1. Cevasco M, Itani KM. Ventral hernia repair with synthetic, composite, and biologic mesh: characteristics, indications, and infection profile. Surg Infect (Larchmt). 2012; 13:209–215. PMID:
22913337.
2. Shankaran V, Weber DJ, Reed RL, Luchette FA. A review of available prosthetics for ventral hernia repair. Ann Surg. 2011; 253:16–26. PMID:
21135699.
4. Falagas ME, Kasiakou SK. Mesh-related infections after hernia repair surgery. Clin Microbiol Infect. 2005; 11:3–8.
5. Narkhede R, Shah NM, Dalal PR, Mangukia C, Dholaria S. Postoperative mesh infection: still a concern in laparoscopic era. Indian J Surg. 2015; 77:322–326. PMID:
26702240.
6. Faulk DM, Londono R, Wolf MT, Ranallo CA, Carruthers CA, Wildemann JD, et al. ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomaterials. 2014; 35:8585–8595. PMID:
25043571.
7. Labay C, Canal JM, Modic M, Cvelbar U, Quiles M, Armengol M, et al. Antibiotic-loaded polypropylene surgical meshes with suitable biological behaviour by plasma functionalization and polymerization. Biomaterials. 2015; 71:132–144. PMID:
26322724.
8. Guillaume O, Lavigne JP, Lefranc O, Nottelet B, Coudane J, Garric X. New antibiotic-eluting mesh used for soft tissue reinforcement. Acta Biomater. 2011; 7:3390–3397. PMID:
21621016.
9. Cohen MS, Stern JM, Vanni AJ, Kelley RS, Baumgart E, Field D, et al. In vitro analysis of a nanocrystalline silver-coated surgical mesh. Surg Infect (Larchmt). 2007; 8:397–403. PMID:
17635063.
10. Plencner M, Prosecká E, Rampichová M, East B, Buzgo M, Vysloužilová L, et al. Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution. Int J Nanomedicine. 2015; 10:2635–2646. PMID:
25878497.
11. Škach J, Šlamborová I, Jelínek Šourková H, Exnar P, Gürlich R. Surface modification of artificial implants by hybrid nanolayers: antimicrobial surface finishing and strength tests. Eur Surg Res. 2023; 64:376–389. PMID:
37879309.
12. Pérez-Köhler B, Benito-Marínez S, Rodríguez M, García-Moreno F, Pascual G, Bellón JM. Experimental study on the use of a chlorhexidine-loaded carboxymethylcellulose gel as antibacterial coating for hernia repair meshes. Hernia. 2019; 23:789–800. PMID:
30806886.
13. Belyansky I, Tsirline VB, Montero PN, Satishkumar R, Martin TR, Lincourt AE, et al. Lysostaphin-coated mesh prevents staphylococcal infection and significantly improves survival in a contaminated surgical field. Am Surg. 2011; 77:1025–1031. PMID:
21944518.
14. Haas KH, Amberg-Schwab S, Rose K, Schottner G. Functionalized coating based on inorganic-organic polymers (ORMOCER®s) and their combination with vapor deposited inorganic thin films. Surf Coat Technol. 1999; 111:72–79.
15. Šlamborová I, Zajícová V, Karpíšková J, Exnar P, Stibor I. New type of protective hybrid and nanocomposite hybrid coatings containing silver and copper with an excellent antibacterial effect especially against MRSA. Mater Sci Eng C Mater Biol Appl. 2013; 33:265–273. PMID:
25428071.
16. Jaiswal S, McHale P, Duffy B. Preparation and rapid analysis of antibacterial silver, copper and zinc doped sol-gel surfaces. Colloids Surf B Biointerfaces. 2012; 94:170–176. PMID:
22369751.
17. Hodek J, Zajícová V, Lovětinská-Šlamborová I, Stibor I, Müllerová J, Weber J. Protective hybrid coating containing silver, copper and zinc cations effective against human immunodeficiency virus and other enveloped viruses. BMC Microbiol. 2016; 16(Suppl 1):56. PMID:
27036553.
18. Margareth RC, Marques RL, Almukainzi M. Simulated biological fluids with possible application in dissolution testing. Dissolution Technol. 2011; 18:15–28.
19. Brázda L, Studničková J, Exnar P, Helebrant A. Kinetics of SiO2 nanofibres dissolution in the simulated lung environment. Adv Mater Res. 2008; 39-40:347–350.
20. Kokubo T, Takadama H. Simulated body fluid as a standard tool to test the bioactivity of implants. Bäuerlain E, Behrens P, Epple M, editors. Handbook of biomineralization: biological aspects and structure formation. Wiley-VCH;2007. p. 97–109.
21. Sanbhal N, Miao L, Xu R, Khatri A, Wang L. Physical structure and mechanical properties of knitted hernia mesh materials: a review. J Ind Text. 2017; 48:333–360.
22. Yang HW, Kang SH, Jung SY, Min BW, Lee SI. Efficacy and safety of a novel partially absorbable mesh in totally extraperitoneal hernia repair. Ann Surg Treat Res. 2017; 93:316–321. PMID:
29250511.
23. Czech Standardization Institute [Flat textiles – Detection of antibacterial activity – Agar plate spreading test]. ČSN EN ISO 20645 (800885). 2005. 06. In Czech.
24. AATCC Test Method 100-2004. Antibacterial finishes on textile materials: Assessment of AATCC Technical Manual. American Association of Textile Chemists and Colorists;2019.
25. Choi JJ, Palaniappa NC, Dallas KB, Rudich TB, Colon MJ, Divino CM. Use of mesh during ventral hernia repair in clean-contaminated and contaminated cases: outcomes of 33,832 cases. Ann Surg. 2012; 255:176–180. PMID:
21677561.
26. Jezupovs A, Mihelsons M. The analysis of infection after polypropylene mesh repair of abdominal wall hernia. World J Surg. 2006; 30:2270–2278. PMID:
17086375.
27. Pérez-Köhler B, Bayon Y, Bellón JM. Mesh infection and hernia repair: a review. Surg Infect (Larchmt). 2016; 17:124–137. PMID:
26654576.
28. Toker RD, Kayaman-Apohan N, Kahraman MV. UV-curable nano-silver containing polyurethane based organic-inorganic hybrid coatings. Prog Org Coat. 2013; 76:1243–1250.
29. Afewerki S, Bassous N, Harb SV, Corat MA, Maharjan S, Ruiz-Esparza GU, et al. Engineering multifunctional bactericidal nanofibers for abdominal hernia repair. Commun Biol. 2021; 4:233. PMID:
33608611.
30. Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010; 28:580–588. PMID:
20724010.