1. Barker N, van Es JH, Kuipers J, et al. 2007; Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 449:1003–1007. DOI:
10.1038/nature06196. PMID:
17934449.
2. Janebodin K, Buranaphatthana W, Ieronimakis N, Hays AL, Reyes M. 2013; An
in vitro culture system for long-term expansion of epithelial and mesenchymal salivary gland cells: role of TGF-β1 in salivary gland epithelial and mesenchymal differentiation. Biomed Res Int. 2013:815895. DOI:
10.1155/2013/815895. PMID:
23841093. PMCID:
PMC3690740.
3. Gehart H, Clevers H. 2019; Tales from the crypt: new insights into intestinal stem cells. Nat Rev Gastroenterol Hepatol. 16:19–34. DOI:
10.1038/s41575-018-0081-y. PMID:
30429586.
4. Sato T, van Es JH, Snippert HJ, et al. 2011; Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature. 469:415–418. DOI:
10.1038/nature09637. PMID:
21113151. PMCID:
PMC3547360.
5. de Lau W, Barker N, Low TY, et al. 2011; Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature. 476:293–297. DOI:
10.3410/f.12001958.14669072. PMID:
21727895.
6. Meran L, Baulies A, Li VSW. 2017; Intestinal stem cell niche: the extracellular matrix and cellular components. Stem Cells Int. 2017:7970385. DOI:
10.1155/2017/7970385. PMID:
28835755. PMCID:
PMC5556610.
8. Wang D, Odle J, Liu Y. 2021; Metabolic regulation of intestinal stem cell homeostasis. Trends Cell Biol. 31:325–327. DOI:
10.1016/j.tcb.2021.02.001. PMID:
33648839.
9. Sato T, Vries RG, Snippert HJ, et al. 2009; Single Lgr5 stem cells build crypt-villus structures
in vitro without a mesenchymal niche. Nature. 459:262–265. DOI:
10.3410/f.1158598.621586. PMID:
19329995.
10. Yan KS, Chia LA, Li X, et al. 2012; The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci U S A. 109:466–471. DOI:
10.1073/pnas.1118857109. PMID:
22190486. PMCID:
PMC3258636.
11. Tao S, Tang D, Morita Y, et al. 2017; Wnt activity and basal niche position sensitize intestinal stem and progenitor cells to DNA damage. EMBO J. 36:2920–2921. Erratum for: EMBO J 2015;34:624-640. DOI:
10.15252/embj.201490700. PMID:
25609789. PMCID:
PMC4365032.
12. Gregorieff A, Liu Y, Inanlou MR, Khomchuk Y, Wrana JL. 2015; Yap-dependent reprogramming of Lgr5(+) stem cells drives intestinal regeneration and cancer. Nature. 526:715–718.
13. Tian H, Biehs B, Warming S, et al. 2011; A reserve stem cell population in small intestine renders Lgr5-positive cells dis-pensable. Nature. 478:255–259. DOI:
10.1038/nature10408. PMID:
21927002. PMCID:
PMC4251967.
14. Ahn JS, Kang MJ, Seo Y, Kim HS. 2023; Intestinal organoids as advanced modeling platforms to study the role of host-microbiome interaction in homeostasis and disease. BMB Rep. 56:15–23. DOI:
10.5483/bmbrep.2022-0182. PMID:
36379514. PMCID:
PMC9887104.
16. Snippert HJ, van der Flier LG, Sato T, et al. 2010; Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell. 143:134–144. DOI:
10.3410/f.5964956.13138055. PMID:
20887898.
17. Winton DJ, Blount MA, Ponder BA. 1988; A clonal marker induced by mutation in mouse intestinal epithelium. Nature. 333:463–466. DOI:
10.1038/333463a0. PMID:
3163778.
19. Richmond CA, Shah MS, Carlone DL, Breault DT. 2016; An enduring role for quiescent stem cells. Dev Dyn. 245:718–726. DOI:
10.1002/dvdy.24416. PMID:
27153394. PMCID:
PMC4912863.
20. Sangiorgi E, Capecchi MR. 2008; Bmi1 is expressed
in vivo in intestinal stem cells. Nat Genet. 40:915–920. DOI:
10.1038/ng.165. PMID:
18536716. PMCID:
PMC2906135.
21. Barriga FM, Montagni E, Mana M, et al. 2017; Mex3a marks a slowly dividing subpopulation of Lgr5+ intestinal stem cells. Cell Stem Cell. 20:801–816.e7.
22. Roche KC, Gracz AD, Liu XF, Newton V, Akiyama H, Magness ST. 2015; SOX9 maintains reserve stem cells and preserves radioresistance in mouse small intestine. Gastroente-rology. 149:1553–1563.e10. DOI:
10.1053/j.gastro.2015.07.004. PMID:
26170137. PMCID:
PMC4709179.
23. Powell AE, Wang Y, Li Y, et al. 2012; The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell. 149:146–158. DOI:
10.3410/f.717952209.793478796. PMID:
22464327. PMCID:
PMC3563328.
24. Takeda N, Jain R, LeBoeuf MR, Wang Q, Lu MM, Epstein JA. 2011; Interconversion between intestinal stem cell popula-tions in distinct niches. Science. 334:1420–1424. DOI:
10.1126/science.1213214. PMID:
22075725. PMCID:
PMC3705713.
25. Montgomery RK, Carlone DL, Richmond CA, et al. 2011; Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc Natl Acad Sci U S A. 108:179–184. DOI:
10.3410/f.7984956.8361054. PMID:
21173232. PMCID:
PMC3017192.
26. Muñoz J, Stange DE, Schepers AG, et al. 2012; The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+4’ cell markers. EMBO J. 31:3079–3091.
27. Itzkovitz S, Lyubimova A, Blat IC, et al. 2011; Single-molecule transcript counting of stem-cell markers in the mouse inte-stine. Nat Cell Biol. 14:106–114. DOI:
10.1038/ncb2384. PMID:
22119784. PMCID:
PMC3292866.
28. López-Arribillaga E, Rodilla V, Pellegrinet L, et al. 2015; Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch. Development. 142:41–50. DOI:
10.1242/dev.107714. PMID:
25480918.
29. Van Landeghem L, Santoro MA, Krebs AE, et al. 2012; Activa-tion of two distinct Sox9-EGFP-expressing intestinal stem cell populations during crypt regeneration after irradiation. Am J Physiol Gastrointest Liver Physiol. 302:G1111–G1132. DOI:
10.1152/ajpgi.00519.2011. PMID:
22361729. PMCID:
PMC3362093.
31. Li N, Yousefi M, Nakauka-Ddamba A, et al. 2014; Single-cell analysis of proxy reporter allele-marked epithelial cells establishes intestinal stem cell hierarchy. Stem Cell Reports. 3:876–891. DOI:
10.1016/j.stemcr.2014.09.011. PMID:
25418730. PMCID:
PMC4235148.
32. Yan KS, Gevaert O, Zheng GXY, et al. 2017; Intestinal enteroendocrine lineage cells possess homeostatic and injury-inducible stem cell activity. Cell Stem Cell. 21:78–90.e6. DOI:
10.1016/j.stem.2017.06.014. PMID:
28686870. PMCID:
PMC5642297.
34. Li N, Nakauka-Ddamba A, Tobias J, Jensen ST, Lengner CJ. 2016; Mouse label-retaining cells are molecularly and functionally distinct from reserve intestinal stem cells. Gastro-enterology. 151:298–310.e7. DOI:
10.1053/j.gastro.2016.04.049. PMID:
27237597. PMCID:
PMC4961601.
35. Jadhav U, Saxena M, O’Neill NK, et al. 2017; Dynamic reorga-nization of chromatin accessibility signatures during dedifferentiation of secretory precursors into Lgr5+ intestinal stem cells. Cell Stem Cell. 21:65–77.e5.
36. Engelstoft MS, Egerod KL, Lund ML, Schwartz TW. 2013; Enteroendocrine cell types revisited. Curr Opin Pharmacol. 13:912–921. DOI:
10.1016/j.coph.2013.09.018. PMID:
24140256.
37. Sei Y, Feng J, Samsel L, et al. 2018; Mature enteroendocrine cells contribute to basal and pathological stem cell dynamics in the small intestine. Am J Physiol Gastrointest Liver Physiol. 315:G495–G510. DOI:
10.1152/ajpgi.00036.2018. PMID:
29848020. PMCID:
PMC6230697.
38. Higa T, Okita Y, Matsumoto A, et al. 2022; Spatiotemporal reprogramming of differentiated cells underlies regeneration and neoplasia in the intestinal epithelium. Nat Commun. 13:1500. DOI:
10.1038/s41467-022-29165-z. PMID:
35314700. PMCID:
PMC8938507.
39. Katano T, Bialkowska AB, Yang VW. 2020; KLF4 regulates goblet cell differentiation in BMI1
+ reserve intestinal stem cell lineage during homeostasis. Int J Stem Cells. 13:424–431. DOI:
10.15283/ijsc20048. PMID:
32840226. PMCID:
PMC7691855.
40. Metcalfe C, Kljavin NM, Ybarra R, de Sauvage FJ. 2014; Lgr5+ stem cells are indispensable for radiation-induced intes-tinal regeneration. Cell Stem Cell. 14:149–159.
41. Chaves-Pérez A, Yilmaz M, Perna C, de la Rosa S, Djouder N. 2019; URI is required to maintain intestinal architecture during ionizing radiation. Science. 364:eaaq1165. DOI:
10.1126/science.aaq1165. PMID:
31147493.
42. Mita P, Savas JN, Briggs EM, et al. 2016; URI regulates KAP1 phosphorylation and transcriptional repression via PP2A phosphatase in prostate cancer cells. J Biol Chem. 291:25516–25528. DOI:
10.1074/jbc.m116.741660. PMID:
27780869. PMCID:
PMC5207251.
43. Chen F, Zhang Y, Hu S, et al. 2020; TIGAR/AP-1 axis accelerates the division of Lgr5
− reserve intestinal stem cells to reestablish intestinal architecture after lethal radiation. Cell Death Dis. 11:501. DOI:
10.1038/s41419-020-2715-6. PMCID:
PMC7338449.
44. Lee P, Hock AK, Vousden KH, Cheung EC. 2015; p53- and p73-independent activation of TIGAR expression
in vivo. Cell Death Dis. 6:e1842. DOI:
10.1038/cddis.2015.205. PMID:
26247727. PMCID:
PMC4558498.
45. Ishikawa K, Sugimoto S, Oda M, et al. 2022; Identification of quiescent LGR5+ stem cells in the human colon. Gastroente-rology. 163:1391–1406.e24.
46. Sugimoto S, Ohta Y, Fujii M, et al. 2018; Reconstruction of the human colon epithelium
in vivo. Cell Stem Cell. 22:171–176.e5. DOI:
10.1016/j.stem.2017.11.012. PMID:
29290616.
48. Yui S, Azzolin L, Maimets M, et al. 2018; YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell. 22:35–49.e7. DOI:
10.1016/j.stem.2017.11.001. PMID:
29249464. PMCID:
PMC5766831.
49. Kim HB, Kim M, Park YS, et al. 2017; Prostaglandin E2 activates YAP and a positive-signaling loop to promote colon rege-neration after colitis but also carcinogenesis in mice. Gas-troenterology. 152:616–630. DOI:
10.1053/j.gastro.2016.11.005. PMID:
27864128. PMCID:
PMC5285392.
50. Cai J, Zhang N, Zheng Y, de Wilde RF, Maitra A, Pan D. 2010; The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev. 24:2383–2388. DOI:
10.1101/gad.1978810. PMID:
21041407. PMCID:
PMC2964748.
51. Ayyaz A, Kumar S, Sangiorgi B, et al. 2019; Single-cell transcri-ptomes of the regenerating intestine reveal a revival stem cell. Nature. 569:121–125. DOI:
10.1038/s41586-019-1154-y. PMID:
31019301.
53. Roulis M, Kaklamanos A, Schernthanner M, et al. 2020; Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature. 580:524–529. DOI:
10.1038/s41586-020-2166-3. PMID:
32322056. PMCID:
PMC7490650.
54. Mustata RC, Vasile G, Fernandez-Vallone V, et al. 2013; Identifi-cation of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium. Cell Rep. 5:421–432. DOI:
10.1016/j.celrep.2013.09.005. PMID:
24139799.
56. Rapin A, Chuat A, Lebon L, Zaiss MM, Marsland BJ, Harris NL. 2020; Infection with a small intestinal helminth,
Heligmosomoides polygyrus bakeri, consistently alters microbial communities throughout the murine small and large intestine. Int J Parasitol. 50:35–46. DOI:
10.1016/j.ijpara.2019.09.005. PMID:
31759944.
57. Nusse YM, Savage AK, Marangoni P, et al. 2018; Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature. 559:109–113. Erratum in: Nature 2018;562:E22. DOI:
10.1038/s41586-018-0257-1. PMID:
29950724. PMCID:
PMC6042247.
58. Karo-Atar D, Ouladan S, Javkar T, et al. 2022; Helminth-induced reprogramming of the stem cell compartment inhibits type 2 immunity. J Exp Med. 219:e20212311. DOI:
10.1084/jem.20212311. PMID:
35938990. PMCID:
PMC9365672.
59. Stein A, Voigt W, Jordan K. 2010; Chemotherapy-induced diarrhea: pathophysiology, frequency and guideline-based mana-gement. Ther Adv Med Oncol. 2:51–63. DOI:
10.1177/1758834009355164. PMID:
21789126. PMCID:
PMC3126005.
60. Xiang J, Wang H, Tao Q, et al. 2023; CDK4/6 inhibitor modulating active and quiescent intestinal stem cells for prevention of chemotherapy-induced diarrhea. J Pathol. 260:235–247. DOI:
10.1002/path.6078. PMID:
36978197.
61. Qu M, Xiong L, Lyu Y, et al. 2021; Establishment of intestinal organoid cultures modeling injury-associated epithelial regeneration. Cell Res. 31:259–271. DOI:
10.1038/s41422-020-00453-x. PMID:
33420425. PMCID:
PMC8027647.
63. Sala E, Genua M, Petti L, et al. 2015; Mesenchymal stem cells reduce colitis in mice via release of TSG6, independently of their localization to the intestine. Gastroenterology. 149:163–176.e20. DOI:
10.1053/j.gastro.2015.03.013. PMID:
25790743.
64. Kim HS, Shin TH, Lee BC, et al. 2013; Human umbilical cord blood mesenchymal stem cells reduce colitis in mice by activating NOD2 signaling to COX2. Gastroenterology. 145:1392–1403.e1-8. DOI:
10.1053/j.gastro.2013.08.033. PMID:
23973922.
65. González MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado M. 2009; Adipose-derived mesenchymal stem cells alleviate expe-rimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology. 136:978–989. DOI:
10.1053/j.gastro.2008.11.041. PMID:
19135996.
66. Regmi S, Seo Y, Ahn JS, et al. 2021; Heterospheroid formation improves therapeutic efficacy of mesenchymal stem cells in murine colitis through immunomodulation and epithelial regeneration. Biomaterials. 271:120752. DOI:
10.1016/j.biomaterials.2021.120752. PMID:
33730631.
67. Katsandegwaza B, Horsnell W, Smith K. 2022; Inflammatory bowel disease: a review of pre-clinical murine models of human disease. Int J Mol Sci. 23:9344. DOI:
10.3390/ijms23169344. PMID:
36012618. PMCID:
PMC9409205.
69. Miyoshi H, VanDussen KL, Malvin NP, et al. 2017; Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium. EMBO J. 36:5–24. DOI:
10.15252/embj.201694660. PMID:
27797821. PMCID:
PMC5210160.