Anat Cell Biol.  2024 Jun;57(2):155-162. 10.5115/acb.24.003.

The underlying mechanism of calcium toxicityinduced autophagic cell death and lysosomal degradation in early stage of cerebral ischemia

Affiliations
  • 1Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
  • 2Excellence in Osteology Research and Training Center (ORTC), Chaing Mai University, Chiang Mai, Thailand

Abstract

Cerebral ischemia is the important cause of worldwide disability and mortality, that is one of the obstruction of blood vessels supplying to the brain. In early stage, glutamate excitotoxicity and high level of intracellular calcium (Ca2+ ) are the major processes which can promote many downstream signaling involving in neuronal death and brain tissue damaging. Moreover, autophagy, the reusing of damaged cell organelles, is affected in early ischemia. Under ischemic conditions, autophagy plays an important role to maintain energy of the brain and its function. In the other hand, over intracellular Ca2+ accumulation triggers excessive autophagic process and lysosomal degradation leading to autophagic process impairment which finally induce neuronal death. This article reviews the association between intracellular Ca2+ and autophagic process in acute stage of ischemic stroke.

Keyword

Cerebral ischemia; Calcium toxicity; Autophagy; Lysosomal degradation; Neuronal cell death

Figure

  • Fig. 1 The underlying mechanism of anoxic depolarization and glutamate excitotoxicity after acute cerebral ischemia. AMPA, glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors; Ca2+, calcium ion; Cl-, chloride ion; Glu, glutamate; Na+, sodium ion; NMDA, N-methyl-D-aspartate receptor; VDCC, voltage-dependent calcium channels.

  • Fig. 2 The underlying mechanism of calcium toxicity induced autophagic cell death and lysosomal degradation related to neuronal cell death. 4-HNE, 4-hydroxynonenal; Akt, protein kinase B; AMPK, 5’ AMP-activated protein kinase; Atg, autophagy related protein; Bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma 2; BNIP3, Bcl-2 interacting protein 3; Ca2+, calcium ion; CaMKKβ, Ca2+/calmodulin-dependent protein kinase kinase β; CaMKII, Ca2+/calmodulin-dependent protein kinase II; DAMPs, damage-associated molecular patterns; HIF-1, hypoxia-inducible factor 1; Hsp70, heat shock protein 70; LAMP-1, lysosomal associated membrane protein 1; mTOR, mammalian target of rapamycin; nNOS, nitric oxide synthase; NO, nitric oxide; ONOO-, peroxynitrite; PI3K, phosphoinositide 3-kinase; TNFR, tumor necrosis factor receptor; ULK1, UNC-51-like kinase 1; VSP34, phosphatidylinositol 3-kinase VPS34 complex; NMDA, N-methyl-D-aspartate receptor; VDCC, voltage-dependent calcium channels; LC3, light chain 3.


Reference

References

1. Saini V, Guada L, Yavagal DR. 2021; Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology. 97(20 Suppl 2):S6–16. DOI: 10.1212/WNL.0000000000012781. PMID: 34785599.
Article
2. Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, Fisher M, Pandian J, Lindsay P. 2022; World Stroke Organization (WSO): global stroke fact sheet 2022. Int J Stroke. 17:18–29. Erratum in: Int J Stroke 2022;17:478. DOI: 10.1177/17474930211065917. PMID: 34986727.
Article
3. Donnan GA, Fisher M, Macleod M, Davis SM. 2008; Stroke. Lancet. 371:1612–23. DOI: 10.1016/S0140-6736(08)60694-7. PMID: 18468545.
Article
4. Johnstone VP, Shultz SR, Yan EB, O'Brien TJ, Rajan R. 2014; The acute phase of mild traumatic brain injury is characterized by a distance-dependent neuronal hypoactivity. J Neurotrauma. 31:1881–95. DOI: 10.1089/neu.2014.3343. PMID: 24927383. PMCID: PMC4224042.
Article
5. DeSai C, Hays Shapshak A. 2023. Apr. 3. Cerebral ischemia [Internet]. StatPearls;Available from: https://www.ncbi.nlm.nih.gov/books/NBK560510/.
6. Anderson JA. 2014; The golden hour Performing an acute ischemic stroke workup. Nurse Pract. 39:22–9. quiz 29–30. DOI: 10.1097/01.NPR.0000452974.46311.0f. PMID: 25083767.
Article
7. Advani R, Naess H, Kurz MW. 2017; The golden hour of acute ischemic stroke. Scand J Trauma Resusc Emerg Med. 25:54. DOI: 10.1186/s13049-017-0398-5. PMID: 28532498. PMCID: PMC5440901.
Article
8. Singh V, Mishra VN, Chaurasia RN, Joshi D, Pandey V. 2019; Modes of calcium regulation in ischemic neuron. Indian J Clin Biochem. 34:246–53. DOI: 10.1007/s12291-019-00838-9. PMID: 31391713. PMCID: PMC6660593.
Article
9. Chen W, Sun Y, Liu K, Sun X. 2014; Autophagy: a double-edged sword for neuronal survival after cerebral ischemia. Neural Regen Res. 9:1210–6. DOI: 10.4103/1673-5374.135329. PMID: 25206784. PMCID: PMC4146291.
Article
10. Davis GW. 2020; Not fade away: mechanisms of neuronal ATP homeostasis. Neuron. 105:591–3. DOI: 10.1016/j.neuron.2020.01.024. PMID: 32078791.
Article
11. Agnati LF, Guidolin D, Cervetto C, Maura G, Marcoli M. 2023; Brain structure and function: insights from chemical neuroanatomy. Life (Basel). 13:940. DOI: 10.3390/life13040940. PMID: 37109469. PMCID: PMC10142941.
Article
12. Bertrand PP. 2003; ATP and sensory transduction in the enteric nervous system. Neuroscientist. 9:243–60. DOI: 10.1177/1073858403253768. PMID: 12934708.
Article
13. Clarke SG, Scarnati MS, Paradiso KG. 2016; Neurotransmitter release can be stabilized by a mechanism that prevents voltage changes near the end of action potentials from affecting calcium currents. J Neurosci. 36:11559–72. DOI: 10.1523/JNEUROSCI.0066-16.2016. PMID: 27911759. PMCID: PMC5125219.
Article
14. Zbili M, Rama S, Debanne D. 2016; Dynamic control of neurotransmitter release by presynaptic potential. Front Cell Neurosci. 10:278. DOI: 10.3389/fncel.2016.00278. PMID: 27994539. PMCID: PMC5136543.
Article
15. Sifat AE, Nozohouri S, Archie SR, Chowdhury EA, Abbruscato TJ. 2022; Brain energy metabolism in ischemic stroke: effects of smoking and diabetes. Int J Mol Sci. 23:8512. DOI: 10.3390/ijms23158512. PMID: 35955647. PMCID: PMC9369264.
Article
16. Liu F, Lu J, Manaenko A, Tang J, Hu Q. 2018; Mitochondria in ischemic stroke: new insight and implications. Aging Dis. 9:924–37. DOI: 10.14336/AD.2017.1126. PMID: 30271667. PMCID: PMC6147588.
Article
17. Suhail M. 2010; Na, K-ATPase: ubiquitous multifunctional transmembrane protein and its relevance to various pathophysiological conditions. J Clin Med Res. 2:1–17. DOI: 10.4021/jocmr2010.02.263w. PMID: 22457695. PMCID: PMC3299169.
Article
18. Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y, Cui X. 2022; Glutamate excitotoxicity: potential therapeutic target for ischemic stroke. Biomed Pharmacother. 151:113125. DOI: 10.1016/j.biopha.2022.113125. PMID: 35609367.
Article
19. Belov Kirdajova D, Kriska J, Tureckova J, Anderova M. 2020; Ischemia-triggered glutamate excitotoxicity from the perspective of glial cells. Front Cell Neurosci. 14:51. DOI: 10.3389/fncel.2020.00051. PMID: 32265656. PMCID: PMC7098326.
Article
20. de Lores Arnaiz GR, Ordieres MG. 2014; Brain Na(+), K(+)-ATPase activity in aging and disease. Int J Biomed Sci. 10:85–102. DOI: 10.59566/IJBS.2014.10085. PMID: 25018677. PMCID: PMC4092085.
Article
21. Wang F, Xie X, Xing X, Sun X. 2022; Excitatory synaptic transmission in ischemic stroke: a new outlet for classical neuroprotective strategies. Int J Mol Sci. 23:9381. DOI: 10.3390/ijms23169381. PMID: 36012647. PMCID: PMC9409263.
Article
22. Nishizawa Y. 2001; Glutamate release and neuronal damage in ischemia. Life Sci. 69:369–81. DOI: 10.1016/S0024-3205(01)01142-0. PMID: 11459428.
Article
23. Franco R, Rivas-Santisteban R, Lillo J, Camps J, Navarro G, Reyes-Resina I. 2021; 5-hydroxytryptamine, glutamate, and ATP: much more than neurotransmitters. Front Cell Dev Biol. 9:667815. DOI: 10.3389/fcell.2021.667815. PMID: 33937270. PMCID: PMC8083958.
Article
24. Mahmoud S, Gharagozloo M, Simard C, Gris D. 2019; Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells. 8:184. DOI: 10.3390/cells8020184. PMID: 30791579. PMCID: PMC6406900.
Article
25. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. 2010; Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 62:405–96. Erratum in: Pharmacol Rev 2014;66:1141. DOI: 10.1124/pr.109.002451. PMID: 20716669. PMCID: PMC2964903.
Article
26. Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P. 1995; Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron. 15:961–73. DOI: 10.1016/0896-6273(95)90186-8. PMID: 7576644.
Article
27. Mattson MP. 2003; Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Med. 3:65–94. DOI: 10.1385/NMM:3:2:65. PMID: 12728191.
Article
28. Hellas JA, Andrew RD. 2021; Neuronal swelling: a non-osmotic consequence of spreading depolarization. Neurocrit Care. 35(Suppl 2):112–34. DOI: 10.1007/s12028-021-01326-w. PMID: 34498208. PMCID: PMC8536653.
Article
29. Kahle KT, Simard JM, Staley KJ, Nahed BV, Jones PS, Sun D. 2009; Molecular mechanisms of ischemic cerebral edema: role of electroneutral ion transport. Physiology (Bethesda). 24:257–65. DOI: 10.1152/physiol.00015.2009. PMID: 19675357.
Article
30. Akins PT, Atkinson RP. Glutamate AMPA receptor antagonist treatment for ischaemic stroke. Curr Med Res Opin. 2002; 18(Suppl 2):s9–13. DOI: 10.1185/030079902125000660. PMID: 12365832.
Article
31. Besancon E, Guo S, Lok J, Tymianski M, Lo EH. 2008; Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol Sci. 29:268–75. DOI: 10.1016/j.tips.2008.02.003. PMID: 18384889.
Article
32. von Engelhardt J, Coserea I, Pawlak V, Fuchs EC, Köhr G, Seeburg PH, Monyer H. 2007; Excitotoxicity in vitro by NR2A- and NR2B-containing NMDA receptors. Neuropharmacology. 53:10–7. DOI: 10.1016/j.neuropharm.2007.04.015. PMID: 17570444.
Article
33. Zhou X, Ding Q, Chen Z, Yun H, Wang H. 2013; Involvement of the GluN2A and GluN2B subunits in synaptic and extrasynaptic N-methyl-D-aspartate receptor function and neuronal excitotoxicity. J Biol Chem. 288:24151–9. DOI: 10.1074/jbc.M113.482000. PMID: 23839940. PMCID: PMC3745357.
Article
34. Lai TW, Zhang S, Wang YT. 2014; Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol. 115:157–88. DOI: 10.1016/j.pneurobio.2013.11.006. PMID: 24361499.
Article
35. Wu QJ, Tymianski M. 2018; Targeting NMDA receptors in stroke: new hope in neuroprotection. Mol Brain. 11:15. DOI: 10.1186/s13041-018-0357-8. PMID: 29534733. PMCID: PMC5851248.
Article
36. Lujan B, Liu X, Wan Q. 2012; Differential roles of GluN2A- and GluN2B-containing NMDA receptors in neuronal survival and death. Int J Physiol Pathophysiol Pharmacol. 4:211–8.
37. Franchini L, Carrano N, Di Luca M, Gardoni F. 2020; Synaptic GluN2A-containing NMDA receptors: from physiology to pathological synaptic plasticity. Int J Mol Sci. 21:1538. DOI: 10.3390/ijms21041538. PMID: 32102377. PMCID: PMC7073220.
Article
38. Li Y, Cheng X, Liu X, Wang L, Ha J, Gao Z, He X, Wu Z, Chen A, Jewell LL, Sun Y. 2022; Treatment of cerebral ischemia through NMDA receptors: metabotropic signaling and future directions. Front Pharmacol. 13:831181. DOI: 10.3389/fphar.2022.831181. PMID: 35264964. PMCID: PMC8900870.
Article
39. Sun Y, Zhang L, Chen Y, Zhan L, Gao Z. 2015; Therapeutic targets for cerebral ischemia based on the signaling pathways of the GluN2B C terminus. Stroke. 46:2347–53. DOI: 10.1161/STROKEAHA.115.009314. PMID: 26173725.
Article
40. Picón-Pagès P, Garcia-Buendia J, Muñoz FJ. 2019; Functions and dysfunctions of nitric oxide in brain. Biochim Biophys Acta Mol Basis Dis. 1865:1949–67. DOI: 10.1016/j.bbadis.2018.11.007. PMID: 30500433.
Article
41. Sulaiman Alsaadi M. 2019; Role of DAPK1 in neuronal cell death, survival and diseases in the nervous system. Int J Dev Neurosci. 74:11–7. DOI: 10.1016/j.ijdevneu.2019.02.003. PMID: 30763607.
Article
42. Kim N, Chen D, Zhou XZ, Lee TH. 2019; Death-associated protein kinase 1 phosphorylation in neuronal cell death and neurodegenerative disease. Int J Mol Sci. 20:3131. DOI: 10.3390/ijms20133131. PMID: 31248062. PMCID: PMC6651373.
Article
43. Lee JH, Rho SB, Chun T. 2005; Programmed cell death 6 (PDCD6) protein interacts with death-associated protein kinase 1 (DAPk1): additive effect on apoptosis via caspase-3 dependent pathway. Biotechnol Lett. 27:1011–5. DOI: 10.1007/s10529-005-7869-x. PMID: 16132846.
Article
44. Nair S, Hagberg H, Krishnamurthy R, Thornton C, Mallard C. 2013; Death associated protein kinases: molecular structure and brain injury. Int J Mol Sci. 14:13858–72. DOI: 10.3390/ijms140713858. PMID: 23880846. PMCID: PMC3742222.
Article
45. Ludhiadch A, Sharma R, Muriki A, Munshi A. 2022; Role of calcium homeostasis in ischemic stroke: a review. CNS Neurol Disord Drug Targets. 21:52–61. DOI: 10.2174/1871527320666210212141232. PMID: 33583386.
Article
46. Cross JL, Meloni BP, Bakker AJ, Lee S, Knuckey NW. 2010; Modes of neuronal calcium entry and homeostasis following cerebral ischemia. Stroke Res Treat. 2010:316862. DOI: 10.4061/2010/316862. PMID: 21052549. PMCID: PMC2968719.
Article
47. Liu J, Liu MC, Wang KK. 2008; Calpain in the CNS: from synaptic function to neurotoxicity. Sci Signal. 1:re1. DOI: 10.1126/stke.114re1.
Article
48. Bevers MB, Neumar RW. 2008; Mechanistic role of calpains in postischemic neurodegeneration. J Cereb Blood Flow Metab. 28:655–73. DOI: 10.1038/sj.jcbfm.9600595. PMID: 18073773.
Article
49. Cheng SY, Wang SC, Lei M, Wang Z, Xiong K. 2018; Regulatory role of calpain in neuronal death. Neural Regen Res. 13:556–62. DOI: 10.4103/1673-5374.228762. PMID: 29623944. PMCID: PMC5900522.
Article
50. Yamakawa H, Banno Y, Nakashima S, Yoshimura S, Sawada M, Nishimura Y, Nozawa Y, Sakai N. 2001; Crucial role of calpain in hypoxic PC12 cell death: calpain, but not caspases, mediates degradation of cytoskeletal proteins and protein kinase C-alpha and -delta. Neurol Res. 23:522–30. DOI: 10.1179/016164101101198776. PMID: 11474809.
51. Bano D, Nicotera P. 2007; Ca2+ signals and neuronal death in brain ischemia. Stroke. 38(2 Suppl):674–6. DOI: 10.1161/01.STR.0000256294.46009.29. PMID: 17261713.
52. Xu W, Wong TP, Chery N, Gaertner T, Wang YT, Baudry M. 2007; Calpain-mediated mGluR1alpha truncation: a key step in excitotoxicity. Neuron. 53:399–412. DOI: 10.1016/j.neuron.2006.12.020. PMID: 17270736.
Article
53. Reggiori F, Klionsky DJ. 2002; Autophagy in the eukaryotic cell. Eukaryot Cell. 1:11–21. DOI: 10.1128/EC.01.1.11-21.2002. PMID: 12455967. PMCID: PMC118053.
Article
54. Mehrpour M, Esclatine A, Beau I, Codogno P. 2010; Overview of macroautophagy regulation in mammalian cells. Cell Res. 20:748–62. DOI: 10.1038/cr.2010.82. PMID: 20548331.
Article
55. Yim WW, Mizushima N. 2020; Lysosome biology in autophagy. Cell Discov. 6:6. DOI: 10.1038/s41421-020-0141-7. PMID: 32047650. PMCID: PMC7010707.
Article
56. Dunlop EA, Tee AR. 2014; mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Semin Cell Dev Biol. 36:121–9. DOI: 10.1016/j.semcdb.2014.08.006. PMID: 25158238.
Article
57. Wong PM, Puente C, Ganley IG, Jiang X. 2013; The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy. 9:124–37. DOI: 10.4161/auto.23323. PMID: 23295650. PMCID: PMC3552878.
58. McKnight NC, Zhenyu Y. 2013; Beclin 1, an essential component and master regulator of PI3K-III in health and disease. Curr Pathobiol Rep. 1:231–8. DOI: 10.1007/s40139-013-0028-5. PMID: 24729948. PMCID: PMC3979578.
Article
59. Tanida I, Ueno T, Kominami E. 2004; LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol. 36:2503–18. DOI: 10.1016/j.biocel.2004.05.009. PMID: 15325588. PMCID: PMC7129593.
Article
60. Shibutani ST, Yoshimori T. 2014; A current perspective of autophagosome biogenesis. Cell Res. 24:58–68. DOI: 10.1038/cr.2013.159. PMID: 24296784. PMCID: PMC3879706.
Article
61. Settembre C, Fraldi A, Medina DL, Ballabio A. 2013; Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol. 14:283–96. DOI: 10.1038/nrm3565. PMID: 23609508. PMCID: PMC4387238.
Article
62. Peng L, Hu G, Yao Q, Wu J, He Z, Law BY, Hu G, Zhou X, Du J, Wu A, Yu L. 2022; Microglia autophagy in ischemic stroke: a double-edged sword. Front Immunol. 13:1013311. DOI: 10.3389/fimmu.2022.1013311. PMID: 36466850. PMCID: PMC9708732.
Article
63. Rami A, Langhagen A, Steiger S. 2008; Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol Dis. 29:132–41. DOI: 10.1016/j.nbd.2007.08.005. PMID: 17936001.
Article
64. Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, Han F, Fukunaga K, Qin ZH. 2008; Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy. 4:762–9. DOI: 10.4161/auto.6412. PMID: 18567942.
Article
65. Russo R, Berliocchi L, Adornetto A, Varano GP, Cavaliere F, Nucci C, Rotiroti D, Morrone LA, Bagetta G, Corasaniti MT. 2011; Calpain-mediated cleavage of Beclin-1 and autophagy deregulation following retinal ischemic injury in vivo. Cell Death Dis. 2:e144. DOI: 10.1038/cddis.2011.29. PMID: 21490676. PMCID: PMC3122060.
66. Liu Y, Che X, Zhang H, Fu X, Yao Y, Luo J, Yang Y, Cai R, Yu X, Yang J, Zhou MS. 2021; CAPN1 (calpain1)-mediated impairment of autophagic flux contributes to cerebral ischemia-induced neuronal damage. Stroke. 52:1809–21. DOI: 10.1161/STROKEAHA.120.032749. PMID: 33874744.
Article
67. Kim J, Yang G, Kim Y, Kim J, Ha J. 2016; AMPK activators: mechanisms of action and physiological activities. Exp Mol Med. 48:e224. DOI: 10.1038/emm.2016.16. PMID: 27034026. PMCID: PMC4855276.
Article
68. Mayer MP, Bukau B. 2005; Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci. 62:670–84. DOI: 10.1007/s00018-004-4464-6. PMID: 15770419. PMCID: PMC2773841.
Article
69. Sharma D, Masison DC. 2009; Hsp70 structure, function, regulation and influence on yeast prions. Protein Pept Lett. 16:571–81. DOI: 10.2174/092986609788490230. PMID: 19519514. PMCID: PMC2746719.
Article
70. Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B. 2019; The Hsp70 chaperone network. Nat Rev Mol Cell Biol. 20:665–80. DOI: 10.1038/s41580-019-0133-3. PMID: 31253954.
Article
71. Balogi Z, Multhoff G, Jensen TK, Lloyd-Evans E, Yamashima T, Jäättelä M, Harwood JL, Vígh L. 2019; Hsp70 interactions with membrane lipids regulate cellular functions in health and disease. Prog Lipid Res. 74:18–30. DOI: 10.1016/j.plipres.2019.01.004. PMID: 30710597.
Article
72. Lee SH, Kim M, Yoon BW, Kim YJ, Ma SJ, Roh JK, Lee JS, Seo JS. 2001; Targeted hsp70.1 disruption increases infarction volume after focal cerebral ischemia in mice. Stroke. 32:2905–12. DOI: 10.1161/hs1201.099604. PMID: 11739994.
Article
73. Kim JY, Kim N, Zheng Z, Lee JE, Yenari MA. 2016; 70-kDa heat shock protein downregulates dynamin in experimental stroke: a new therapeutic target? Stroke. 47:2103–11. DOI: 10.1161/STROKEAHA.116.012763. PMID: 27387989. PMCID: PMC4961549.
Article
74. Zhou XY, Luo Y, Zhu YM, Liu ZH, Kent TA, Rong JG, Li W, Qiao SG, Li M, Ni Y, Ishidoh K, Zhang HL. 2017; Inhibition of autophagy blocks cathepsins-tBid-mitochondrial apoptotic signaling pathway via stabilization of lysosomal membrane in ischemic astrocytes. Cell Death Dis. 8:e2618. DOI: 10.1038/cddis.2017.34. PMID: 28206988. PMCID: PMC5386481.
Article
75. Villalpando Rodriguez GE, Torriglia A. 2013; Calpain 1 induce lysosomal permeabilization by cleavage of lysosomal associated membrane protein 2. Biochim Biophys Acta. 1833:2244–53. DOI: 10.1016/j.bbamcr.2013.05.019. PMID: 23747342.
Article
76. Qin AP, Zhang HL, Qin ZH. 2008; Mechanisms of lysosomal proteases participating in cerebral ischemia-induced neuronal death. Neurosci Bull. 24:117–23. DOI: 10.1007/s12264-008-0117-3. PMID: 18369392. PMCID: PMC5552511.
Article
77. Terasaki Y, Liu Y, Hayakawa K, Pham LD, Lo EH, Ji X, Arai K. 2014; Mechanisms of neurovascular dysfunction in acute ischemic brain. Curr Med Chem. 21:2035–42. DOI: 10.2174/0929867321666131228223400. PMID: 24372202. PMCID: PMC4066327.
Article
78. Lipton P. 2013; Lysosomal membrane permeabilization as a key player in brain ischemic cell death: a "lysosomocentric" hypothesis for ischemic brain damage. Transl Stroke Res. 4:672–84. DOI: 10.1007/s12975-013-0301-2. PMID: 24323421.
Article
79. Li J, McCullough LD. 2010; Effects of AMP-activated protein kinase in cerebral ischemia. J Cereb Blood Flow Metab. 30:480–92. DOI: 10.1038/jcbfm.2009.255. PMID: 20010958. PMCID: PMC2852687.
Article
80. Chen H, Kim GS, Okami N, Narasimhan P, Chan PH. 2011; NADPH oxidase is involved in post-ischemic brain inflammation. Neurobiol Dis. 42:341–8. DOI: 10.1016/j.nbd.2011.01.027. PMID: 21303700. PMCID: PMC3079796.
Article
81. Yamashima T, Mathivanan A, Dazortsava MY, Sakai S, Kurimoto S, Zhu H, Funaki N, Liang H, Hullin-Matsuda F, Kobayashi T, Akatsu H, Takahashi H, Minabe Y. 2014; Calpain-mediated Hsp70.1 cleavage in monkey CA1 after ischemia induces similar - lysosomal vesiculosis' to Alzheimer neurons. J Alzheimers Dis Parkinsonism. 4:139. DOI: 10.4172/2161-0460.1000139.
82. Yamashima T. 2012; Hsp70.1 and related lysosomal factors for necrotic neuronal death. J Neurochem. 120:477–94. DOI: 10.1111/j.1471-4159.2011.07596.x. PMID: 22118687.
Article
83. Koriyama Y, Furukawa A. 2016; HSP70 cleavage-induced photoreceptor cell death caused by N-methyl-N-nitrosourea. Neural Regen Res. 11:1758–9. DOI: 10.4103/1673-5374.194721. PMID: 28123413. PMCID: PMC5204225.
Article
84. Wei R, Wang J, Xu Y, Yin B, He F, Du Y, Peng G, Luo B. 2015; Probenecid protects against cerebral ischemia/reperfusion injury by inhibiting lysosomal and inflammatory damage in rats. Neuroscience. 301:168–77. DOI: 10.1016/j.neuroscience.2015.05.070. PMID: 26047730.
Article
85. Tontchev AB, Yamashima T. 1999; Ischemic delayed neuronal death: role of the cysteine proteases calpain and cathepsins. Neuropathology. 19:356–65. DOI: 10.1046/j.1440-1789.1999.00259.x.
Article
86. Chaitanya GV, Babu PP. 2008; Activation of calpain, cathepsin-b and caspase-3 during transient focal cerebral ischemia in rat model. Neurochem Res. 33:2178–86. DOI: 10.1007/s11064-007-9567-7. PMID: 18338260.
Article
87. Lang-Rollin IC, Rideout HJ, Noticewala M, Stefanis L. 2003; Mechanisms of caspase-independent neuronal death: energy depletion and free radical generation. J Neurosci. 23:11015–25. DOI: 10.1523/JNEUROSCI.23-35-11015.2003. PMID: 14657158. PMCID: PMC6741034.
Article
88. Chen J, Hu R, Liao H, Zhang Y, Lei R, Zhang Z, Zhuang Y, Wan Y, Jin P, Feng H, Wan Q. 2017; A non-ionotropic activity of NMDA receptors contributes to glycine-induced neuroprotection in cerebral ischemia-reperfusion injury. Sci Rep. 7:3575. DOI: 10.1038/s41598-017-03909-0. PMID: 28620235. PMCID: PMC5472592.
Article
89. Chen M, Lu TJ, Chen XJ, Zhou Y, Chen Q, Feng XY, Xu L, Duan WH, Xiong ZQ. 2008; Differential roles of NMDA receptor subtypes in ischemic neuronal cell death and ischemic tolerance. Stroke. 39:3042–8. DOI: 10.1161/STROKEAHA.108.521898. PMID: 18688011.
Article
90. Kotwal A, Ramalingaiah AH, Shukla D, Radhakrishnan M, Konar SK, inivasaiah B Sr, Chakrabarti D, Sundaram M. 2022; Role of nimodipine and milrinone in delayed cerebral ischemia. World Neurosurg. 166:e285–93. DOI: 10.1016/j.wneu.2022.06.150. PMID: 35843579.
Article
91. Liu S, Liu C, Xiong L, Xie J, Huang C, Pi R, Huang Z, Li L. 2021; Icaritin alleviates glutamate-induced neuronal damage by inactivating GluN2B-containing NMDARs through the ERK/DAPK1 pathway. Front Neurosci. 15:525615. DOI: 10.3389/fnins.2021.525615. PMID: 33692666. PMCID: PMC7937872.
Article
92. Wang X, Fang Y, Huang Q, Xu P, Lenahan C, Lu J, Zheng J, Dong X, Shao A, Zhang J. 2021; An updated review of autophagy in ischemic stroke: from mechanisms to therapies. Exp Neurol. 340:113684. DOI: 10.1016/j.expneurol.2021.113684. PMID: 33676918.
Article
93. Yuan J, Zhang Z, Ni J, Wu X, Yan H, Xu J, Zhao Q, Yuan H, Yang L. 2023; Acupuncture for autophagy in animal models of middle cerebral artery occlusion: a systematic review and meta-analysis protocol. PLoS One. 18:e0281956. DOI: 10.1371/journal.pone.0281956. PMID: 36812222. PMCID: PMC9946199.
Article
94. Lu X, Zhang J, Ding Y, Wu J, Chen G. 2022; Novel therapeutic strategies for ischemic stroke: recent insights into autophagy. Oxid Med Cell Longev. 2022:3450207. DOI: 10.1155/2022/3450207. PMID: 35720192. PMCID: PMC9200548.
Article
95. Ahsan A, Liu M, Zheng Y, Yan W, Pan L, Li Y, Ma S, Zhang X, Cao M, Wu Z, Hu W, Chen Z, Zhang X. 2021; Natural compounds modulate the autophagy with potential implication of stroke. Acta Pharm Sin B. 11:1708–20. DOI: 10.1016/j.apsb.2020.10.018. PMID: 34386317. PMCID: PMC8343111.
Article
96. Yao Y, Ji Y, Ren J, Liu H, Khanna R, Sun L. 2021; Inhibition of autophagy by CRMP2-derived peptide ST2-104 (R9-CBD3) via a CaMKKβ/AMPK/mTOR pathway contributes to ischemic postconditioning-induced neuroprotection against cerebral ischemia-reperfusion injury. Mol Brain. 14:123. DOI: 10.1186/s13041-021-00836-0. PMID: 34362425. PMCID: PMC8344221.
Article
97. Wicha P, Onsa-Ard A, Chaichompoo W, Suksamrarn A, Tocharus C. 2020; Vasorelaxant and antihypertensive effects of neferine in rats: an in vitro and in vivo study. Planta Med. 86:496–504. DOI: 10.1055/a-1123-7852. PMID: 32219782.
Article
98. Sengking J, Oka C, Wicha P, Yawoot N, Tocharus J, Chaichompoo W, Suksamrarn A, Tocharus C. 2021; Neferine protects against brain damage in permanent cerebral ischemic rat associated with autophagy suppression and AMPK/mTOR regulation. Mol Neurobiol. 58:6304–15. DOI: 10.1007/s12035-021-02554-z. PMID: 34498225.
Article
99. Liu CW, Liao KH, Tseng H, Wu CM, Chen HY, Lai TW. 2020; Hypothermia but not NMDA receptor antagonism protects against stroke induced by distal middle cerebral arterial occlusion in mice. PLoS One. 15:e0229499. DOI: 10.1371/journal.pone.0229499. PMID: 32126102. PMCID: PMC7053748.
Article
100. Hu WW, Du Y, Li C, Song YJ, Zhang GY. 2008; Neuroprotection of hypothermia against neuronal death in rat hippocampus through inhibiting the increased assembly of GluR6-PSD95-MLK3 signaling module induced by cerebral ischemia/reperfusion. Hippocampus. 18:386–97. DOI: 10.1002/hipo.20402. PMID: 18172894.
Article
Full Text Links
  • ACB
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr