et al. 2020; Efficacy of upadacitinib in a randomized trial of patients with active ulcerative colitis. Gastroenterology. 158:2139–2149.e14. DOI: 10.1053/j.gastro.2020.02.030. PMID: 32092309.
26. Loftus EV Jr, Panés J, Lacerda AP, et al. 2023; Upadacitinib induction and maintenance therapy for Crohn's disease. N Engl J Med. 388:1966–1980. DOI: 10.1056/NEJMoa2212728. PMID: 37224198.
27. Taxonera C, Olivares D, Alba C. 2022; Real-world effectiveness and safety of tofacitinib in patients with ulcerative colitis: Systematic review with meta-analysis. Inflamm Bowel Dis. 28:32–40. DOI: 10.1093/ibd/izab011. PMID: 33586766.
28. Honap S, Chee D, Chapman TP, et al. 2020; Real-world effectiveness of tofacitinib for moderate to severe ulcerative colitis: A multicentre UK experience. J Crohns Colitis. 14:1385–1393. DOI: 10.1093/ecco-jcc/jjaa075. PMID: 32280965.
29. Shin SH, Oh K, Hong SN, et al. 2023; Real-life effectiveness and safety of tofacitinib treatment in patients with ulcerative colitis: a KASID multicenter cohort study. Therap Adv Gastroenterol. 16:17562848231154103. DOI: 10.1177/17562848231154103. PMID: 36950251. PMCID: PMC10026122.
30. Akiyama S, Yokoyama K, Yagi S, et al. 2024; Efficacy and safety of filgotinib for ulcerative colitis: A real-world multicenter retrospective study in Japan. Aliment Pharmacol Ther. 59:1413–1424. DOI: 10.1111/apt.17961. PMID: 38494867.
31. Gros B, Goodall M, Plevris N, et al. Real-World Cohort study on the effectiveness and safety of filgotinib use in ulcerative colitis. J Crohns Colitis. 2023; Dec. 8. doi: 10.1093/ecco-jcc/jjad187. DOI: 10.1093/ecco-jcc/jjad187. PMID: 38066679.
32. Dotan I, Feagan BG, Taliadouros V, et al. 2023; Efficacy of filgotinib in patients with ulcerative colitis by line of therapy in the phase 2b/3 SELECTION trial. J Crohns Colitis. 17:1207–1216. DOI: 10.1093/ecco-jcc/jjad039. PMID: 36928705. PMCID: PMC10441561.
33. Zeissig S, Schmelz R, Helwig U, et al. 2024; P905 Symptomatic remission and IUS improvements in a multi-national real-world cohort of UC patients treated with Upadacitinib - First results from the IBD-DACH study EUROPE. J Crohns Colitis. 18(Suppl 1):i1657. DOI: 10.1093/ecco-jcc/jjad212.1035.
34. Friedberg S, Choi D, Hunold T, et al. 2023; Upadacitinib Is effective and safe in both ulcerative colitis and Crohn's disease: Prospective real-world experience. Clin Gastroenterol Hepatol. 21:1913–1923.e2. DOI: 10.1016/j.cgh.2023.03.001. PMID: 36898598. PMCID: PMC11016252.
35. Gilmore R, Fernandes R, Hartley I, et al. 2024; P1064 Upadacitinib is safe and effective in Ulcerative Colitis patients with prior exposure to Tofacitinib. J Crohns Colitis. 18(Suppl 1):i1913. DOI: 10.1093/ecco-jcc/jjad212.1194.
36. Chugh R, Braga-Neto MB, Fredrick TW, et al. 2023; Multicentre real-world experience of upadacitinib in the treatment of Crohn's disease. J Crohns Colitis. 17:504–512. DOI: 10.1093/ecco-jcc/jjac157. PMID: 36272109.
37. D'Haens G, Panés J, Louis E, et al. 2022; Upadacitinib was efficacious and well-tolerated over 30 months in patients with Crohn's disease in the CELEST extension study. Clin Gastroenterol Hepatol. 20:2337–2346.e3. DOI: 10.1016/j.cgh.2021.12.030. PMID: 34968730.
38. Winthrop KL, Cohen SB. 2022; Oral surveillance and JAK inhibitor safety: the theory of relativity. Nat Rev Rheumatol. 18:301–304. DOI: 10.1038/s41584-022-00767-7. PMID: 35318462. PMCID: PMC8939241.
39. Ytterberg SR, Bhatt DL, Mikuls TR, et al. 2022; Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N Engl J Med. 386:316–326. DOI: 10.1056/NEJMoa2109927. PMID: 35081280.
40. Sunzini F, McInnes I, Siebert S. 2020; JAK inhibitors and infections risk: focus on herpes zoster. Ther Adv Musculoskelet Dis. 12:1759720X20936059. DOI: 10.1177/1759720X20936059. PMID: 32655703. PMCID: PMC7328488.
41. Panés J, D'Haens GR, Sands BE, et al. 2024; Analysis of tofacitinib safety in ulcerative colitis from the completed global clinical developmental program up to 9.2 years of drug exposure. United European Gastroenterol J. 12:793–801. DOI: 10.1002/ueg2.12584. PMID: 38778549. PMCID: PMC11249803.
42. Winthrop KL, Vermeire S, Long MD, et al. 2023; Long-term risk of herpes zoster infection in patients with ulcerative colitis receiving tofacitinib. Inflamm Bowel Dis. 29:85–96. DOI: 10.1093/ibd/izac063. PMID: 35648151. PMCID: PMC9825290.
43. Din S, Selinger CP, Black CJ, Ford AC. 2023; Systematic review with network meta-analysis: Risk of Herpes zoster with biological therapies and small molecules in inflammatory bowel disease. Aliment Pharmacol Ther. 57:666–675. DOI: 10.1111/apt.17379. PMID: 36585944.
44. Matsuoka K, Hisamatsu T, Kim HJ, et al. 2022; Safety and efficacy of long-term tofacitinib treatment in East Asian patients with ulcerative colitis in OCTAVE Open. J Gastroenterol Hepatol. 37:1884–1892. DOI: 10.1111/jgh.15923. PMID: 35734858. PMCID: PMC9796539.
45. Kucharzik T, Ellul P, Greuter T, et al. 2021; ECCO Guidelines on the prevention, diagnosis, and management of infections in inflammatory bowel disease. J Crohns Colitis. 15:879–913. DOI: 10.1093/ecco-jcc/jjab052. PMID: 33730753.
46. Guillo L, Rabaud C, Choy EH, et al. 2022; Herpes zoster and vaccination strategies in inflammatory bowel diseases: A practical guide. Clin Gastroenterol Hepatol. 20:481–490. DOI: 10.1016/j.cgh.2020.10.027. PMID: 33080353.
47. Galloway J, Raine T, Rivett L, Roberts J, Dews SA, Choy EH. 2022; Herpes zoster and Janus kinase inhibition in rheumatology and gastroenterology patients: managing risk and vaccination. Clin Exp Rheumatol. 40:1432–1441. DOI: 10.55563/clinexprheumatol/0jdyse. PMID: 34874825.
48. Lee YJ, Kim ES. 2022; Vaccination strategies for Korean patients with inflammatory bowel disease. Korean J Intern Med. 37:920–930. DOI: 10.3904/kjim.2022.149. PMID: 35934888. PMCID: PMC9449215.
49. Sandborn WJ, D'Haens GR, Sands BE, et al. 2023; Tofacitinib for the treatment of ulcerative colitis: An integrated summary of up to 7.8 years of safety data from the global clinical programme. J Crohns Colitis. 17:338–351. DOI: 10.1093/ecco-jcc/jjac141. PMID: 36124702. PMCID: PMC10069618.
50. Russell MD, Stovin C, Alveyn E, et al. 2023; JAK inhibitors and the risk of malignancy: a meta-analysis across disease indications. Ann Rheum Dis. 82:1059–1067. DOI: 10.1136/ard-2023-224049. PMID: 37247942. PMCID: PMC10359573.
51. Weng MT, Park SH, Matsuoka K, et al. 2018; Incidence and risk factor analysis of thromboembolic events in East Asian patients with inflammatory bowel disease, a multinational collaborative study. Inflamm Bowel Dis. 24:1791–1800. DOI: 10.1093/ibd/izy058. PMID: 29726897.
52. Olivera PA, Lasa JS, Bonovas S, Danese S, Peyrin-Biroulet L. 2020; Safety of janus kinase inhibitors in patients with inflammatory bowel diseases or other immune-mediated diseases: A systematic review and meta-analysis. Gastroenterology. 158:1554–1573.e12. DOI: 10.1053/j.gastro.2020.01.001. PMID: 31926171.
53. Gladman DD, Charles-Schoeman C, McInnes IB, et al. 2019; Changes in lipid levels and incidence of cardiovascular events following tofacitinib treatment in patients with psoriatic arthritis: A pooled analysis across phase III and long-term extension studies. Arthritis Care Res (Hoboken). 71:1387–1395. DOI: 10.1002/acr.23930. PMID: 31112005. PMCID: PMC6764856.
54. Sands BE, Taub PR, Armuzzi A, et al. 2020; Tofacitinib treatment is associated with modest and reversible increases in serum lipids in patients with ulcerative colitis. Clin Gastroenterol Hepatol. 18:123–132.e3. DOI: 10.1016/j.cgh.2019.04.059. PMID: 31077827.
55. Sands BE, Colombel JF, Ha C, et al. 2021; Lipid profiles in patients with ulcerative colitis receiving tofacitinib-implications for cardiovascular risk and patient management. Inflamm Bowel Dis. 27:797–808. DOI: 10.1093/ibd/izaa227. PMID: 32870265. PMCID: PMC8128390.
56. Elford AT, Bishara M, Plevris N, et al. 2024; Real-world effectiveness of upadacitinib in Crohn's disease: a UK multicentre retrospective cohort study. Frontline Gastroenterol. 15:297–304. DOI: 10.1136/flgastro-2024-102668. PMID: 38903490. PMCID: PMC11187394.
57. Mendes-Bastos P, Ladizinski B, Guttman-Yassky E, et al. 2022; Characterization of acne associated with upadacitinib treatment in patients with moderate-to-severe atopic dermatitis: A post hoc integrated analysis of 3 phase 3 randomized, double-blind, placebo-controlled trials. J Am Acad Dermatol. 87:784–791. DOI: 10.1016/j.jaad.2022.06.012. PMID: 35714786.
58. 2024. May. 16. Rinvoq Extended-release Tablets 15mg (Product Approval Information). [Internet]. AbbVie Inc.;Available from: https://www.abbvie.co.kr/content/dam/abbvie-dotcom/kr/documents/Rinvoq_15mg_20240516_impl_20240816.pdf. cited 2024 Jul 22.
59. Immunological disease treatment Jyseleca Tab 100mg, 200mg. [Internet]. Eisai Co., Ltd.;2024. cited 2024 Jul 22. Available from: Available from: https://www.eisaikorea.com/board/product/board_view.php?search_division=IMMUNE&search_category=2&num=1010.
60. Dosing Flexibility & Monitoring in UC. [Internet]. Pfizer;2021. Nov. 2. cited 2024 Jul 22. Available from: https://xeljanz.pfizerpro.com/uc/dosing-monitoring.
61. Zegkos T, Kitas G, Dimitroulas T. 2016; Cardiovascular risk in rheumatoid arthritis: assessment, management and next steps. Ther Adv Musculoskelet Dis. 8:86–101. DOI: 10.1177/1759720X16643340. PMID: 27247635. PMCID: PMC4872174.
62. Castañeda S, Nurmohamed MT, González-Gay MA. 2016; Cardiovascular disease in inflammatory rheumatic diseases. Best Pract Res Clin Rheumatol. 30:851–869. DOI: 10.1016/j.berh.2016.10.006. PMID: 27964792.
63. Jordan AA, Higgins PD. 2023; The role of upadacitinib in the treatment of ulcerative colitis. Immunotherapy. 15:713–727. DOI: 10.2217/imt-2022-0299. PMID: 37129377.
64. Akiyama S, Steinberg JM, Kobayashi M, Suzuki H, Tsuchiya K. 2023; Pregnancy and medications for inflammatory bowel disease: An updated narrative review. World J Clin Cases. 11:1730–1740. DOI: 10.12998/wjcc.v11.i8.1730. PMID: 36969991. PMCID: PMC10037280.
65. Mohamed MF, Bhatnagar S, Parmentier JM, Nakasato P, Wung P. 2024; Upadacitinib: Mechanism of action, clinical, and translational science. Clin Transl Sci. 17:e13688. DOI: 10.1111/cts.13688. PMID: 37984057. PMCID: PMC10771099.
66. Wang D, Zou L, Jin Q, Hou J, Ge G, Yang L. 2018; Human carboxylesterases: a comprehensive review. Acta Pharm Sin B. 8:699–712. DOI: 10.1016/j.apsb.2018.05.005. PMID: 30245959. PMCID: PMC6146386.
67. Burr NE, Gracie DJ, Black CJ, Ford AC. Efficacy of biological therapies and small molecules in moderate to severe ulcerative colitis: systematic review and network meta-analysis. Gut. 2021; Dec. 22. doi: 10.1136/gutjnl-2021-326390. DOI: 10.1136/gutjnl-2021-326390. PMID: 34937767.
68. Lasa JS, Olivera PA, Danese S, Peyrin-Biroulet L. 2022; Efficacy and safety of biologics and small molecule drugs for patients with moderate-to-severe ulcerative colitis: a systematic review and network meta-analysis. Lancet Gastroenterol Hepatol. 7:161–170. DOI: 10.1016/S2468-1253(21)00377-0. PMID: 34856198.
69. Adas MA, Alveyn E, Cook E, Dey M, Galloway JB, Bechman K. 2022; The infection risks of JAK inhibition. Expert Rev Clin Immunol. 18:253–261. DOI: 10.1080/1744666X.2022.2014323. PMID: 34860621. PMCID: PMC8935945.
70. Barberio B, Gracie DJ, Black CJ, Ford AC. 2023; Efficacy of biological therapies and small molecules in induction and maintenance of remission in luminal Crohn's disease: systematic review and network meta-analysis. Gut. 72:264–274. DOI: 10.1136/gutjnl-2022-328052. PMID: 35907636.
71. Choden T, Cohen NA, Rubin DT. 2022; Sphingosine-1 phosphate receptor modulators: The next wave of oral therapies in inflammatory bowel disease. Gastroenterol Hepatol (N Y). 18:265–271.
72. Wyant T, Fedyk E, Abhyankar B. 2016; An overview of the mechanism of action of the monoclonal antibody vedolizumab. J Crohns Colitis. 10:1437–1444. DOI: 10.1093/ecco-jcc/jjw092. PMID: 27252400.
73. Blaho VA, Hla T. 2014; An update on the biology of sphingosine 1-phosphate receptors. J Lipid Res. 55:1596–1608. DOI: 10.1194/jlr.R046300. PMID: 24459205. PMCID: PMC4109755.
74. Sandborn WJ, Vermeire S, Peyrin-Biroulet L, et al. 2023; Etrasimod as induction and maintenance therapy for ulcerative colitis (ELEVATE): two randomised, double-blind, placebo-controlled, phase 3 studies. Lancet. 401:1159–1171. DOI: 10.1016/S0140-6736(23)00061-2. PMID: 36871574.
75. Jain N, Bhatti MT. 2012; Fingolimod-associated macular edema: incidence, detection, and management. Neurology. 78:672–680. DOI: 10.1212/WNL.0b013e318248deea. PMID: 22371414.
76. Calabresi PA, Radue EW, Goodin D, et al. 2014; Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 13:545–556. DOI: 10.1016/S1474-4422(14)70049-3. PMID: 24685276.
77. Sandborn WJ, Feagan BG, D'Haens G, et al. 2021; Ozanimod as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 385:1280–1291. DOI: 10.1056/NEJMoa2033617. PMID: 34587385.
78. Feagan BG, Sandborn WJ, Danese S, et al. 2020; Ozanimod induction therapy for patients with moderate to severe Crohn's disease: a single-arm, phase 2, prospective observer-blinded endpoint study. Lancet Gastroenterol Hepatol. 5:819–828. DOI: 10.1016/S2468-1253(20)30188-6. PMID: 32553149.
79. Feagan BG, Schreiber S, Afzali A, et al. 2022; Ozanimod as a novel oral small molecule therapy for the treatment of Crohn's disease: The YELLOWSTONE clinical trial program. Contemp Clin Trials. 122:106958. DOI: 10.1016/j.cct.2022.106958. PMID: 36208720. PMCID: PMC10008122.
80. Shirley M. 2024; Etrasimod: First approval. Drugs. 84:247–254. DOI: 10.1007/s40265-024-01997-7. PMID: 38388871.
81. D'Haens G, Dubinsky M, Peyrin-Biroulet L, et al. 2023; P632 Etrasimod induction therapy in moderately to severely active Crohn's disease: results from a phase 2, randomised, double-blind substudy. J Crohns Colitis. 17(Suppl 1):i764–i765. DOI: 10.1093/ecco-jcc/jjac190.0762.
82. Sands B, Pondel M, Silver M, et al. 2021; P031 Impact of prior biologic exposure on response to ozanimod for moderate-to-severe ulcerative colitis in the phase 3 true north study. Am J Gastroenterol. 116(Suppl 1):S8. DOI: 10.14309/01.ajg.0000798724.11932.76. PMID: 37461950.
83. Cohen NA, Choi D, Garcia N, et al. 2024; Real world clinical effectiveness and safety of ozanimod in the treatment of ulcerative colitis: 1-year follow-up from a tertiary center. Dig Dis Sci. 69:579–587. DOI: 10.1007/s10620-023-08178-8. PMID: 38087126.
84. Sandborn WJ, Feagan BG, Hanauer S, et al. 2021; Long-term efficacy and safety of ozanimod in moderately to severely active ulcerative colitis: Results from the open-label extension of the randomized, phase 2 TOUCHSTONE study. J Crohns Colitis. 15:1120–1129. DOI: 10.1093/ecco-jcc/jjab012. PMID: 33438008. PMCID: PMC8256627.
85. Vermeire S, Chiorean M, Panés J, et al. 2021; Long-term safety and efficacy of etrasimod for ulcerative colitis: Results from the open-label extension of the OASIS study. J Crohns Colitis. 15:950–959. DOI: 10.1093/ecco-jcc/jjab016. PMID: 33475734. PMCID: PMC8218705.
86. Siegel C, Danese S, Rubin D, et al. 2024; DOP16 Safety of long-term ozanimod treatment for up to 4 years in patients with moderately to severely active Ulcerative Colitis: an interim analysis of the True North open-label extension. J Crohns Colitis. 18(Suppl 1):i100–i101. DOI: 10.1093/ecco-jcc/jjad212.0056.
87. Sands BE, Schreiber S, Blumenstein I, Chiorean MV, Ungaro RC, Rubin DT. 2023; Clinician's guide to using ozanimod for the treatment of ulcerative colitis. J Crohns Colitis. 17:2012–2025. DOI: 10.1093/ecco-jcc/jjad112. PMID: 37436357. PMCID: PMC10798866.
88. Becher N, Swaminath A, Sultan K. 2022; A literature review of ozanimod therapy in inflammatory bowel disease: From concept to practical application. Ther Clin Risk Manag. 18:913–927. DOI: 10.2147/TCRM.S336139. PMID: 36106049. PMCID: PMC9467694.
89. Tran JQ, Zhang P, Walker S, et al. 2020; Multiple-dose pharmacokinetics of ozanimod and its major active metabolites and the pharmacodynamic and pharmacokinetic interactions with pseudoephedrine, a sympathomimetic agent, in healthy subjects. Adv Ther. 37:4944–4958. DOI: 10.1007/s12325-020-01500-0. PMID: 33025342. PMCID: PMC7595987.
90. Harnik S, Ungar B, Loebstein R, Ben-Horin S. 2024; A Gastroenterologist's guide to drug interactions of small molecules for inflammatory bowel disease. United European Gastroenterol J. 12:627–637. DOI: 10.1002/ueg2.12559. PMID: 38532266. PMCID: PMC11176903.
91. Clement B, De Felice K, Afzali A. 2023; Indications and safety of newer IBD treatments in the older patient. Curr Gastroenterol Rep. 25:160–168. DOI: 10.1007/s11894-023-00874-9. PMID: 37227615. PMCID: PMC10209934.
Full Text Links
  • KJG
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr