J Stroke.  2024 May;26(2):203-230. 10.5853/jos.2023.04329.

Neuroprotective Approaches for Brain Injury After Cardiac Arrest: Current Trends and Prospective Avenues

Affiliations
  • 1Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
  • 2Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA
  • 3Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
  • 4Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Abstract

With the implementation of improved bystander cardiopulmonary resuscitation techniques and public-access defibrillation, survival after out-of-hospital cardiac arrest (OHCA) has increased significantly over the years. Nevertheless, OHCA survivors have residual anoxia/reperfusion brain damage and associated neurological impairment resulting in poor quality of life. Extracorporeal membrane oxygenation or targeted temperature management has proven effective in improving post-cardiac arrest (CA) neurological outcomes, yet considering the substantial healthcare costs and resources involved, there is an urgent need for alternative treatment strategies that are crucial to alleviate brain injury and promote recovery of neurological function after CA. In this review, we searched PubMed for the latest preclinical or clinical studies (2016–2023) utilizing gas-mediated, pharmacological, or stem cell-based neuroprotective approaches after CA. Preclinical studies utilizing various gases (nitric oxide, hydrogen, hydrogen sulfide, carbon monoxide, argon, and xenon), pharmacological agents targeting specific CA-related pathophysiology, and stem cells have shown promising results in rodent and porcine models of CA. Although inhaled gases and several pharmacological agents have entered clinical trials, most have failed to demonstrate therapeutic effects in CA patients. To date, stem cell therapies have not been reported in clinical trials for CA. A relatively small number of preclinical stem-cell studies with subtle therapeutic benefits and unelucidated mechanistic explanations warrant the need for further preclinical studies including the improvement of their therapeutic potential. The current state of the field is discussed and the exciting potential of stem-cell therapy to abate neurological dysfunction following CA is highlighted.

Keyword

Neuroprotection; Cardiac arrest; Pharmacological approach; Gases; Stem cells

Figure

  • Figure 1. Schematic representation for the reported neuroprotective mechanisms of gases in CA. Red arrows indicate downregulatory effects, whereas green indicates the upregulatory effects for respective signaling mechanisms. Gases suppress oxidative stress, inflammation, and apoptosis while upregulating the neuroprotective mechanisms in the CA brain. CA, cardiac arrest; NO, nitric oxide; CO, carbon monoxide; CO2, carbon dioxide; H2, hydrogen; H2S, hydrogen-sulfide; Xe, xenon; Ar, argon; ROS, reactive oxygen species; NMDAR, N-methyl-D-aspartate receptor; cGMP: cyclic guanosine 3’,5’-monophosphate; GSNO, S-nitrosoglutathione; BDNF, brain-derived neurotrophic factor; SOD, superoxide dismutase; TLR, toll-like receptor; AKT, protein kinase B; CREB, cyclic adenosine 3,5-monophosphate-response element-binding protein; HO1, heme-oxygenase-1; IRAK, interleukin-1 receptor associated kinase; Nrf2, nuclear factor erythroid 2–related factor-2; CAT, catalase; GPX1, glutathione peroxidase; GST, glutathione S-transferase; NFκB, nuclear factor kappa B; ERK, extracellular signalregulated kinase; P38, P38 kinase; hsp90, heat shock protein 90; TRκβ, tyrosine kinase β.

  • Figure 2. Possible neuroprotective mechanisms of pharmacological agents used for cardiac arrest. Drugs included beneath the box represent respective pathophysiological processes such as anti-inflammation, anti-apoptosis, antioxidant, and multiple pleiotropic mechanisms which suppress the ongoing pathophysiology to confer neuroprotection thus mitigating neuronal cell death. LPC-DHA, lysophosphatidylcholine containing docosahexaenoic acid; DCA, dichloroacetate; DMM, dimethyl malonate; D-NAC, dendrimer N-acetyl cysteine; ROS, reactive oxygen species; NO, nitric oxide; OH, hydroxyl radical; HMGB1, high mobility group box-1; NBP, DL-3-n-butylphthalide.

  • Figure 3. Diagram illustrating the proposed mechanisms of therapeutic efficacy for exogenous stem cell therapy in cardiac arrest. Stem cells can provide beneficial therapeutic effects via directly differentiating into functional neurons and by possessing pleiotropic paracrine effects such as angiogenesis, neurogenesis, synaptogenesis, anti-fibrosis, anti-apoptosis, and anti-inflammation through secretion of growth factors. VEGF, vascular endothelial growth factor; HGF, hepatocyte growth factor; FGF, fibroblast growth factor; BDNF, brain-derived neurotrophic factor; NGF, nerve growth factor; GDNF, glial cell line-derived neurotrophic factor.


Reference

References

1. Kiguchi T, Okubo M, Nishiyama C, Maconochie I, Ong MEH, Kern KB, et al. Out-of-hospital cardiac arrest across the world: first report from the International Liaison Committee on Resuscitation (ILCOR). Resuscitation. 2020; 152:39–49.
Article
2. Gräsner JT, Wnent J, Herlitz J, Perkins GD, Lefering R, Tjelmeland I, et al. Survival after out-of-hospital cardiac arrest in Europe - results of the EuReCa TWO study. Resuscitation. 2020; 148:218–226.
Article
3. Gräsner JT, Herlitz J, Tjelmeland IBM, Wnent J, Masterson S, Lilja G, et al. European resuscitation council guidelines 2021: epidemiology of cardiac arrest in Europe. Resuscitation. 2021; 161:61–79.
Article
4. Kragholm K, Wissenberg M, Mortensen RN, Hansen SM, Malta Hansen C, Thorsteinsson K, et al. Bystander efforts and 1-year outcomes in out-of-hospital cardiac arrest. N Engl J Med. 2017; 376:1737–1747.
Article
5. Perkins GD, Callaway CW, Haywood K, Neumar RW, Lilja G, Rowland MJ, et al. Brain injury after cardiac arrest. Lancet. 2021; 398:1269–1278.
Article
6. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019; 139:e56–e528.
7. Hosseini M, Wilson RH, Crouzet C, Amirhekmat A, Wei KS, Akbari Y. Resuscitating the globally ischemic brain: TTM and beyond. Neurotherapeutics. 2020; 17:539–562.
Article
8. Maekawa K, Tanno K, Hase M, Mori K, Asai Y. Extracorporeal cardiopulmonary resuscitation for patients with out-of-hospital cardiac arrest of cardiac origin: a propensity-matched study and predictor analysis. Crit Care Med. 2013; 41:1186–1196.
Article
9. Sakurai T, Kaneko T, Yamada S, Takahashi T. Extracorporeal cardiopulmonary resuscitation with temperature management could improve the neurological outcomes of out-of-hospital cardiac arrest: a retrospective analysis of a nationwide multicenter observational study in Japan. J Intensive Care. 2022; 10:30.
Article
10. Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med. 2021; 47:369–421.
Article
11. Panchal AR, Bartos JA, Cabañas JG, Donnino MW, Drennan IR, Hirsch KG, et al. Part 3: adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020; 142(16 suppl 2):S366–S468.
12. Chen S, Lachance BB, Gao L, Jia X. Targeted temperature management and early neuro-prognostication after cardiac arrest. J Cereb Blood Flow Metab. 2021; 41:1193–1209.
Article
13. Hayashida K, Bagchi A, Miyazaki Y, Hirai S, Seth D, Silverman MG, et al. Improvement in outcomes after cardiac arrest and resuscitation by inhibition of S-nitrosoglutathione reductase. Circulation. 2019; 139:815–827.
Article
14. Brücken A, Bleilevens C, Berger P, Nolte K, Gaisa NT, Rossaint R, et al. Effects of inhaled nitric oxide on outcome after prolonged cardiac arrest in mild therapeutic hypothermia treated rats. Sci Rep. 2018; 8:6743.
Article
15. Dezfulian C, Kenny E, Lamade A, Misse A, Krehel N, St Croix C, et al. Mechanistic characterization of nitrite-mediated neuroprotection after experimental cardiac arrest. J Neurochem. 2016; 139:419–431.
Article
16. Morgan RW, Sutton RM, Himebauch AS, Roberts AL, Landis WP, Lin Y, et al. A randomized and blinded trial of inhaled nitric oxide in a piglet model of pediatric cardiopulmonary resuscitation. Resuscitation. 2021; 162:274–283.
17. Patel JK, Schoenfeld E, Hou W, Singer A, Rakowski E, Ahmad S, et al. Inhaled nitric oxide in adults with in-hospital cardiac arrest: a feasibility study. Nitric Oxide. 2021; 115:30–33.
Article
18. Vitturi DA, Maynard C, Olsufka M, Straub AC, Krehel N, Kudenchuk PJ, et al. Nitrite elicits divergent NO-dependent signaling that associates with outcome in out of hospital cardiac arrest. Redox Biol. 2020; 32:101463.
Article
19. Wang P, Yao L, Zhou LL, Liu YS, Chen MD, Wu HD, et al. Carbon monoxide improves neurologic outcomes by mitochondrial biogenesis after global cerebral ischemia induced by cardiac arrest in rats. Int J Biol Sci. 2016; 12:1000–1009.
Article
20. Wu J, Li Y, Yang P, Huang Y, Lu S, Xu F. Novel role of carbon monoxide in improving neurological outcome after cardiac arrest in aged rats: involvement of inducing mitochondrial autophagy. J Am Heart Assoc. 2019; 8:e011851.
Article
21. Wollborn J, Steiger C, Doostkam S, Schallner N, Schroeter N, Kari FA, et al. Carbon monoxide exerts functional neuroprotection after cardiac arrest using extracorporeal resuscitation in pigs. Crit Care Med. 2020; 48:e299–e307.
22. Wang CH, Huang CH, Tsai MS, Wang CC, Chang WT, Liu SH, et al. Inhaled carbon dioxide improves neurological outcomes by downregulating hippocampal autophagy and apoptosis in an asphyxia-induced cardiac arrest and resuscitation rat model. J Am Heart Assoc. 2022; 11:e027685.
Article
23. Babini G, Ristagno G, Boccardo A, De Giorgio D, De Maglie M, Affatato R, et al. Effect of mild hypercapnia on outcome and histological injury in a porcine post cardiac arrest model. Resuscitation. 2019; 135:110–117.
Article
24. Chen G, Li J, Wang J, Chen B, Li Y. Inhaling hydrogen ameliorates early postresuscitation EEG characteristics in an asphyxial cardiac arrest rat model. Biomed Res Int. 2019; 2019:6410159.
Article
25. Wang P, Jia L, Chen B, Zhang L, Liu J, Long J, et al. Hydrogen inhalation is superior to mild hypothermia in improving cardiac function and neurological outcome in an asphyxial cardiac arrest model of rats. Shock. 2016; 46:312–318.
Article
26. Gao Y, Gui Q, Jin L, Yu P, Wu L, Cao L, et al. Hydrogen-rich saline attenuates hippocampus endoplasmic reticulum stress after cardiac arrest in rats. Neurosci Lett. 2017; 640:29–36.
Article
27. Tamura T, Suzuki M, Hayashida K, Kobayashi Y, Yoshizawa J, Shibusawa T, et al. Hydrogen gas inhalation alleviates oxidative stress in patients with post-cardiac arrest syndrome. J Clin Biochem Nutr. 2020; 67:214–221.
Article
28. Tamura T, Suzuki M, Homma K, Sano M; HYBRID II Study Group. Efficacy of inhaled hydrogen on neurological outcome following brain ischaemia during post-cardiac arrest care (HYBRID II): a multi-centre, randomised, double-blind, placebo-controlled trial. EClinicalMedicine. 2023; 58:101907.
29. Koziakova M, Harris K, Edge CJ, Franks NP, White IL, Dickinson R. Noble gas neuroprotection: xenon and argon protect against hypoxic-ischaemic injury in rat hippocampus in vitro via distinct mechanisms. Br J Anaesth. 2019; 123:601–609.
Article
30. Law LS, Lo EA, Chan CC, Gan TJ. Neurologic and cognitive outcomes associated with the clinical use of xenon: a systematic review and meta-analysis of randomized-controlled trials. Can J Anaesth. 2018; 65:1041–1056.
Article
31. Zhao H, Mitchell S, Koumpa S, Cui YT, Lian Q, Hagberg H, et al. Heme oxygenase-1 mediates neuroprotection conferred by argon in combination with hypothermia in neonatal hypoxia-ischemia brain injury. Anesthesiology. 2016; 125:180–192.
Article
32. Broad KD, Fierens I, Fleiss B, Rocha-Ferreira E, Ezzati M, Hassell J, et al. Inhaled 45-50% argon augments hypothermic brain protection in a piglet model of perinatal asphyxia. Neurobiol Dis. 2016; 87:29–38.
Article
33. Fumagalli F, Olivari D, Boccardo A, De Giorgio D, Affatato R, Ceriani S, et al. Ventilation with argon improves survival with good neurological recovery after prolonged untreated cardiac arrest in pigs. J Am Heart Assoc. 2020; 9:e016494.
Article
34. Laitio R, Hynninen M, Arola O, Virtanen S, Parkkola R, Saunavaara J, et al. Effect of inhaled xenon on cerebral white matter damage in comatose survivors of out-of-hospital cardiac arrest: a randomized clinical trial. JAMA. 2016; 315:1120–1128.
Article
35. Xin L, Junhua W, Long L, Jun Y, Yang X. Exogenous hydrogen sulfide protects SH-SY5Y cells from OGD/RInduced injury. Curr Mol Med. 2017; 17:563–567.
Article
36. Li H, Zhu L, Feng J, Hu X, Li C, Zhang B. Hydrogen sulfide decreases blood-brain barrier damage via regulating protein kinase C and tight junction after cardiac arrest in rats. Cell Physiol Biochem. 2018; 47:994–1006.
37. Sun X, Wang Y, Wen S, Huang K, Huang J, Chu X, et al. Novel controlled and targeted releasing hydrogen sulfide system exerts combinational cerebral and myocardial protection after cardiac arrest. J Nanobiotechnology. 2021; 19:40.
Article
38. Lin J, Wu W, Xu Z, Liu S, Lu W, Pan M. Effects of NaHS and hydroxylamine on the expressions of brain-derived neurotrophic factor and its receptors in rats after cardiac arrest and cardiopulmonary resuscitation. Scand J Trauma Resusc Emerg Med. 2018; 26:109.
Article
39. Huang L, Applegate RL 2nd, Applegate PM, Boling W, Zhang JH. Inhalation of high concentration hydrogen gas improves short-term outcomes in a rat model of asphyxia induced-cardiac arrest. Med Gas Res. 2018; 8:73–78.
Article
40. Brücken A, Bleilevens C, Föhr P, Nolte K, Rossaint R, Marx G, et al. Influence of argon on temperature modulation and neurological outcome in hypothermia treated rats following cardiac arrest. Resuscitation. 2017; 117:32–39.
Article
41. Kwon WY, Suh GJ, Kim KS, Jung YS, Kim SH, Lee AR, et al. Niacin and selenium attenuate brain injury after cardiac arrest in rats by up-regulating DJ-1-Akt signaling. Crit Care Med. 2018; 46:e788–e796.
Article
42. Wang P, Li Y, Yan B, Yang Z, Li L, Cao Z, et al. Manganese porphyrin promotes post cardiac arrest recovery in mice and rats. Biology (Basel). 2022; 11:957.
Article
43. Xu J, Pan H, Xie X, Zhang J, Wang Y, Yang G. Inhibiting succinate dehydrogenase by dimethyl malonate alleviates brain damage in a rat model of cardiac arrest. Neuroscience. 2018; 393:24–32.
Article
44. Qiu Y, Wu Y, Meng M, Luo M, Zhao H, Sun H, et al. Rosuvastatin improves myocardial and neurological outcomes after asphyxial cardiac arrest and cardiopulmonary resuscitation in rats. Biomed Pharmacother. 2017; 87:503–508.
Article
45. Qin T, Lei LY, Li N, Shi FR, Chen MH, Xie L. Edaravone improves survival and neurological outcomes after CPR in a ventricular fibrillation model of rats. Am J Emerg Med. 2016; 34:1944–1949.
Article
46. Xiao Y, Su C, Zhang G, Liang L, Jin T, Bradley J, et al. Vitamin C improves the outcomes of cardiopulmonary resuscitation and alters shedding of syndecan-1 and p38/MAPK phosphorylation in a rat model. J Am Heart Assoc. 2022; 11:e023787.
Article
47. Cho JH, Tae HJ, Kim IS, Song M, Kim H, Lee TK, et al. Melatonin alleviates asphyxial cardiac arrest-induced cerebellar Purkinje cell death by attenuation of oxidative stress. Exp Neurol. 2019; 320:112983.
Article
48. Yang L, Wang J, Deng Y, Gong C, Li Q, Chen Q, et al. Melatonin improves neurological outcomes and preserves hippocampal mitochondrial function in a rat model of cardiac arrest. PLoS One. 2018; 13:e0207098.
Article
49. He F, Zheng G, Hou J, Hu Q, Ling Q, Wu G, et al. N-acetylcysteine alleviates post-resuscitation myocardial dysfunction and improves survival outcomes via partly inhibiting NLRP3 inflammasome induced-pyroptosis. J Inflamm (Lond). 2020; 17:25.
Article
50. Modi HR, Wang Q, Olmstead SJ, Khoury ES, Sah N, Guo Y, et al. Systemic administration of dendrimer N-acetyl cysteine improves outcomes and survival following cardiac arrest. Bioeng Transl Med. 2021; 7:e10259.
Article
51. Medvedeva YV, Yin HZ, Bazrafkan A, Yeromin A, Ji SG, WeissHung EJ, et al. Blocking mitochondrial Zn2+ accumulation after ischemia reduces mitochondrial dysfunction and neuronal injury. J Neurosci. 2022; 42:5281–5292.
Article
52. Salamah A, Mehrez M, Faheem A, El Amrousy D. Efficacy of citicoline as a neuroprotector in children with post cardiac arrest: a randomized controlled clinical trial. Eur J Pediatr. 2021; 180:1249–1255.
Article
53. Cocchi MN, Giberson B, Berg K, Salciccioli JD, Naini A, Buettner C, et al. Coenzyme Q10 levels are low and associated with increased mortality in post-cardiac arrest patients. Resuscitation. 2012; 83:991–995.
Article
54. Holmberg MJ, Andersen LW, Moskowitz A, Berg KM, Cocchi MN, Chase M, et al. Ubiquinol (reduced coenzyme Q10) as a metabolic resuscitator in post-cardiac arrest: a randomized, double-blind, placebo-controlled trial. Resuscitation. 2021; 162:388–395.
Article
55. Nguyen Thi PA, Chen MH, Li N, Zhuo XJ, Xie L. PD98059 protects brain against cells death resulting from ROS/ERK activation in a cardiac arrest rat model. Oxid Med Cell Longev. 2016; 2016:3723762.
56. Zheng JH, Xie L, Li N, Fu ZY, Tan XF, Tao R, et al. PD98059 protects the brain against mitochondrial-mediated apoptosis and autophagy in a cardiac arrest rat model. Life Sci. 2019; 232:116618.
Article
57. Yuan ZL, Zhang ZX, Mo YZ, Li DL, Xie L, Chen MH. Inhibition of extracellular signal-regulated kinase downregulates endoplasmic reticulum stress-induced apoptosis and decreases brain injury in a cardiac arrest rat model. Physiol Res. 2022; 71:413–423.
Article
58. Kim YH, Lee TK, Lee JC, Kim DW, Hong S, Cho JH, et al. Therapeutic administration of oxcarbazepine saves cerebellar purkinje cells from ischemia and reperfusion injury induced by cardiac arrest through attenuation of oxidative stress. Antioxidants (Basel). 2022; 11:2450.
Article
59. Shen Y, Li R, Yu S, Zhao Q, Wang Z, Sheng H, et al. Activation of the ATF6 (activating transcription factor 6) signaling pathway in neurons improves outcome after cardiac arrest in mice. J Am Heart Assoc. 2021; 10:e020216.
Article
60. Yuan Z, Lu L, Lian Y, Zhao Y, Tang T, Xu S, et al. AA147 ameliorates post-cardiac arrest cerebral ischemia/reperfusion injury through the co-regulation of the ATF6 and Nrf2 signaling pathways. Front Pharmacol. 2022; 13:1028002.
Article
61. Ikeda K, Liu X, Kida K, Marutani E, Hirai S, Sakaguchi M, et al. Thiamine as a neuroprotective agent after cardiac arrest. Resuscitation. 2016; 105:138–144.
Article
62. Wang P, Chen M, Yang Z, Yu T, Zhu J, Zhou L, et al. Activation of pyruvate dehydrogenase activity by dichloroacetate improves survival and neurologic outcomes after cardiac arrest in rats. Shock. 2018; 49:704–711.
Article
63. Nishikimi M, Yagi T, Shoaib M, Takegawa R, Rasul R, Hayashida K, et al. Phospholipid screening postcardiac arrest detects decreased plasma lysophosphatidylcholine: supplementation as a new therapeutic approach. Crit Care Med. 2022; 50:e199–e208.
Article
64. Nishikimi M, Shoaib M, Choudhary RC, Aoki T, Miyara SJ, Yagi T, et al. Preserving brain LPC-DHA by plasma supplementation attenuates brain injury after cardiac arrest. Ann Neurol. 2022; 91:389–403.
Article
65. Lin SR, Lin QM, Lin YJ, Qian X, Wang XP, Gong Z, et al. Bradykinin postconditioning protects rat hippocampal neurons after restoration of spontaneous circulation following cardiac arrest via activation of the AMPK/mTOR signaling pathway. Neural Regen Res. 2022; 17:2232–2237.
Article
66. Oh JS, Tulasi J, Xiaodan R, Stacey WC, Neumar RW. Valproic acid combined with postcardiac arrest hypothermic-targeted temperature management prevents delayed seizures and improves survival in a rat cardiac arrest model. Crit Care Med. 2017; 45:e1149–e1156.
Article
67. Oh JS, Park J, Kim K, Jeong HH, Oh YM, Choi S, et al. HSP70-mediated neuroprotection by combined treatment of valproic acid with hypothermia in a rat asphyxial cardiac arrest model. PLoS One. 2021; 16:e0253328.
Article
68. Zhou X, Liu Y, Huang Y, Zhu S, Zhu J, Wang R. Hypertonic saline infusion suppresses apoptosis of hippocampal cells in a rat model of cardiopulmonary resuscitation. Sci Rep. 2017; 7:5783.
Article
69. Liu W, Ye Q, Xi W, Li Y, Zhou X, Wang Y, et al. The ERK/CREB/PTN/syndecan-3 pathway involves in heparin-mediated neuro-protection and neuro-regeneration against cerebral ischemia-reperfusion injury following cardiac arrest. Int Immunopharmacol. 2021; 98:107689.
Article
70. Chen J, Chang Y, Zhu J, Peng Y, Li Z, Zhang K, et al. Flufenamic acid improves survival and neurologic outcome after successful cardiopulmonary resuscitation in mice. J Neuroinflammation. 2022; 19:214.
Article
71. Tsai MS, Chuang PY, Yu PH, Huang CH, Tang CH, Chang WT, et al. Glucocorticoid use during cardiopulmonary resuscitation may be beneficial for cardiac arrest. Int J Cardiol. 2016; 222:629–635.
72. Tsai MS, Chuang PY, Huang CH, Tang CH, Yu PH, Chang WT, et al. Postarrest steroid use may improve outcomes of cardiac arrest survivors. Crit Care Med. 2019; 47:167–175.
Article
73. Chen W, Wang H, Wang Z, Zhao C, Xu J, Chen Q. Resolvin D1 improves post-resuscitation cardiac and cerebral outcomes in a porcine model of cardiac arrest. Shock. 2020; 54:548–554.
Article
74. Han R, Zhang G, Qiao X, Guo Y, Sun L, Li J, et al. α7 nicotinic acetylcholine receptor mediates the neuroprotection of remote ischemic postconditioning in a rat model of asphyxial cardiac arrest. J Surg Res. 2020; 246:6–18.
Article
75. Xu J, Zheng G, Hu J, Ge W, Bradley JL, Ornato JP, et al. The monoacylglycerol lipase inhibitor, JZL184, has comparable effects to therapeutic hypothermia, attenuating global cerebral injury in a rat model of cardiac arrest. Biomed Pharmacother. 2022; 156:113847.
Article
76. Koenig MA, Jia X, Kang X, Velasquez A, Thakor NV, Geocadin RG. Intraventricular orexin-A improves arousal and early EEG entropy in rats after cardiac arrest. Brain Res. 2009; 1255:153–161.
Article
77. Kang YJ, Tian G, Bazrafkan A, Farahabadi MH, Azadian M, Abbasi H, et al. Recovery from coma post-cardiac arrest is dependent on the orexin pathway. J Neurotrauma. 2017; 34:2823–2832.
Article
78. Modi HR, Wang Q, Gd S, Sherman D, Greenwald E, Savonenko AV, et al. Intranasal post-cardiac arrest treatment with orexin-A facilitates arousal from coma and ameliorates neuroinflammation. PLoS One. 2017; 12:e0182707.
Article
79. Shi X, Li M, Huang K, Zhou S, Hu Y, Pan S, et al. HMGB1 binding heptamer peptide improves survival and ameliorates brain injury in rats after cardiac arrest and cardiopulmonary resuscitation. Neuroscience. 2017; 360:128–138.
Article
80. Boissady E, Abi Zeid Daou Y, Faucher E, Kohlhauer M, Lidouren F, El Hedjaj C, et al. High-mobility group box 1-signaling inhibition with glycyrrhizin prevents cerebral T-cell infiltration after cardiac arrest. J Am Heart Assoc. 2023; 12:e027749.
Article
81. Jiang M, Li R, Lyu J, Li X, Wang W, Wang Z, et al. MCC950, a selective NLPR3 inflammasome inhibitor, improves neurologic function and survival after cardiac arrest and resuscitation. J Neuroinflammation. 2020; 17:256.
Article
82. Chang Y, Zhu J, Wang D, Li H, He Y, Liu K, et al. NLRP3 inflammasome-mediated microglial pyroptosis is critically involved in the development of post-cardiac arrest brain injury. J Neuroinflammation. 2020; 17:219.
Article
83. Zheng G, Xu J, He F, Hu J, Ge W, Ji X, et al. Effects of NLRP3 inflammasome blockade on postresuscitation cerebral function in a rat model of cardiopulmonary resuscitation. Biomed Pharmacother. 2021; 143:112093.
Article
84. Yang J, Xiao Y, Quan EY, Hu Z, Guo Q, Miao C, et al. Effects of polyethylene glycol-20k on postresuscitation myocardial and cerebral function in a rat model of cardiopulmonary resuscitation. Crit Care Med. 2018; 46:e1190–e1195.
Article
85. Ge W, Zheng G, Ji X, He F, Hu J, Bradley JL, et al. Effects of polyethylene glycol-20k on coronary perfusion pressure and postresuscitation myocardial and cerebral function in a rat model of cardiac arrest. J Am Heart Assoc. 2020; 9:e014232.
Article
86. Guo Q, Yang J, Hu Z, Xiao Y, Wu X, Bradley J, et al. Polyethylene glycol-20k reduces post-resuscitation cerebral dysfunction in a rat model of cardiac arrest and resuscitation: a potential mechanism. Biomed Pharmacother. 2021; 139:111646.
Article
87. Nakayama S, Migliati E, Amiry-Moghaddam M, Ottersen OP, Bhardwaj A. Osmotherapy with hypertonic saline attenuates global cerebral edema following experimental cardiac arrest via perivascular pool of aquaporin-4. Crit Care Med. 2016; 44:e702–e710.
Article
88. Zeng J, Zhu L, Liu J, Zhu T, Xie Z, Sun X, et al. Metformin protects against oxidative stress injury induced by ischemia/reperfusion via regulation of the lncRNA-H19/miR-148a-3p/ Rock2 axis. Oxid Med Cell Longev. 2019; 2019:8768327.
89. Shoaib M, Choudhary RC, Chillale RK, Kim N, Miyara SJ, Haque S, et al. Metformin-mediated mitochondrial protection post-cardiac arrest improves EEG activity and confers neuroprotection and survival benefit. FASEB J. 2022; 36:e22307.
Article
90. Chuan L, Huang X, Fan C, Wen S, Yang X, Wang J, et al. Metformin ameliorates brain damage caused by cardiopulmonary resuscitation via targeting endoplasmic reticulum stress-related proteins GRP78 and XBP1. Eur J Pharmacol. 2021; 891:173716.
Article
91. Zhu J, Liu K, Huang K, Gu Y, Hu Y, Pan S, et al. Metformin improves neurologic outcome via AMP-activated protein kinase–mediated autophagy activation in a rat model of cardiac arrest and resuscitation. J Am Heart Assoc. 2018; 7:e008389.
92. Huang K, Wang Z, Gu Y, Hu Y, Ji Z, Wang S, et al. Glibenclamide is comparable to target temperature management in improving survival and neurological outcome after asphyxial cardiac arrest in rats. J Am Heart Assoc. 2016; 5:e003465.
Article
93. Huang K, Wang Z, Gu Y, Ji Z, Lin Z, Wang S, et al. Glibenclamide prevents water diffusion abnormality in the brain after cardiac arrest in rats. Neurocrit Care. 2018; 29:128–135.
Article
94. Lachance BB, Wang Z, Badjatia N, Jia X. The effect of glibenclamide on somatosensory evoked potentials after cardiac arrest in rats. Neurocrit Care. 2022; 36:612–620.
Article
95. Wang Z, Zhang S, Du J, Lachance BB, Chen S, Polster BM, et al. Neuroprotection of NSC therapy is superior to glibenclamide in cardiac arrest-induced brain injury via neuroinflammation regulation. Transl Stroke Res. 2023; 14:723–739.
Article
96. He Y, Chang Y, Peng Y, Zhu J, Liu K, Chen J, et al. Glibenclamide directly prevents neuroinflammation by targeting SUR1-TRPM4-mediated NLRP3 inflammasome activation in microglia. Mol Neurobiol. 2022; 59:6590–6607.
Article
97. Liang L, Shao W, Shu T, Zhang Y, Xu S, Guo L, et al. Xuezhikang improves the outcomes of cardiopulmonary resuscitation in rats by suppressing the inflammation response through TLR4/NF-κB pathway. Biomed Pharmacother. 2019; 114:108817.
Article
98. Yang S, Yu C, Yang Z, Cui H, Wu Y, Liang Z, et al. DL-3-n-butylphthalide-induced neuroprotection in rat models of asphyxia-induced cardiac arrest followed by cardiopulmonary resuscitation. J Cell Physiol. 2021; 236:7464–7472.
Article
99. Wang W, Xie L, Zou X, Hu W, Tian X, Zhao G, et al. Pomelo peel oil suppresses TNF-α-induced necroptosis and cerebral ischaemia-reperfusion injury in a rat model of cardiac arrest. Pharm Biol. 2021; 59:401–409.
Article
100. Wu Z, Huang J, Bai X, Wang Q, Wang F, Xu J, et al. Ginsenoside-Rg1 mitigates cardiac arrest-induced cognitive damage by modulating neuroinflammation and hippocampal plasticity. Eur J Pharmacol. 2023; 938:175431.
Article
101. Perkins GD, Ji C, Deakin CD, Quinn T, Nolan JP, Scomparin C, et al. A randomized trial of epinephrine in out-of-hospital cardiac arrest. N Engl J Med. 2018; 379:711–721.
Article
102. Vammen L, Johannsen CM, Baltsen CD, Nørholt C, Eggertsen M, Mortensen S, et al. Thiamine for the treatment of cardiac arrest-induced neurological injury: a randomized, blinded, placebo-controlled experimental study. J Am Heart Assoc. 2023; 12:e028558.
Article
103. Pradita-Ukrit S, Vattanavanit V. Efficacy of thiamine in the treatment of postcardiac arrest patients: a randomized controlled study. Crit Care Res Pract. 2020; 2020:2981079.
Article
104. Andersen LW, Isbye D, Kjærgaard J, Kristensen CM, Darling S, Zwisler ST, et al. Effect of vasopressin and methylprednisolone vs placebo on return of spontaneous circulation in patients with in-hospital cardiac arrest: a randomized clinical trial. JAMA. 2021; 326:1586–1594.
Article
105. Meyer MAS, Wiberg S, Grand J, Meyer ASP, Obling LER, Frydland M, et al. Treatment effects of interleukin-6 receptor antibodies for modulating the systemic inflammatory response after out-of-hospital cardiac arrest (the IMICA trial): a double-blinded, placebo-controlled, single-center, randomized, clinical trial. Circulation. 2021; 143:1841–1851.
Article
106. Vallentin MF, Granfeldt A, Meilandt C, Povlsen AL, Sindberg B, Holmberg MJ, et al. Effect of intravenous or intraosseous calcium vs saline on return of spontaneous circulation in adults with out-of-hospital cardiac arrest: a randomized clinical trial. JAMA. 2021; 326:2268–2276.
Article
107. Tang X, Chen F, Lin Q, You Y, Ke J, Zhao S. Bone marrow mesenchymal stem cells repair the hippocampal neurons and increase the expression of IGF-1 after cardiac arrest in rats. Exp Ther Med. 2017; 14:4312–4320.
Article
108. Lin QM, Tang XH, Lin SR, Chen BD, Chen F. Bone marrow-derived mesenchymal stem cell transplantation attenuates overexpression of inflammatory mediators in rat brain after cardiopulmonary resuscitation. Neural Regen Res. 2020; 15:324–331.
Article
109. Yu Y, Wang D, Li H, Fan J, Liu Y, Zhao X, et al. Mesenchymal stem cells derived from induced pluripotent stem cells play a key role in immunomodulation during cardiopulmonary resuscitation. Brain Res. 2019; 1720:146293.
Article
110. Xu J, Zhang M, Liu F, Shi L, Jiang X, Chen C, et al. Mesenchymal stem cells alleviate post-resuscitation cardiac and cerebral injuries by inhibiting cell pyroptosis and ferroptosis in a swine model of cardiac arrest. Front Pharmacol. 2021; 12:793829.
Article
111. Zhou L, Lin Q, Wang P, Yao L, Leong K, Tan Z, et al. Enhanced neuroprotective efficacy of bone marrow mesenchymal stem cells co-overexpressing BDNF and VEGF in a rat model of cardiac arrest-induced global cerebral ischemia. Cell Death Dis. 2017; 8:e2774.
Article
112. Wang Z, Du J, Lachance BB, Mascarenhas C, He J, Jia X. Intracerebroventricular administration of hNSCs improves neurological recovery after cardiac arrest in rats. Stem Cell Rev Rep. 2021; 17:923–937.
Article
113. Meyer P, Grandgirard D, Lehner M, Haenggi M, Leib SL. Grafted neural progenitor cells persist in the injured site and differentiate neuronally in a rodent model of cardiac arrest-induced global brain ischemia. Stem Cells Dev. 2020; 29:574–585.
Article
114. Li F, Zhang J, Chen A, Liao R, Duan Y, Xu Y, et al. Combined transplantation of neural stem cells and bone marrow mesenchymal stem cells promotes neuronal cell survival to alleviate brain damage after cardiac arrest via microRNA-133b incorporated in extracellular vesicles. Aging (Albany NY). 2021; 13:262–278.
Article
115. Muir KW, Bulters D, Willmot M, Sprigg N, Dixit A, Ward N, et al. Intracerebral implantation of human neural stem cells and motor recovery after stroke: multicentre prospective single-arm study (PISCES-2). J Neurol Neurosurg Psychiatry. 2020; 91:396–401.
Article
116. Kalladka D, Sinden J, Pollock K, Haig C, McLean J, Smith W, et al. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man study. Lancet. 2016; 388:787–796.
117. Zhang S, Lachance BB, Moiz B, Jia X. Optimizing stem cell therapy after ischemic brain injury. J Stroke. 2020; 22:286–305.
Article
118. Du J, Agatemor C, Saeui CT, Bhattacharya R, Jia X, Yarema KJ. Glycoengineering human neural and adipose stem cells with novel thiol-modified N-acetylmannosamine (ManNAc) analogs. Cells. 2021; 10:377.
Article
119. Du J, Liu X, Yarema KJ, Jia X. Glycoengineering human neural stem cells (hNSCs) for adhesion improvement using a novel thiol-modified N-acetylmannosamine (ManNAc) analog. Biomater Adv. 2022; 134:112675.
Article
120. Du J, Liu X, Marasini S, Wang Z, Dammen-Brower K, Yarema KJ, et al. Metabolically glycoengineered neural stem cells boost neural repair after cardiac arrest. Adv Funct Mater. 2023; 34:2309866.
Article
121. Liu X, Jia X. Neuroprotection of stem cells against ischemic brain injury: from bench to clinic. Transl Stroke Res. 2023 Jul 7 [Epub]. https://doi.org/10.1007/s12975-023-01163-3.
Article
Full Text Links
  • JOS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr