2. De Gioia R, Biella F, Citterio G, et al. 2020; Neural stem cell transplantation for neurodegenerative diseases. Int J Mol Sci. 21:3103. DOI:
10.3390/ijms21093103. PMID:
32354178. PMCID:
PMC7247151.
5. Fox SH, Katzenschlager R, Lim SY, et al. 2011; The Movement Disorder Society evidence-based medicine review update: treatments for the motor symptoms of Parkinson’s disease. Mov Disord. 26 Suppl 3:S2–S41.
6. Ahmadian-Moghadam H, Sadat-Shirazi MS, Zarrindast MR. 2020; Therapeutic potential of stem cells for treatment of neurodegenerative diseases. Biotechnol Lett. 42:1073–1101. DOI:
10.1007/s10529-020-02886-1. PMID:
32342435.
7. Andrzejewska A, Dabrowska S, Lukomska B, Janowski M. 2021; Mesenchymal stem cells for neurological disorders. Adv Sci (Weinh). 8:2002944. DOI:
10.1002/advs.202002944. PMID:
33854883. PMCID:
PMC8024997.
9. Kolios G, Moodley Y. 2013; Introduction to stem cells and regenerative medicine. Respiration. 85:3–10. DOI:
10.1159/000345615. PMID:
23257690.
10. Sobhani A, Khanlarkhani N, Baazm M, et al. 2017; Multipotent stem cell and current application. Acta Med Iran. 55:6–23. PMID:
28188938.
11. Gurusamy N, Alsayari A, Rajasingh S, Rajasingh J. 2018; Adult stem cells for regenerative therapy. Prog Mol Biol Transl Sci. 160:1–22. DOI:
10.1016/bs.pmbts.2018.07.009. PMID:
30470288.
12. Barkho BZ, Zhao X. 2011; Adult neural stem cells: response to stroke injury and potential for therapeutic applications. Curr Stem Cell Res Ther. 6:327–338. DOI:
10.2174/157488811797904362. PMID:
21466483. PMCID:
PMC3199296.
13. Nam H, Lee KH, Nam DH, Joo KM. 2015; Adult human neural stem cell therapeutics: current developmental status and prospect. World J Stem Cells. 7:126–136. DOI:
10.4252/wjsc.v7.i1.126. PMID:
25621112. PMCID:
PMC4300923.
14. Bozorgmehr M, Gurung S, Darzi S, et al. 2020; Endometrial and menstrual blood mesenchymal stem/stromal cells: biologi-cal properties and clinical application. Front Cell Dev Biol. 8:497. DOI:
10.3389/fcell.2020.00497. PMID:
32742977. PMCID:
PMC7364758.
15. Zuo W, Xie B, Li C, et al. 2018; The clinical applications of endometrial mesenchymal stem cells. Biopreserv Biobank. 16:158–164. DOI:
10.1089/bio.2017.0057. PMID:
29265881. PMCID:
PMC5906727.
17. Jin W, Zhao Y, Hu Y, et al. 2020; Stromal cell-derived factor-1 enhances the therapeutic effects of human endometrial regenerative cells in a mouse sepsis model. Stem Cells Int. 2020:4820543. DOI:
10.1155/2020/4820543. PMID:
32256608. PMCID:
PMC7103048.
18. Kong Y, Shao Y, Ren C, Yang G. 2021; Endometrial stem/progenitor cells and their roles in immunity, clinical application, and endometriosis. Stem Cell Res Ther. 12:474. DOI:
10.1186/s13287-021-02526-z. PMID:
34425902. PMCID:
PMC8383353.
19. Zhong Z, Patel AN, Ichim TE, et al. 2009; Feasibility investi-gation of allogeneic endometrial regenerative cells. J Transl Med. 7:15. DOI:
10.1186/1479-5876-7-15. PMID:
19232091. PMCID:
PMC2649897.
20. Ichim TE, Alexandrescu DT, Solano F, et al. 2010; Mesenchymal stem cells as anti-inflammatories: implications for treatment of Duchenne muscular dystrophy. Cell Immunol. 260:75–82. DOI:
10.1016/j.cellimm.2009.10.006. PMID:
19917503.
21. Wang Z, Wang D, Liu Y, et al. 2021; Mesenchymal stem cell in mice uterine and its therapeutic effect on osteoporosis. Rejuvenation Res. 24:139–150. DOI:
10.1089/rej.2019.2262. PMID:
32567490.
22. Liu Y, Niu R, Li W, et al. 2019; Therapeutic potential of mens-trual blood-derived endometrial stem cells in cardiac diseases. Cell Mol Life Sci. 76:1681–1695. DOI:
10.1007/s00018-019-03019-2. PMID:
30721319. PMCID:
PMC11105669.
23. Chen L, Qu J, Xiang C. 2019; The multi-functional roles of menstrual blood-derived stem cells in regenerative medicine. Stem Cell Res Ther. 10:1. DOI:
10.1186/s13287-018-1105-9. PMID:
30606242. PMCID:
PMC6318883.
24. Peron JP, Jazedje T, Brandão WN, et al. 2012; Human endometrial-derived mesenchymal stem cells suppress inflam-mation in the central nervous system of EAE mice. Stem Cell Rev Rep. 8:940–952. DOI:
10.1007/s12015-011-9338-3. PMID:
22180029.
26. Maruyama T. 2014; Endometrial stem/progenitor cells. J Obstet Gynaecol Res. 40:2015–2022. DOI:
10.1111/jog.12501. PMID:
25160689.
27. Li H, Yahaya BH, Ng WH, Yusoff NM, Lin J. 2019; Conditioned medium of human menstrual blood-derived endometrial stem cells protects against MPP+-induced cytotoxicity in vitro. Front Mol Neurosci. 12:80.
28. Masuda H, Schwab KE, Filby CE, et al. 2021; Endometrial stem/progenitor cells in menstrual blood and peritoneal fluid of women with and without endometriosis. Reprod Biomed Online. 43:3–13. DOI:
10.1016/j.rbmo.2021.04.008. PMID:
34011465.
29. Mobarakeh ZT, Ai J, Yazdani F, et al. 2012; Human endometrial stem cells as a new source for programming to neural cells. Cell Biol Int Rep (2010). 19:e00015. DOI:
10.1042/cbr20110009. PMID:
23124318. PMCID:
PMC3475442.
30. Liu Y, Niu R, Yang F, et al. 2018; Biological characteristics of human menstrual blood-derived endometrial stem cells. J Cell Mol Med. 22:1627–1639. DOI:
10.1111/jcmm.13437. PMID:
29278305. PMCID:
PMC5824373.
31. Cheng Y, Li L, Wang D, et al. 2017; Characteristics of human endometrium-derived mesenchymal stem cells and their tropism to endometriosis. Stem Cells Int. 2017:4794827. DOI:
10.1155/2017/4794827. PMID:
28761446. PMCID:
PMC5518492.
32. Fayazi M, Salehnia M, Ziaei S. 2015; Differentiation of human CD146-positive endometrial stem cells to adipogenic-, osteogenic-, neural progenitor-, and glial-like cells. In Vitro Cell Dev Biol Anim. 51:408–414. DOI:
10.1007/s11626-014-9842-2. PMID:
25515247.
33. Kojour MA, Ebrahimi-Barough S, Kouchesfehani HM, Jalali H, Ebrahim MH. 2017; Oleic acid promotes the expression of neural markers in differentiated human endometrial stem cells. J Chem Neuroanat. 79:51–57. DOI:
10.1016/j.jchemneu.2016.11.004. PMID:
27865908.
34. Noureddini M, Verdi J, Mortazavi-Tabatabaei SA, et al. 2012; Human endometrial stem cell neurogenesis in response to NGF and bFGF. Cell Biol Int. 36:961–966. DOI:
10.1042/cbi20110610. PMID:
22804708.
35. Wolff EF, Gao XB, Yao KV, et al. 2011; Endometrial stem cell transplantation restores dopamine production in a Parki-nson’s disease model. J Cell Mol Med. 15:747–755.
36. Zhao Y, Chen X, Wu Y, Wang Y, Li Y, Xiang C. 2018; Trans-plantation of human menstrual blood-derived mesenchymal stem cells alleviates Alzheimer’s disease-like pathology in APP/PS1 transgenic mice. Front Mol Neurosci. 11:140.
37. Borlongan CV, Kaneko Y, Maki M, et al. 2010; Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells Dev. 19:439–452. DOI:
10.1089/scd.2009.0340. PMID:
19860544. PMCID:
PMC3158424.
38. Wu Q, Wang Q, Li Z, et al. 2018; Human menstrual blood-derived stem cells promote functional recovery in a rat spinal cord hemisection model. Cell Death Dis. 9:882. DOI:
10.1038/s41419-018-0847-8. PMID:
30158539. PMCID:
PMC6115341.
39. Shi Y, Liu Y, Zhang B, Li X, Lin J, Yang C. 2023; Human menstrual blood-derived endometrial stem cells promote functional recovery by improving the inflammatory microenvi-ronment in a mouse spinal cord injury model. Cell Trans-plant. 32:9636897231154579. DOI:
10.1177/09636897231154579. PMID:
36786359. PMCID:
PMC9932767.
40. Wolff EF, Mutlu L, Massasa EE, Elsworth JD, Eugene Redmond D Jr, Taylor HS. 2015; Endometrial stem cell transplantation in MPTP- exposed primates: an alternative cell source for treatment of Parkinson’s disease. J Cell Mol Med. 19:249–256.
41. Yang X, Devianti M, Yang YH, et al. 2019; Endometrial mesenchymal stem/stromal cell modulation of T cell prolifera-tion. Reproduction. 157:43–52. DOI:
10.1530/REP-18-0266. PMID:
30392200.
42. Manganeli Polonio C, Longo de Freitas C, Garcia de Oliveira M, et al. 2021; Murine endometrial-derived mesenchymal stem cells suppress experimental autoimmune encephalomyelitis depending on indoleamine-2,3-dioxygenase expression. Clin Sci (Lond). 135:1065–1082. DOI:
10.1042/cs20201544. PMID:
33960391.
43. León-Moreno LC, Castañeda-Arellano R, Aguilar-García IG, et al. 2020; Kinematic changes in a mouse model of penetrating hippocampal injury and their recovery after intranasal administration of endometrial mesenchymal stem cell-derived extracellular vesicles. Front Cell Neurosci. 14:579162. DOI:
10.3389/fncel.2020.579162. PMID:
33192324. PMCID:
PMC7533596.
44. Hasanzadeh E, Ebrahimi-Barough S, Mahmoodi N, et al. 2021; Defining the role of 17β-estradiol in human endometrial stem cells differentiation into neuron-like cells. Cell Biol Int. 45:140–153. DOI:
10.1002/cbin.11478. PMID:
33049079.
46. Shirian S, Ebrahimi-Barough S, Saberi H, et al. 2016; Compari-son of capability of human bone marrow mesenchymal stem cells and endometrial stem cells to differentiate into motor neurons on electrospun poly (ε-caprolactone) scaffold. Mol Neurobiol. 53:5278–5287. DOI:
10.1007/s12035-015-9442-5. PMID:
26420037.
47. Ebrahimi-Barough S, Hoveizi E, Yazdankhah M, et al. 2017; Inhibitor of PI3K/Akt signaling pathway small molecule promotes motor neuron differentiation of human endome-trial stem cells cultured on electrospun biocomposite polycaprolactone/collagen scaffolds. Mol Neurobiol. 54:2547–2554. DOI:
10.1007/s12035-016-9828-z. PMID:
26993294.
48. Ebrahimi-Barough S, Norouzi Javidan A, Saberi H, et al. 2015; Evaluation of motor neuron-like cell differentiation of hEnSCs on biodegradable PLGA nanofiber scaffolds. Mol Neurobiol. 52:1704–1713. DOI:
10.1007/s12035-014-8931-2. PMID:
25377792.
49. Mahmoodi N, Ai J, Ebrahimi-Barough S, et al. 2020; Microtubule stabilizer epothilone B as a motor neuron differentiation agent for human endometrial stem cells. Cell Biol Int. 44:1168–1183. DOI:
10.1002/cbin.11315. PMID:
32022385.
50. Mohamadi F, Ebrahimi-Barough S, Nourani MR, et al. 2018; Enhanced sciatic nerve regeneration by human endometrial stem cells in an electrospun poly (ε-caprolactone)/collagen/NBG nerve conduit in rat. Artif Cells Nanomed Biotechnol. 46:1731–1743. DOI:
10.1080/21691401.2017.1391823. PMID:
29117721.
51. Jalali Monfared M, Nasirinezhad F, Ebrahimi-Barough S, et al. 2019; Transplantation of miR-219 overexpressed human endometrial stem cells encapsulated in fibrin hydrogel in spinal cord injury. J Cell Physiol. 234:18887–18896. DOI:
10.1002/jcp.28527. PMID:
30982976.
52. Babaloo H, Ebrahimi-Barough S, Derakhshan MA, et al. 2019; PCL/gelatin nanofibrous scaffolds with human endometrial stem cells/Schwann cells facilitate axon regeneration in spinal cord injury. J Cell Physiol. 234:11060–11069. DOI:
10.1002/jcp.27936. PMID:
30584656.
53. Terraf P, Kouhsari SM, Ai J, Babaloo H. 2017; Tissue-engineered regeneration of hemisected spinal cord using human endometrial stem cells, poly ε-caprolactone scaffolds, and crocin as a neuroprotective agent. Mol Neurobiol. 54:5657–5667. DOI:
10.1007/s12035-016-0089-7. PMID:
27624387.