2. Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, Fisher M, Pandian J, Lindsay P. 2022; World Stroke Organization (WSO): global stroke fact sheet 2022. Int J Stroke. 17:18–29. Erratum in: Int J Stroke 2022;17:478. DOI:
10.1177/17474930211065917. PMID:
34986727.
Article
4. Johnstone VP, Shultz SR, Yan EB, O'Brien TJ, Rajan R. 2014; The acute phase of mild traumatic brain injury is characterized by a distance-dependent neuronal hypoactivity. J Neurotrauma. 31:1881–95. DOI:
10.1089/neu.2014.3343. PMID:
24927383. PMCID:
PMC4224042.
Article
13. Clarke SG, Scarnati MS, Paradiso KG. 2016; Neurotransmitter release can be stabilized by a mechanism that prevents voltage changes near the end of action potentials from affecting calcium currents. J Neurosci. 36:11559–72. DOI:
10.1523/JNEUROSCI.0066-16.2016. PMID:
27911759. PMCID:
PMC5125219.
Article
15. Sifat AE, Nozohouri S, Archie SR, Chowdhury EA, Abbruscato TJ. 2022; Brain energy metabolism in ischemic stroke: effects of smoking and diabetes. Int J Mol Sci. 23:8512. DOI:
10.3390/ijms23158512. PMID:
35955647. PMCID:
PMC9369264.
Article
18. Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y, Cui X. 2022; Glutamate excitotoxicity: potential therapeutic target for ischemic stroke. Biomed Pharmacother. 151:113125. DOI:
10.1016/j.biopha.2022.113125. PMID:
35609367.
Article
19. Belov Kirdajova D, Kriska J, Tureckova J, Anderova M. 2020; Ischemia-triggered glutamate excitotoxicity from the perspective of glial cells. Front Cell Neurosci. 14:51. DOI:
10.3389/fncel.2020.00051. PMID:
32265656. PMCID:
PMC7098326.
Article
21. Wang F, Xie X, Xing X, Sun X. 2022; Excitatory synaptic transmission in ischemic stroke: a new outlet for classical neuroprotective strategies. Int J Mol Sci. 23:9381. DOI:
10.3390/ijms23169381. PMID:
36012647. PMCID:
PMC9409263.
Article
23. Franco R, Rivas-Santisteban R, Lillo J, Camps J, Navarro G, Reyes-Resina I. 2021; 5-hydroxytryptamine, glutamate, and ATP: much more than neurotransmitters. Front Cell Dev Biol. 9:667815. DOI:
10.3389/fcell.2021.667815. PMID:
33937270. PMCID:
PMC8083958.
Article
24. Mahmoud S, Gharagozloo M, Simard C, Gris D. 2019; Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells. 8:184. DOI:
10.3390/cells8020184. PMID:
30791579. PMCID:
PMC6406900.
Article
25. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. 2010; Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 62:405–96. Erratum in: Pharmacol Rev 2014;66:1141. DOI:
10.1124/pr.109.002451. PMID:
20716669. PMCID:
PMC2964903.
Article
26. Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P. 1995; Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron. 15:961–73. DOI:
10.1016/0896-6273(95)90186-8. PMID:
7576644.
Article
27. Mattson MP. 2003; Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Med. 3:65–94. DOI:
10.1385/NMM:3:2:65. PMID:
12728191.
Article
29. Kahle KT, Simard JM, Staley KJ, Nahed BV, Jones PS, Sun D. 2009; Molecular mechanisms of ischemic cerebral edema: role of electroneutral ion transport. Physiology (Bethesda). 24:257–65. DOI:
10.1152/physiol.00015.2009. PMID:
19675357.
Article
31. Besancon E, Guo S, Lok J, Tymianski M, Lo EH. 2008; Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol Sci. 29:268–75. DOI:
10.1016/j.tips.2008.02.003. PMID:
18384889.
Article
32. von Engelhardt J, Coserea I, Pawlak V, Fuchs EC, Köhr G, Seeburg PH, Monyer H. 2007; Excitotoxicity
in vitro by NR2A- and NR2B-containing NMDA receptors. Neuropharmacology. 53:10–7. DOI:
10.1016/j.neuropharm.2007.04.015. PMID:
17570444.
Article
33. Zhou X, Ding Q, Chen Z, Yun H, Wang H. 2013; Involvement of the GluN2A and GluN2B subunits in synaptic and extrasynaptic N-methyl-D-aspartate receptor function and neuronal excitotoxicity. J Biol Chem. 288:24151–9. DOI:
10.1074/jbc.M113.482000. PMID:
23839940. PMCID:
PMC3745357.
Article
36. Lujan B, Liu X, Wan Q. 2012; Differential roles of GluN2A- and GluN2B-containing NMDA receptors in neuronal survival and death. Int J Physiol Pathophysiol Pharmacol. 4:211–8.
37. Franchini L, Carrano N, Di Luca M, Gardoni F. 2020; Synaptic GluN2A-containing NMDA receptors: from physiology to pathological synaptic plasticity. Int J Mol Sci. 21:1538. DOI:
10.3390/ijms21041538. PMID:
32102377. PMCID:
PMC7073220.
Article
38. Li Y, Cheng X, Liu X, Wang L, Ha J, Gao Z, He X, Wu Z, Chen A, Jewell LL, Sun Y. 2022; Treatment of cerebral ischemia through NMDA receptors: metabotropic signaling and future directions. Front Pharmacol. 13:831181. DOI:
10.3389/fphar.2022.831181. PMID:
35264964. PMCID:
PMC8900870.
Article
39. Sun Y, Zhang L, Chen Y, Zhan L, Gao Z. 2015; Therapeutic targets for cerebral ischemia based on the signaling pathways of the GluN2B C terminus. Stroke. 46:2347–53. DOI:
10.1161/STROKEAHA.115.009314. PMID:
26173725.
Article
42. Kim N, Chen D, Zhou XZ, Lee TH. 2019; Death-associated protein kinase 1 phosphorylation in neuronal cell death and neurodegenerative disease. Int J Mol Sci. 20:3131. DOI:
10.3390/ijms20133131. PMID:
31248062. PMCID:
PMC6651373.
Article
43. Lee JH, Rho SB, Chun T. 2005; Programmed cell death 6 (PDCD6) protein interacts with death-associated protein kinase 1 (DAPk1): additive effect on apoptosis via caspase-3 dependent pathway. Biotechnol Lett. 27:1011–5. DOI:
10.1007/s10529-005-7869-x. PMID:
16132846.
Article
44. Nair S, Hagberg H, Krishnamurthy R, Thornton C, Mallard C. 2013; Death associated protein kinases: molecular structure and brain injury. Int J Mol Sci. 14:13858–72. DOI:
10.3390/ijms140713858. PMID:
23880846. PMCID:
PMC3742222.
Article
46. Cross JL, Meloni BP, Bakker AJ, Lee S, Knuckey NW. 2010; Modes of neuronal calcium entry and homeostasis following cerebral ischemia. Stroke Res Treat. 2010:316862. DOI:
10.4061/2010/316862. PMID:
21052549. PMCID:
PMC2968719.
Article
47. Liu J, Liu MC, Wang KK. 2008; Calpain in the CNS: from synaptic function to neurotoxicity. Sci Signal. 1:re1. DOI:
10.1126/stke.114re1.
Article
50. Yamakawa H, Banno Y, Nakashima S, Yoshimura S, Sawada M, Nishimura Y, Nozawa Y, Sakai N. 2001; Crucial role of calpain in hypoxic PC12 cell death: calpain, but not caspases, mediates degradation of cytoskeletal proteins and protein kinase C-alpha and -delta. Neurol Res. 23:522–30. DOI:
10.1179/016164101101198776. PMID:
11474809.
54. Mehrpour M, Esclatine A, Beau I, Codogno P. 2010; Overview of macroautophagy regulation in mammalian cells. Cell Res. 20:748–62. DOI:
10.1038/cr.2010.82. PMID:
20548331.
Article
57. Wong PM, Puente C, Ganley IG, Jiang X. 2013; The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy. 9:124–37. DOI:
10.4161/auto.23323. PMID:
23295650. PMCID:
PMC3552878.
61. Settembre C, Fraldi A, Medina DL, Ballabio A. 2013; Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol. 14:283–96. DOI:
10.1038/nrm3565. PMID:
23609508. PMCID:
PMC4387238.
Article
62. Peng L, Hu G, Yao Q, Wu J, He Z, Law BY, Hu G, Zhou X, Du J, Wu A, Yu L. 2022; Microglia autophagy in ischemic stroke: a double-edged sword. Front Immunol. 13:1013311. DOI:
10.3389/fimmu.2022.1013311. PMID:
36466850. PMCID:
PMC9708732.
Article
63. Rami A, Langhagen A, Steiger S. 2008; Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol Dis. 29:132–41. DOI:
10.1016/j.nbd.2007.08.005. PMID:
17936001.
Article
64. Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, Han F, Fukunaga K, Qin ZH. 2008; Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy. 4:762–9. DOI:
10.4161/auto.6412. PMID:
18567942.
Article
65. Russo R, Berliocchi L, Adornetto A, Varano GP, Cavaliere F, Nucci C, Rotiroti D, Morrone LA, Bagetta G, Corasaniti MT. 2011; Calpain-mediated cleavage of Beclin-1 and autophagy deregulation following retinal ischemic injury
in vivo. Cell Death Dis. 2:e144. DOI:
10.1038/cddis.2011.29. PMID:
21490676. PMCID:
PMC3122060.
66. Liu Y, Che X, Zhang H, Fu X, Yao Y, Luo J, Yang Y, Cai R, Yu X, Yang J, Zhou MS. 2021; CAPN1 (calpain1)-mediated impairment of autophagic flux contributes to cerebral ischemia-induced neuronal damage. Stroke. 52:1809–21. DOI:
10.1161/STROKEAHA.120.032749. PMID:
33874744.
Article
71. Balogi Z, Multhoff G, Jensen TK, Lloyd-Evans E, Yamashima T, Jäättelä M, Harwood JL, Vígh L. 2019; Hsp70 interactions with membrane lipids regulate cellular functions in health and disease. Prog Lipid Res. 74:18–30. DOI:
10.1016/j.plipres.2019.01.004. PMID:
30710597.
Article
72. Lee SH, Kim M, Yoon BW, Kim YJ, Ma SJ, Roh JK, Lee JS, Seo JS. 2001; Targeted hsp70.1 disruption increases infarction volume after focal cerebral ischemia in mice. Stroke. 32:2905–12. DOI:
10.1161/hs1201.099604. PMID:
11739994.
Article
74. Zhou XY, Luo Y, Zhu YM, Liu ZH, Kent TA, Rong JG, Li W, Qiao SG, Li M, Ni Y, Ishidoh K, Zhang HL. 2017; Inhibition of autophagy blocks cathepsins-tBid-mitochondrial apoptotic signaling pathway via stabilization of lysosomal membrane in ischemic astrocytes. Cell Death Dis. 8:e2618. DOI:
10.1038/cddis.2017.34. PMID:
28206988. PMCID:
PMC5386481.
Article
75. Villalpando Rodriguez GE, Torriglia A. 2013; Calpain 1 induce lysosomal permeabilization by cleavage of lysosomal associated membrane protein 2. Biochim Biophys Acta. 1833:2244–53. DOI:
10.1016/j.bbamcr.2013.05.019. PMID:
23747342.
Article
78. Lipton P. 2013; Lysosomal membrane permeabilization as a key player in brain ischemic cell death: a "lysosomocentric" hypothesis for ischemic brain damage. Transl Stroke Res. 4:672–84. DOI:
10.1007/s12975-013-0301-2. PMID:
24323421.
Article
81. Yamashima T, Mathivanan A, Dazortsava MY, Sakai S, Kurimoto S, Zhu H, Funaki N, Liang H, Hullin-Matsuda F, Kobayashi T, Akatsu H, Takahashi H, Minabe Y. 2014; Calpain-mediated Hsp70.1 cleavage in monkey CA1 after ischemia induces similar - lysosomal vesiculosis' to Alzheimer neurons. J Alzheimers Dis Parkinsonism. 4:139. DOI:
10.4172/2161-0460.1000139.
84. Wei R, Wang J, Xu Y, Yin B, He F, Du Y, Peng G, Luo B. 2015; Probenecid protects against cerebral ischemia/reperfusion injury by inhibiting lysosomal and inflammatory damage in rats. Neuroscience. 301:168–77. DOI:
10.1016/j.neuroscience.2015.05.070. PMID:
26047730.
Article
85. Tontchev AB, Yamashima T. 1999; Ischemic delayed neuronal death: role of the cysteine proteases calpain and cathepsins. Neuropathology. 19:356–65. DOI:
10.1046/j.1440-1789.1999.00259.x.
Article
86. Chaitanya GV, Babu PP. 2008; Activation of calpain, cathepsin-b and caspase-3 during transient focal cerebral ischemia in rat model. Neurochem Res. 33:2178–86. DOI:
10.1007/s11064-007-9567-7. PMID:
18338260.
Article
88. Chen J, Hu R, Liao H, Zhang Y, Lei R, Zhang Z, Zhuang Y, Wan Y, Jin P, Feng H, Wan Q. 2017; A non-ionotropic activity of NMDA receptors contributes to glycine-induced neuroprotection in cerebral ischemia-reperfusion injury. Sci Rep. 7:3575. DOI:
10.1038/s41598-017-03909-0. PMID:
28620235. PMCID:
PMC5472592.
Article
89. Chen M, Lu TJ, Chen XJ, Zhou Y, Chen Q, Feng XY, Xu L, Duan WH, Xiong ZQ. 2008; Differential roles of NMDA receptor subtypes in ischemic neuronal cell death and ischemic tolerance. Stroke. 39:3042–8. DOI:
10.1161/STROKEAHA.108.521898. PMID:
18688011.
Article
90. Kotwal A, Ramalingaiah AH, Shukla D, Radhakrishnan M, Konar SK, inivasaiah B Sr, Chakrabarti D, Sundaram M. 2022; Role of nimodipine and milrinone in delayed cerebral ischemia. World Neurosurg. 166:e285–93. DOI:
10.1016/j.wneu.2022.06.150. PMID:
35843579.
Article
91. Liu S, Liu C, Xiong L, Xie J, Huang C, Pi R, Huang Z, Li L. 2021; Icaritin alleviates glutamate-induced neuronal damage by inactivating GluN2B-containing NMDARs through the ERK/DAPK1 pathway. Front Neurosci. 15:525615. DOI:
10.3389/fnins.2021.525615. PMID:
33692666. PMCID:
PMC7937872.
Article
92. Wang X, Fang Y, Huang Q, Xu P, Lenahan C, Lu J, Zheng J, Dong X, Shao A, Zhang J. 2021; An updated review of autophagy in ischemic stroke: from mechanisms to therapies. Exp Neurol. 340:113684. DOI:
10.1016/j.expneurol.2021.113684. PMID:
33676918.
Article
93. Yuan J, Zhang Z, Ni J, Wu X, Yan H, Xu J, Zhao Q, Yuan H, Yang L. 2023; Acupuncture for autophagy in animal models of middle cerebral artery occlusion: a systematic review and meta-analysis protocol. PLoS One. 18:e0281956. DOI:
10.1371/journal.pone.0281956. PMID:
36812222. PMCID:
PMC9946199.
Article
94. Lu X, Zhang J, Ding Y, Wu J, Chen G. 2022; Novel therapeutic strategies for ischemic stroke: recent insights into autophagy. Oxid Med Cell Longev. 2022:3450207. DOI:
10.1155/2022/3450207. PMID:
35720192. PMCID:
PMC9200548.
Article
95. Ahsan A, Liu M, Zheng Y, Yan W, Pan L, Li Y, Ma S, Zhang X, Cao M, Wu Z, Hu W, Chen Z, Zhang X. 2021; Natural compounds modulate the autophagy with potential implication of stroke. Acta Pharm Sin B. 11:1708–20. DOI:
10.1016/j.apsb.2020.10.018. PMID:
34386317. PMCID:
PMC8343111.
Article
96. Yao Y, Ji Y, Ren J, Liu H, Khanna R, Sun L. 2021; Inhibition of autophagy by CRMP2-derived peptide ST2-104 (R9-CBD3) via a CaMKKβ/AMPK/mTOR pathway contributes to ischemic postconditioning-induced neuroprotection against cerebral ischemia-reperfusion injury. Mol Brain. 14:123. DOI:
10.1186/s13041-021-00836-0. PMID:
34362425. PMCID:
PMC8344221.
Article
97. Wicha P, Onsa-Ard A, Chaichompoo W, Suksamrarn A, Tocharus C. 2020; Vasorelaxant and antihypertensive effects of neferine in rats: an
in vitro and
in vivo study. Planta Med. 86:496–504. DOI:
10.1055/a-1123-7852. PMID:
32219782.
Article
98. Sengking J, Oka C, Wicha P, Yawoot N, Tocharus J, Chaichompoo W, Suksamrarn A, Tocharus C. 2021; Neferine protects against brain damage in permanent cerebral ischemic rat associated with autophagy suppression and AMPK/mTOR regulation. Mol Neurobiol. 58:6304–15. DOI:
10.1007/s12035-021-02554-z. PMID:
34498225.
Article
99. Liu CW, Liao KH, Tseng H, Wu CM, Chen HY, Lai TW. 2020; Hypothermia but not NMDA receptor antagonism protects against stroke induced by distal middle cerebral arterial occlusion in mice. PLoS One. 15:e0229499. DOI:
10.1371/journal.pone.0229499. PMID:
32126102. PMCID:
PMC7053748.
Article
100. Hu WW, Du Y, Li C, Song YJ, Zhang GY. 2008; Neuroprotection of hypothermia against neuronal death in rat hippocampus through inhibiting the increased assembly of GluR6-PSD95-MLK3 signaling module induced by cerebral ischemia/reperfusion. Hippocampus. 18:386–97. DOI:
10.1002/hipo.20402. PMID:
18172894.
Article