1. World Health Organization (WHO). WHO coronavirus (COVID-19) dashboard [Internet]. c2022 [cited 2022 Oct 19].
https://covid19.who.int/.
2. Lee YJ, Kim SE, Park YE, et al. SARS-CoV-2 vaccination for adult patients with inflammatory bowel disease: expert consensus statement by KASID. Intest Res. 2022; 20:171–183.
Article
3. Haas EJ, Angulo FJ, McLaughlin JM, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet. 2021; 397:1819–1829.
Article
4. Satyam VR, Li PH, Reich J, et al. Safety of recombinant zoster vaccine in patients with inflammatory bowel disease. Dig Dis Sci. 2020; 65:2986–2991.
Article
5. Launay O, Abitbol V, Krivine A, et al. Immunogenicity and safety of influenza vaccine in inflammatory bowel disease patients treated or not with immunomodulators and/or biologics: a two-year prospective study. J Crohns Colitis. 2015; 9:1096–1107.
Article
6. Pittet LF, Verolet CM, Michetti P, et al. High immunogenicity of the pneumococcal conjugated vaccine in immunocompromised adults with inflammatory bowel disease. Am J Gastroenterol. 2019; 114:1130–1141.
Article
7. Jackson BD, Con D, Gorelik A, Liew D, Knowles S, De Cruz P. Examination of the relationship between disease activity and patient-reported outcome measures in an inflammatory bowel disease cohort. Intern Med J. 2018; 48:1234–1241.
Article
8. El-Matary W. Patient-reported outcome measures in inflammatory bowel disease. Can J Gastroenterol Hepatol. 2014; 28:536–542.
Article
9. Speight J, Barendse SM. FDA guidance on patient reported outcomes. BMJ. 2010; 340–c2921.
Article
10. Kim ES, Cho KB, Park KS, et al. Predictive factors of impaired quality of life in Korean patients with inactive inflammatory bowel disease: association with functional gastrointestinal disorders and mood disorders. J Clin Gastroenterol. 2013; 47:e38–e44.
11. Farrokhyar F, Marshall JK, Easterbrook B, Irvine EJ. Functional gastrointestinal disorders and mood disorders in patients with inactive inflammatory bowel disease: prevalence and impact on health. Inflamm Bowel Dis. 2006; 12:38–46.
Article
12. Higgins PD, Harding G, Revicki DA, et al. Development and validation of the ulcerative colitis patient-reported outcomes signs and symptoms (UC-PRO/SS) diary. J Patient Rep Outcomes. 2017; 2:26.
Article
13. Higgins PD, Harding G, Leidy NK, et al. Development and validation of the Crohn’s disease patient-reported outcomes signs and symptoms (CD-PRO/SS) diary. J Patient Rep Outcomes. 2017; 2:24.
14. Hjortswang H, Järnerot G, Curman B, et al. The short health scale: a valid measure of subjective health in ulcerative colitis. Scand J Gastroenterol. 2006; 41:1196–1203.
Article
15. Stjernman H, Grännö C, Järnerot G, et al. Short health scale: a valid, reliable, and responsive instrument for subjective health assessment in Crohn’s disease. Inflamm Bowel Dis. 2008; 14:47–52.
Article
16. Park SK, Ko BM, Goong HJ, et al. Short health scale: a valid measure of health-related quality of life in Korean-speaking patients with inflammatory bowel disease. World J Gastroenterol. 2017; 23:3530–3537.
Article
17. McDermott E, Keegan D, Byrne K, Doherty GA, Mulcahy HE. The short health scale: a valid and reliable measure of health related quality of life in English speaking inflammatory bowel disease patients. J Crohns Colitis. 2013; 7:616–621.
Article
18. Coenen S, Weyts E, Geens P, et al. Short health scale: a valid and reliable measure of quality of life in Dutch speaking patients with inflammatory bowel disease. Scand J Gastroenterol. 2019; 54:592–596.
Article
19. Dalal RS, McClure E, Marcus J, Winter RW, Hamilton MJ, Allegretti JR. COVID-19 vaccination intent and perceptions among patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2021; 19:1730–1732.
Article
20. Botwin GJ, Li D, Figueiredo J, et al. Adverse events after SARS-CoV-2 mRNA vaccination among patients with inflammatory bowel disease. Am J Gastroenterol. 2021; 116:1746–1751.
Article
21. Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020; 383:2603–2615.
Article
22. Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021; 384:403–416.
Article
23. Desalermos A, Pimienta M, Kalligeros M, et al. Safety of immunizations for the adult patient with inflammatory bowel disease: a systematic review and meta-analysis. Inflamm Bowel Dis. 2022; 28:1430–1442.
24. Lev-Tzion R, Focht G, Lujan R, et al. COVID-19 vaccine is effective in inflammatory bowel disease patients and is not associated with disease exacerbation. Clin Gastroenterol Hepatol. 2022; 20:e1263–e1282.
Article
25. Turner D, Ricciuto A, Lewis A, et al. STRIDE-II: an update on the Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE) Initiative of the International Organization for the Study of IBD (IOIBD). Determining therapeutic goals for treat-to-target strategies in IBD. Gastroenterology. 2021; 160:1570–1583.
Article
26. Sartor RB. Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol. 2006; 3:390–407.
Article
27. Fuss IJ, Heller F, Boirivant M, et al. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest. 2004; 113:1490–1497.
Article
28. Heller F, Fuss IJ, Nieuwenhuis EE, Blumberg RS, Strober W. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity. 2002; 17:629–638.
Article
29. Collier DA, Ferreira IA, Kotagiri P, et al. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature. 2021; 596:417–422.
30. Park SH, Kim YJ, Rhee KH, et al. A 30-year trend analysis in the epidemiology of inflammatory bowel disease in the Songpa-Kangdong District of Seoul, Korea in 1986-2015. J Crohns Colitis. 2019; 13:1410–1417.
Article
31. Mazor Y, Maza I, Kaufman E, et al. Prediction of disease complication occurrence in Crohn’s disease using phenotype and genotype parameters at diagnosis. J Crohns Colitis. 2011; 5:592–597.
Article
32. Heits F, Stahl M, Ludwig D, Stange EF, Jelkmann W. Elevated serum thrombopoietin and interleukin-6 concentrations in thrombocytosis associated with inflammatory bowel disease. J Interferon Cytokine Res. 1999; 19:757–760.
Article
33. Yan SL, Russell J, Harris NR, Senchenkova EY, Yildirim A, Granger DN. Platelet abnormalities during colonic inflammation. Inflamm Bowel Dis. 2013; 19:1245–1253.
Article
34. Nielsen OH, Vainer B, Madsen SM, Seidelin JB, Heegaard NH. Established and emerging biological activity markers of inflammatory bowel disease. Am J Gastroenterol. 2000; 95:359–367.
Article
35. Harries AD, Fitzsimons E, Fifield R, Dew MJ, Rhoades J. Platelet count: a simple measure of activity in Crohn’s disease. Br Med J (Clin Res Ed). 1983; 286:1476.
Article
36. Korea Disease Control and Prevention Agency. Infection disease [Internet]. c2022 [cited 2022 Nov 11].
https://ncv.kdca.go.kr/.