Nutr Res Pract.  2024 Aug;18(4):511-522. 10.4162/nrp.2024.18.4.511.

Homocysteine levels are associated with diabetes mellitus in Chinese with H-type hypertension

Affiliations
  • 1Department of Cardiovascular, The People’s Hospital of Zigui County, Yichang 443600, China
  • 2Department of Cardiovascular, Changyang Tujia Autonomous County People’s Hospital, Yichang 443000, China
  • 3Department of Cardiovascular, People’s Hospital of Huantai County, Zibo 255000, China
  • 4Department of Cardiovascular, The People’s Hospital of Wufeng Tujia Autonomous County, Yichang 443400, China
  • 5Clinical laboratory, The People’s Hospital of Wufeng Tujia Autonomous County, Yichang 443400, China
  • 6Department of Cardiovascular, Zigui County Hospital of Traditional Chinese Medicine, Yichang 443600, China
  • 7Clinical laboratory, Zigui County Hospital of Traditional Chinese Medicine, Yichang 443600, China
  • 8Clinical laboratory, Changyang Tujia Autonomous County People’s Hospital, Yichang 443000, China
  • 9Department of Cardiovascular, Yidu Hospital of Traditional Chinese Medicine, Yidu 443300, China

Abstract

BACKGROUND/OBJECTIVES
The study examined the association between homocysteine and diabetes mellitus in patients with H-type hypertension and assessed the possible effect modifiers.
SUBJECTS/METHODS
This cross-sectional study included 1,255 eligible participants in the ‘H-type Hypertension Management and Stroke Prevention Strategic International Science and Technology Innovation Cooperation Project’ among rural Chinese people with H-type hypertension. A multivariate logistic regression model was used to evaluate the relationship between homocysteine and diabetes mellitus.
RESULTS
The mean level of total homocysteine (tHcy) in the diabetes mellitus population was 19.37 μmol/L, which was significantly higher than the non-diabetic patients (18.18 μmol/L). When tHcy was analyzed as a continuous variable, the odds ratio (OR) of diabetes was 1.17 (95% confidence interval [CI], 1.01–1.35; per interquartile range). When tHcy was stratified according to the quintile, the ORs for diabetes were 2.86 (95% CI, 1.22–6.69) in the highest quintile (tHcy ≥ 20.60 μmol/L) compared to the reference group (tHcy < 12.04 μmol/L). When tHcy was grouped by 15 μmol/L and 20 μmol/L, patients with tHcy ≥ 20 μmol/L had a significantly (P = 0.037) higher risk of diabetes (OR, 2.03; 95% CI, 1.04–3.96) than in those with tHcy < 15 μmol/L. Subgroup analysis showed that the tHcy-diabetes association was unaffected by other variables.
CONCLUSION
In this study of rural Chinese people with H-type hypertension, the tHcy levels showed a positive association with diabetes mellitus. This independent association is unaffected by other potential risk factors.

Keyword

Homocysteine; diabetes mellitus; odds ratio; Chinese people; hypertension

Figure

  • Fig. 1 Flowchart of the study.tHcy, total homocysteine.

  • Fig. 2 Smoothing curves derived from generalized linear models illustrating the association between the tHcy levels (as a continuous variable) and diabetes mellitus, with an adjustment for age, sex, body mass index, systolic blood pressure, diastolic blood pressure, pulse, smoking status, alcohol drinking status, weekly fruit intake, stroke, coronary heart disease, dyslipidemia, glucose, cholesterol, triglycerides, high-density lipoprotein and low-density lipoprotein.tHcy, total homocysteine.

  • Fig. 3 Subgroup analyses on the association between the total homocysteine levels and ORs of diabetes Mellitus with an adjustment for age, sex, BMI, systolic blood pressure, diastolic blood pressure, pulse, smoking status, alcohol drinking status, weekly fruit intake, stroke, coronary heart disease, dyslipidemia, glucose, cholesterol, triglycerides, high-density lipoprotein, and low-density lipoprotein.OR, odds ratio; CI, confidence interval; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure.


Reference

1. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017; 389:2239–2251. PMID: 28190580.
Article
2. Boushey CJ, Beresford SA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA. 1995; 274:1049–1057. PMID: 7563456.
Article
3. Verhoef P, Stampfer MJ, Buring JE, Gaziano JM, Allen RH, Stabler SP, Reynolds RD, Kok FJ, Hennekens CH, Willett WC. Homocysteine metabolism and risk of myocardial infarction: relation with vitamins B6, B12, and folate. Am J Epidemiol. 1996; 143:845–859. PMID: 8610698.
4. Emoto M, Kanda H, Shoji T, Kawagishi T, Komatsu M, Mori K, Tahara H, Ishimura E, Inaba M, Okuno Y, et al. Impact of insulin resistance and nephropathy on homocysteine in type 2 diabetes. Diabetes Care. 2001; 24:533–538. PMID: 11289481.
Article
5. Hoogeveen EK, Kostense PJ, Beks PJ, Mackaay AJ, Jakobs C, Bouter LM, Heine RJ, Stehouwer CD. Hyperhomocysteinemia is associated with an increased risk of cardiovascular disease, especially in non-insulin-dependent diabetes mellitus: a population-based study. Arterioscler Thromb Vasc Biol. 1998; 18:133–138. PMID: 9445267.
Article
6. Ala OA, Akintunde AA, Ikem RT, Kolawole BA, Ala OO, Adedeji TA. Association between insulin resistance and total plasma homocysteine levels in type 2 diabetes mellitus patients in south west Nigeria. Diabetes Metab Syndr. 2017; 11(Suppl 2):S803–S809. PMID: 28610915.
Article
7. Ndrepepa G, Kastrati A, Braun S, Koch W, Kölling K, Mehilli J, Schömig A. Circulating homocysteine levels in patients with type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis. 2008; 18:66–73. PMID: 17027242.
Article
8. Passaro A, D’Elia K, Pareschi PL, Calzoni F, Carantoni M, Fellin R, Solini A. Factors influencing plasma homocysteine levels in type 2 diabetes. Diabetes Care. 2000; 23:420–421. PMID: 10868878.
9. Yu C, Wang J, Wang F, Han X, Hu H, Yuan J, Miao X, Yao P, Wei S, Wang Y, et al. Inverse association between plasma homocysteine concentrations and type 2 diabetes mellitus among a middle-aged and elderly Chinese population. Nutr Metab Cardiovasc Dis. 2018; 28:278–284. PMID: 29337020.
Article
10. Executive summary: standards of medical care in diabetes--2010. Diabetes Care. 2010; 33(Suppl 1):S4–10. PMID: 20042774.
11. Ebesunun MO, Obajobi EO. Elevated plasma homocysteine in type 2 diabetes mellitus: a risk factor for cardiovascular diseases. Pan Afr Med J. 2012; 12:48. PMID: 22937188.
12. Yuan X, Ding S, Zhou L, Wen S, Du A, Diao J. Association between plasma homocysteine levels and pancreatic islet beta-cell function in the patients with type 2 diabetes mellitus: a cross-sectional study from China. Ann Palliat Med. 2021; 10:8169–8179. PMID: 34353101.
Article
13. Schaffer A, Verdoia M, Barbieri L, Cassetti E, Suryapranata H, De Luca G. Impact of diabetes on homocysteine levels and its relationship with coronary artery disease: a single-centre cohort study. Ann Nutr Metab. 2016; 68:180–188. PMID: 26950830.
Article
14. Platt DE, Hariri E, Salameh P, Merhi M, Sabbah N, Helou M, Mouzaya F, Nemer R, Al-Sarraj Y, El-Shanti H, et al. Type II diabetes mellitus and hyperhomocysteinemia: a complex interaction. Diabetol Metab Syndr. 2017; 9:19. PMID: 28331553.
15. Wang YS, Ye J, Yang X, Zhang GP, Cao YH, Zhang R, Dai W, Zhang Q. Association of retinol binding protein-4, cystatin C, homocysteine and high-sensitivity C-reactive protein levels in patients with newly diagnosed type 2 diabetes mellitus. Arch Med Sci. 2019; 15:1203–1216. PMID: 31572465.
Article
16. Qin X, Li Y, Yuan H, Xie D, Tang G, Wang B, Wang X, Xu X, Xu X, Hou F. Relationship of MTHFR gene 677C → T polymorphism, homocysteine, and estimated glomerular filtration rate levels with the risk of new-onset diabetes. Medicine (Baltimore). 2015; 94:e563. PMID: 25700330.
17. Smulders YM, Rakic M, Slaats EH, Treskes M, Sijbrands EJ, Odekerken DA, Stehouwer CD, Silberbusch J. Fasting and post-methionine homocysteine levels in NIDDM. Determinants and correlations with retinopathy, albuminuria, and cardiovascular disease. Diabetes Care. 1999; 22:125–132. PMID: 10333913.
Article
18. Buysschaert M, Dramais AS, Wallemacq PE, Hermans MP. Hyperhomocysteinemia in type 2 diabetes: relationship to macroangiopathy, nephropathy, and insulin resistance. Diabetes Care. 2000; 23:1816–1822. PMID: 11128359.
Article
19. Koehler KM, Baumgartner RN, Garry PJ, Allen RH, Stabler SP, Rimm EB. Association of folate intake and serum homocysteine in elderly persons according to vitamin supplementation and alcohol use. Am J Clin Nutr. 2001; 73:628–637. PMID: 11237942.
20. Stickel F, Choi SW, Kim YI, Bagley PJ, Seitz HK, Russell RM, Selhub J, Mason JB. Effect of chronic alcohol consumption on total plasma homocysteine level in rats. Alcohol Clin Exp Res. 2000; 24:259–264. PMID: 10776661.
Article
21. Russo GT, Di Benedetto A, Giorda C, Alessi E, Crisafulli G, Ientile R, Di Cesare E, Jacques PF, Raimondo G, Cucinotta D. Correlates of total homocysteine plasma concentration in type 2 diabetes. Eur J Clin Invest. 2004; 34:197–204. PMID: 15025678.
Article
22. Wang B, Wu H, Li Y, Ban Q, Huang X, Chen L, Li J, Zhang Y, Cui Y, He M, et al. Effect of long-term low-dose folic acid supplementation on degree of total homocysteine-lowering: major effect modifiers. Br J Nutr. 2018; 120:1122–1130. PMID: 30401001.
Article
23. Refsum H, Smith AD, Ueland PM, Nexo E, Clarke R, McPartlin J, Johnston C, Engbaek F, Schneede J, McPartlin C, et al. Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem. 2004; 50:3–32. PMID: 14709635.
Article
24. Thögersen AM, Nilsson TK, Dahlen G, Jansson JH, Boman K, Huhtasaari F, Hallmans G. Homozygosity for the C677-->T mutation of 5,10-methylenetetrahydrofolate reductase and total plasma homocyst(e)ine are not associated with greater than normal risk of a first myocardial infarction in northern Sweden. Coron Artery Dis. 2001; 12:85–90. PMID: 11281306.
25. Friedman G, Goldschmidt N, Friedlander Y, Ben-Yehuda A, Selhub J, Babaey S, Mendel M, Kidron M, Bar-On H. A common mutation A1298C in human methylenetetrahydrofolate reductase gene: association with plasma total homocysteine and folate concentrations. J Nutr. 1999; 129:1656–1661. PMID: 10460200.
Article
26. Stampfer MJ, Grodstein F. Can homocysteine be related to physical functioning? Am J Med. 2002; 113:610–611. PMID: 12459410.
Article
27. Han L, Liu Y, Wang C, Tang L, Feng X, Astell-Burt T, Wen Q, Duan D, Lu N, Xu G, et al. Determinants of hyperhomocysteinemia in healthy and hypertensive subjects: a population-based study and systematic review. Clin Nutr. 2017; 36:1215–1230. PMID: 27908565.
Article
28. Challa F, Getahun T, Sileshi M, Nigassie B, Geto Z, Ashibire G, Gelibo T, Teferra S, Seifu D, Sitotaw Y, et al. Prevalence of hyperhomocysteinaemia and associated factors among Ethiopian adult population in a 2015 national survey. BioMed Res Int. 2020; 2020:9210261. PMID: 32420383.
Article
29. Zeng Q, Li F, Xiang T, Wang W, Ma C, Yang C, Chen H, Xiang H. Influence of food groups on plasma total homocysteine for specific MTHFR C677T genotypes in Chinese population. Mol Nutr Food Res. 2017; 61:1600351. PMID: 27515258.
30. Shi C, Wang P, Airen S, Brown C, Liu Z, Townsend JH, Wang J, Jiang H. Nutritional and medical food therapies for diabetic retinopathy. Eye Vis (Lond). 2020; 7:33. PMID: 32582807.
Article
31. Selhub J, Jacques PF, Rosenberg IH, Rogers G, Bowman BA, Gunter EW, Wright JD, Johnson CL. Serum total homocysteine concentrations in the third National Health and Nutrition Examination Survey (1991-1994): population reference ranges and contribution of vitamin status to high serum concentrations. Ann Intern Med. 1999; 131:331–339. PMID: 10475885.
Article
32. Brattström L. Vitamins as homocysteine-lowering agents. J Nutr. 1996; 126:1276S–80S. PMID: 8642470.
Article
33. Jacob RA, Wu MM, Henning SM, Swendseid ME. Homocysteine increases as folate decreases in plasma of healthy men during short-term dietary folate and methyl group restriction. J Nutr. 1994; 124:1072–1080. PMID: 8027858.
Article
34. Selhub J, Jacques PF, Wilson PW, Rush D, Rosenberg IH. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA. 1993; 270:2693–2698. PMID: 8133587.
35. Aydemir O, Türkçüoğlu P, Güler M, Celiker U, Ustündağ B, Yilmaz T, Metin K. Plasma and vitreous homocysteine concentrations in patients with proliferative diabetic retinopathy. Retina. 2008; 28:741–743. PMID: 18463519.
Article
36. Wang T, Wang Q, Wang Z, Xiao Z, Liu L. Diagnostic value of the combined measurement of serum Hcy, serum Cys C, and urinary microalbumin in type 2 diabetes mellitus with early complicating diabetic nephropathy. ISRN Endocrinol. 2013; 2013:407452. PMID: 24159393.
Article
37. Zheng LQ, Zhang HL, Guan ZH, Hu MY, Zhang T, Ge SJ. Elevated serum homocysteine level in the development of diabetic peripheral neuropathy. Genet Mol Res. 2015; 14:15365–15375. PMID: 26634502.
Article
38. Hermans MP, Gala JL, Buysschaert M. The MTHFR CT polymorphism confers a high risk for stroke in both homozygous and heterozygous T allele carriers with type 2 diabetes. Diabet Med. 2006; 23:529–536. PMID: 16681562.
Article
39. Ostrakhovitch EA, Tabibzadeh S. Homocysteine and age-associated disorders. Ageing Res Rev. 2019; 49:144–164. PMID: 30391754.
40. Shin JY. Trends in the prevalence and management of diabetes in Korea: 2007-2017. Epidemiol Health. 2019; 41:e2019029. PMID: 31319658.
Article
41. Xu R, Huang F, Wang Y, Liu Q, Lv Y, Zhang Q. Gender- and age-related differences in homocysteine concentration: a cross-sectional study of the general population of China. Sci Rep. 2020; 10:17401. PMID: 33060744.
Article
42. Blom HJ. Determinants of plasma homocysteine. Am J Clin Nutr. 1998; 67:188–189. PMID: 9459363.
Article
43. Choi SH, Choi-Kwon S, Kim MS, Kim JS. Poor nutrition and alcohol consumption are related to high serum homocysteine level at post-stroke. Nutr Res Pract. 2015; 9:503–510. PMID: 26425280.
Article
44. Hornemann T. Serine deficiency causes complications in diabetes. Nature. 2023; 614:42–43.
45. Yang M, Vousden KH. Serine and one-carbon metabolism in cancer. Nat Rev Cancer. 2016; 16:650–662. PMID: 27634448.
Article
46. Davis SR, Stacpoole PW, Williamson J, Kick LS, Quinlivan EP, Coats BS, Shane B, Bailey LB, Gregory JF 3rd. Tracer-derived total and folate-dependent homocysteine remethylation and synthesis rates in humans indicate that serine is the main one-carbon donor. Am J Physiol Endocrinol Metab. 2004; 286:E272–E279. PMID: 14559726.
Article
47. Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020; 16:377–390. PMID: 32398868.
Article
48. Morrish NJ, Wang SL, Stevens LK, Fuller JH, Keen H. Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia. 2001; 44(Suppl 2):S14–S21. PMID: 11587045.
Article
Full Text Links
  • NRP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr