J Stroke.  2024 May;26(2):164-178. 10.5853/jos.2023.03279.

Cancer-Associated Stroke: Thrombosis Mechanism, Diagnosis, Outcome, and Therapeutic Strategies

Affiliations
  • 1Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
  • 2Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Seoul, Korea
  • 3Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea

Abstract

Cancer can induce hypercoagulability, which may lead to stroke. This occurs when tumor cells activate platelets as part of their growth and metastasis. Tumor cells activate platelets by generating thrombin and expressing tissue factor, resulting in tumor cell-induced platelet aggregation. Histopathological studies of thrombi obtained during endovascular thrombectomy in patients with acute stroke and active cancer have shown a high proportion of platelets and thrombin. This underscores the crucial roles of platelets and thrombin in cancer-associated thrombosis. Cancer-associated stroke typically occurs in patients with active cancer and is characterized by distinctive features. These features include multiple infarctions across multiple vascular territories, markedly elevated blood D-dimer levels, and metastasis. The presence of cardiac vegetations on echocardiography is a robust indicator of cancer-associated stroke. Suspicion of cancer-associated stroke during endovascular thrombectomy arises when white thrombi are detected, particularly in patients with active cancer. Cancer-associated stroke is almost certain when histopathological examination of thrombi shows a very high platelet and a very low erythrocyte composition. Patients with cancer-associated stroke have high risks of mortality and recurrent stroke. However, limited data are available on the optimal treatment regimen for stroke prevention in these patients. Thrombosis mechanism in cancer is well understood, and distinct therapeutic targets involving thrombin and platelets have been identified. Therefore, direct thrombin inhibitors and/or antiplatelet agents may effectively prevent stroke recurrence. Additionally, this strategy has potential benefits in cancer treatment as accumulating evidence suggests that aspirin use reduces cancer progression, metastasis, and cancer-related mortality. However, clinical trials are necessary to assess the efficacy of this strategy involving the use of direct thrombin inhibitors and/or antiplatelet therapies.

Keyword

Cancer; Stroke; Thrombosis; Antithrombotic agents

Figure

  • Figure 1. Mechanism of thrombosis in cancer. Tumor cells activate platelets through thrombin generation and tissue factor expression. Growth factors, proteinases, and chemokines released from activated platelets promote tumor growth. Tumor cell-induced platelet aggregation facilitates metastasis by protecting tumor cells from natural killer (NK) cells and shear stress. This process is accompanied by thrombosis. VEGF, vascular endothelial growth factor; FGF, fibroblast growth factor; PDGF, platelet-derived growth factor; MMP, matrix metalloproteinase; u-PA, urokinase-type plasminogen activator; PAR-1, protease activated receptor-1.

  • Figure 2. Representative images of immunohistochemistry in (A) a patient with cancer-associated stroke and (B) a patient with atrial fibrillation without cancer. Thrombus retrieved from a patient with cancer-associated stroke shows stronger immunoreactivity to platelet and thrombin and weaker immunoreactivity to erythrocyte, compared with a patient without cancer. The primary antibodies for immunohistochemistry were anti-CD42b for platelet, anti-glycophorin A for erythrocyte, anti-fibrinogen for fibrin, and anti-thrombin for thrombin. Positive signals were developed using a 3,3’-diaminobenzidine and are shown in brown.

  • Figure 3. Representative thrombi and diffusion-weighted imaging in patients with cancer-associated stroke. (A) Thrombi retrieved during endovascular thrombectomy in a patient with metastatic gastric cancer exhibit multiple white appearances. The D-dimer level was 3,581 ng/mL. (B) Diffusion-weighted imaging of a patient with ovarian cancer and nonbacterial thrombotic endocarditis shows bilateral and multiple infarctions in the anterior and posterior circulations. The D-dimer level was 21,249 ng/mL.


Reference

References

1. White MC, Holman DM, Boehm JE, Peipins LA, Grossman M, Henley SJ. Age and cancer risk: a potentially modifiable relationship. Am J Prev Med. 2014; 46(3 Suppl 1):S7–S15.
2. Kang MJ, Jung KW, Bang SH, Choi SH, Park EH, Yun EH, et al. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2020. Cancer Res Treat. 2023; 55:385–399.
Article
3. Feigin VL, Nguyen G, Cercy K, Johnson CO, Alam T, Parmar PG, et al. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N Engl J Med. 2018; 379:2429–2437.
Article
4. Sanossian N, Djabiras C, Mack WJ, Ovbiagele B. Trends in cancer diagnoses among inpatients hospitalized with stroke. J Stroke Cerebrovasc Dis. 2013; 22:1146–1150.
Article
5. Jang HS, Choi J, Shin J, Chung JW, Bang OY, Kim GM, et al. The long-term effect of cancer on incident stroke: a nationwide population-based cohort study in Korea. Front Neurol. 2019; 10:52.
Article
6. Navi BB, Iadecola C. Ischemic stroke in cancer patients: a review of an underappreciated pathology. Ann Neurol. 2018; 83:873–883.
Article
7. Bang OY, Chung JW, Lee MJ, Seo WK, Kim GM, Ahn MJ. Cancer-related stroke: an emerging subtype of ischemic stroke with unique pathomechanisms. J Stroke. 2020; 22:1–10.
Article
8. Dardiotis E, Aloizou AM, Markoula S, Siokas V, Tsarouhas K, Tzanakakis G, et al. Cancer-associated stroke: pathophysiology, detection and management (review). Int J Oncol. 2019; 54:779–796.
Article
9. Kleindorfer DO, Towfighi A, Chaturvedi S, Cockroft KM, Gutierrez J, Lombardi-Hill D, et al. 2021 Guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American Heart Association/ American Stroke Association. Stroke. 2021; 52:e364–e467.
10. Woock M, Martinez-Majander N, Seiffge DJ, Selvik HA, Nordanstig A, Redfors P, et al. Cancer and stroke: commonly encountered by clinicians, but little evidence to guide clinical approach. Ther Adv Neurol Disord. 2022; 15:17562864221106362.
Article
11. Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011; 11:123–134.
Article
12. Goubran HA, Burnouf T, Radosevic M, El-Ekiaby M. The platelet-cancer loop. Eur J Intern Med. 2013; 24:393–400.
Article
13. Mege D, Aubert M, Lacroix R, Dignat-George F, Panicot-Dubois L, Dubois C. Involvement of platelets in cancers. Semin Thromb Hemost. 2019; 45:569–575.
Article
14. Plantureux L, Mège D, Crescence L, Dignat-George F, Dubois C, Panicot-Dubois L. Impacts of cancer on platelet production, activation and education and mechanisms of cancer-associated thrombosis. Cancers (Basel). 2018; 10:441.
Article
15. Plantureux L, Crescence L, Dignat-George F, Panicot-Dubois L, Dubois C. Effects of platelets on cancer progression. Thromb Res. 2018; 164(Suppl 1):S40–S47.
Article
16. Mezouar S, Frère C, Darbousset R, Mege D, Crescence L, Dignat-George F, et al. Role of platelets in cancer and cancerassociated thrombosis: experimental and clinical evidences. Thromb Res. 2016; 139:65–76.
Article
17. Connolly GC, Phipps RP, Francis CW. Platelets and cancer-associated thrombosis. Semin Oncol. 2014; 41:302–310.
Article
18. Ma L, Perini R, McKnight W, Dicay M, Klein A, Hollenberg MD, et al. Proteinase-activated receptors 1 and 4 counterregulate endostatin and VEGF release from human platelets. Proc Natl Acad Sci U S A. 2005; 102:216–220.
Article
19. Haemmerle M, Stone RL, Menter DG, Afshar-Kharghan V, Sood AK. The platelet lifeline to cancer: challenges and opportunities. Cancer Cell. 2018; 33:965–983.
Article
20. Kwon MJ. Matrix metalloproteinases as therapeutic targets in breast cancer. Front Oncol. 2023; 12:1108695.
Article
21. Strasenburg W, Józ´wicki J, Durs´lewicz J, Kuffel B, Kulczyk MP, Kowalewski A, et al. Tumor cell-induced platelet aggregation as an emerging therapeutic target for cancer therapy. Front Oncol. 2022; 12:909767.
Article
22. Egan K, Cooke N, Kenny D. Living in shear: platelets protect cancer cells from shear induced damage. Clin Exp Metastasis. 2014; 31:697–704.
Article
23. Leblanc R, Peyruchaud O. Metastasis: new functional implications of platelets and megakaryocytes. Blood. 2016; 128:24–31.
Article
24. Weber MR, Zuka M, Lorger M, Tschan M, Torbett BE, Zijlstra A, et al. Activated tumor cell integrin αvβ3 cooperates with platelets to promote extravasation and metastasis from the blood stream. Thromb Res. 2016; 140(Suppl 1):S27–S36.
Article
25. Qi C, Wei B, Zhou W, Yang Y, Li B, Guo S, et al. P-selectinmediated platelet adhesion promotes tumor growth. Oncotarget. 2015; 6:6584–6596.
Article
26. Heinmöller E, Weinel RJ, Heidtmann HH, Salge U, Seitz R, Schmitz I, et al. Studies on tumor-cell-induced platelet aggregation in human lung cancer cell lines. J Cancer Res Clin Oncol. 1996; 122:735–744.
Article
27. Hu L, Lee M, Campbell W, Perez-Soler R, Karpatkin S. Role of endogenous thrombin in tumor implantation, seeding, and spontaneous metastasis. Blood. 2004; 104:2746–2751.
Article
28. Abdalkader M, Finitsis S, Li C, Hu W, Liu X, Ji X, et al. Endovascular versus medical management of acute basilar artery occlusion: a systematic review and meta-analysis of the randomized controlled trials. J Stroke. 2023; 25:81–91.
Article
29. Morsi RZ, Elfil M, Ghaith HS, Aladawi M, Elmashad A, Kothari S, et al. Endovascular thrombectomy for large ischemic strokes: a living systematic review and meta-analysis of randomized trials. J Stroke. 2023; 25:214–222.
Article
30. Heo JH, Nam HS, Kim YD, Choi JK, Kim BM, Kim DJ, et al. Pathophysiologic and therapeutic perspectives based on thrombus histology in stroke. J Stroke. 2020; 22:64–75.
Article
31. Aliena-Valero A, Baixauli-Martín J, Torregrosa G, Tembl JI, Salom JB. Clot composition analysis as a diagnostic tool to gain insight into ischemic stroke etiology: a systematic review. J Stroke. 2021; 23:327–342.
Article
32. Park H, Kim J, Ha J, Hwang IG, Song TJ, Yoo J, et al. Histological features of intracranial thrombi in stroke patients with cancer. Ann Neurol. 2019; 86:143–149.
33. Fu CH, Chen CH, Lin YH, Lee CW, Tsai LK, Tang SC, et al. Fibrin and platelet-rich composition in retrieved thrombi hallmarks stroke with active cancer. Stroke. 2020; 51:3723–3727.
Article
34. Yoo J, Kwon I, Kim S, Kim HM, Kim YD, Nam HS, et al. Coagulation factor expression and composition of arterial thrombi in cancer-associated stroke. Stroke. 2023; 54:2981–2989.
Article
35. Ikeda H, Ishibashi R, Kinosada M, Uezato M, Hata H, Kaneko R, et al. Factors related to white thrombi in acute ischemic stroke in cancer patients. Neuroradiol J. 2023; 36:453–459.
Article
36. Sun YE, Na HK, Kwak S, Kim YD, Nam HS, Heo JH. Different thrombus histology in a cancer patient with deep vein thrombosis and recurrent strokes. J Stroke. 2022; 24:300–302.
Article
37. Heo J, Seog Y, Lee H, Lee IH, Kim S, Baek JH, et al. Automated composition analysis of thrombus from endovascular treatment in acute ischemic stroke using computer vision. J Stroke. 2022; 24:433–435.
Article
38. Heo J, Lee H, Seog Y, Kim S, Baek JH, Park H, et al. Cancer prediction with machine learning of thrombi from thrombectomy in stroke: multicenter development and validation. Stroke. 2023; 54:2105–2113.
Article
39. Lee AY, Levine MN, Baker RI, Bowden C, Kakkar AK, Prins M, et al. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med. 2003; 349:146–153.
Article
40. Johnson ED, Schell JC, Rodgers GM. The D-dimer assay. Am J Hematol. 2019; 94:833–839.
Article
41. Weitz JI, Fredenburgh JC, Eikelboom JW. A test in context: D-dimer. J Am Coll Cardiol. 2017; 70:2411–2420.
Article
42. Naito H, Nezu T, Hosomi N, Aoki S, Ueno H, Ochi K, et al. Antithrombotic therapy strategy for cancer-associated ischemic stroke: a case series of 26 patients. J Stroke Cerebrovasc Dis. 2018; 27:e206–e211.
Article
43. Nam KW, Kim CK, Kim TJ, An SJ, Oh K, Ko SB, et al. Treatment of cryptogenic stroke with active cancer with a new oral anticoagulant. J Stroke Cerebrovasc Dis. 2017; 26:2976–2980.
Article
44. Jang H, Lee JJ, Lee MJ, Ryoo S, Yoon CH, Kim GM, et al. Comparison of enoxaparin and warfarin for secondary prevention of cancer-associated stroke. J Oncol. 2015; 2015:502089.
Article
45. Yoo J, Choi JK, Kim YD, Nam HS, Park H, Lee HS, et al. Outcome of stroke patients with cancer and nonbacterial thrombotic endocarditis. J Stroke. 2020; 22:245–253.
Article
46. Asopa S, Patel A, Khan OA, Sharma R, Ohri SK. Non-bacterial thrombotic endocarditis. Eur J Cardiothorac Surg. 2007; 32:696–701.
Article
47. Liu J, Frishman WH. Nonbacterial thrombotic endocarditis: pathogenesis, diagnosis, and management. Cardiol Rev. 2016; 24:244–247.
48. Itzhaki Ben Zadok O, Spectre G, Leader A. Cancer-associated non-bacterial thrombotic endocarditis. Thromb Res. 2022; 213(Suppl 1):S127–S132.
Article
49. Deppisch LM, Fayemi AO. Non-bacterial thrombotic endocarditis: clinicopathologic correlations. Am Heart J. 1976; 92:723–729.
50. Navi BB, Singer S, Merkler AE, Cheng NT, Stone JB, Kamel H, et al. Recurrent thromboembolic events after ischemic stroke in patients with cancer. Neurology. 2014; 83:26–33.
Article
51. Lee MJ, Chung JW, Ahn MJ, Kim S, Seok JM, Jang HM, et al. Hypercoagulability and mortality of patients with stroke and active cancer: the OASIS-cancer study. J Stroke. 2017; 19:77–87.
Article
52. Nam KW, Kim CK, Kim TJ, An SJ, Oh K, Mo H, et al. Predictors of 30-day mortality and the risk of recurrent systemic thromboembolism in cancer patients suffering acute ischemic stroke. PLoS One. 2017; 12:e0172793.
53. Yoo J, Nam HS, Kim YD, Lee HS, Heo JH. Short-term outcome of ischemic stroke patients with systemic malignancy. Stroke. 2019; 50:507–511.
Article
54. Fujinami J, Ohara T, Kitani-Morii F, Tomii Y, Makita N, Yamada T, et al. Cancer-associated hypercoagulation increases the risk of early recurrent stroke in patients with active cancer. Cerebrovasc Dis. 2018; 46:46–51.
Article
55. Nakajima S, Kawano H, Yamashiro K, Tanaka R, Kameda T, Kurita N, et al. Post-treatment plasma D-dimer levels are associated with short-term outcomes in patients with cancerassociated stroke. Front Neurol. 2022; 13:868137.
Article
56. Verschoof MA, Groot AE, de Bruijn SFTM, Roozenbeek B, van der Worp HB, Dippel DWJ, et al. Clinical outcome after endovascular treatment in patients with active cancer and ischemic stroke: a MR CLEAN registry substudy. Neurology. 2022; 98:e993–e1001.
57. Aboul-Nour H, Maraey A, Jumah A, Khalil M, Elzanaty AM, Elsharnoby H, et al. Mechanical thrombectomy for acute ischemic stroke in metastatic cancer patients: a nationwide crosssectional analysis. J Stroke. 2023; 25:119–125.
Article
58. Yoo J, Kim YD, Park H, Kim BM, Bang OY, Kim HC, et al. Immediate and long-term outcomes of reperfusion therapy in patients with cancer. Stroke. 2021; 52:2026–2034.
Article
59. Navi BB, Zhang C, Sherman CP, Genova R, LeMoss NM, Kamel H, et al. Ischemic stroke with cancer: hematologic and embolic biomarkers and clinical outcomes. J Thromb Haemost. 2022; 20:2046–2057.
Article
60. Thun MJ, Namboodiri MM, Heath CW Jr. Aspirin use and reduced risk of fatal colon cancer. N Engl J Med. 1991; 325:1593–1596.
Article
61. Giovannucci E, Rimm EB, Stampfer MJ, Colditz GA, Ascherio A, Willett WC. Aspirin use and the risk for colorectal cancer and adenoma in male health professionals. Ann Intern Med. 1994; 121:241–246.
Article
62. Giovannucci E, Egan KM, Hunter DJ, Stampfer MJ, Colditz GA, Willett WC, et al. Aspirin and the risk of colorectal cancer in women. N Engl J Med. 1995; 333:609–614.
Article
63. Smalley W, Ray WA, Daugherty J, Griffin MR. Use of nonsteroidal anti-inflammatory drugs and incidence of colorectal cancer: a population-based study. Arch Intern Med. 1999; 159:161–166.
Article
64. Baron JA, Cole BF, Sandler RS, Haile RW, Ahnen D, Bresalier R, et al. A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med. 2003; 348:891–899.
Article
65. Sandler RS, Halabi S, Baron JA, Budinger S, Paskett E, Keresztes R, et al. A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N Engl J Med. 2003; 348:883–890.
Article
66. Flossmann E, Rothwell PM. Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies. Lancet. 2007; 369:1603–1613.
Article
67. Algra AM, Rothwell PM. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol. 2012; 13:518–527.
Article
68. Simon TG, Duberg AS, Aleman S, Chung RT, Chan AT, Ludvigsson JF. Association of aspirin with hepatocellular carcinoma and liver-related mortality. N Engl J Med. 2020; 382:1018–1028.
Article
69. Elwood PC, Morgan G, Delon C, Protty M, Galante J, Pickering J, et al. Aspirin and cancer survival: a systematic review and meta-analyses of 118 observational studies of aspirin and 18 cancers. Ecancermedicalscience. 2021; 15:1258.
Article
70. Ma S, Qu G, Sun C, Liu H, Jiang Y, Li N, et al. Does aspirin reduce the incidence, recurrence, and mortality of hepatocellular carcinoma? A GRADE-assessed systematic review and dose-response meta-analysis. Eur J Clin Pharmacol. 2023; 79:39–61.
Article
71. Wang L, Zhang R, Yu L, Xiao J, Zhou X, Li X, et al. Aspirin use and common cancer risk: a meta-analysis of cohort studies and randomized controlled trials. Front Oncol. 2021; 11:690219.
Article
72. Zeng RW, Yong JN, Tan DJH, Fu CE, Lim WH, Xiao J, et al. Meta-analysis: chemoprevention of hepatocellular carcinoma with statins, aspirin and metformin. Aliment Pharmacol Ther. 2023; 57:600–609.
73. Mädge JC, Stallmach A, Kleebusch L, Schlattmann P. Metaanalysis of aspirin-guided therapy of colorectal cancer. J Cancer Res Clin Oncol. 2022; 148:1407–1417.
Article
74. Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007; 357:2001–2015.
Article
75. Hicks BM, Murray LJ, Hughes C, Cardwell CR. Clopidogrel use and cancer-specific mortality: a population-based cohort study of colorectal, breast and prostate cancer patients. Pharmacoepidemiol Drug Saf. 2015; 24:830–840.
Article
76. Kuan YC, Huang KW, Lin CL, Luo JC, Kao CH. Effects of aspirin or clopidogrel on colorectal cancer chemoprevention in patients with type 2 diabetes mellitus. Cancers (Basel). 2019; 11:1468.
Article
77. Rodríguez-Miguel A, García-Rodríguez LA, Gil M, Montoya H, Rodríguez-Martín S, de Abajo FJ. Clopidogrel and low-dose aspirin, alone or together, reduce risk of colorectal cancer. Clin Gastroenterol Hepatol. 2019; 17:2024–2033.e2.
Article
78. Cho MS, Noh K, Haemmerle M, Li D, Park H, Hu Q, et al. Role of ADP receptors on platelets in the growth of ovarian cancer. Blood. 2017; 130:1235–1242.
Article
79. Gebremeskel S, LeVatte T, Liwski RS, Johnston B, Bezuhly M. The reversible P2Y12 inhibitor ticagrelor inhibits metastasis and improves survival in mouse models of cancer. Int J Cancer. 2015; 136:234–240.
Article
80. Mezouar S, Darbousset R, Dignat-George F, Panicot-Dubois L, Dubois C. Inhibition of platelet activation prevents the P-selectin and integrin-dependent accumulation of cancer cell microparticles and reduces tumor growth and metastasis in vivo. Int J Cancer. 2015; 136:462–475.
Article
81. Hua H, Zhang H, Kong Q, Wang J, Jiang Y. Complex roles of the old drug aspirin in cancer chemoprevention and therapy. Med Res Rev. 2019; 39:114–145.
Article
82. Mitrugno A, Sylman JL, Rigg RA, Tassi Yunga S, Shatzel JJ, Williams CD, et al. Carpe low-dose aspirin: the new anti-cancer face of an old anti-platelet drug. Platelets. 2018; 29:773–778.
Article
83. Kawano H, Honda Y, Amano T, Okano H, Suzuki R, Torii M, et al. Subcutaneous heparin therapy for patients with cancerassociated stroke. J Stroke Cerebrovasc Dis. 2019; 28:399–404.
Article
84. Yamaura G, Ito T, Miyaji Y, Ueda N, Nakae Y, Momoo T, et al. Therapeutic efficacy of heparin and direct factor Xa inhibitors in cancer-associated cryptogenic ischemic stroke with venous thromboembolism. Thromb Res. 2021; 206:99–103.
Article
85. Navi BB, Marshall RS, Bobrow D, Singer S, Stone JB, DeSancho MT, et al. Enoxaparin vs aspirin in patients with cancer and ischemic stroke: the teach pilot randomized clinical trial. JAMA Neurol. 2018; 75:379–381.
Article
86. Chung JW, Hwang J, Kim HJ, Seo WK, Ahn MJ, Saver JL, et al. Edoxaban for the treatment of hypercoagulability and cerebral thromboembolism associated with cancer: a randomized clinical trial of biomarker targets. Int J Stroke. 2024 Mar 21 [Epub]. Available from: https://doi.org/10.1177/17474930241239266.
Article
87. Martinez-Majander N, Ntaios G, Liu YY, Ylikotila P, Joensuu H, Saarinen J, et al. Rivaroxaban versus aspirin for secondary prevention of ischaemic stroke in patients with cancer: a subgroup analysis of the NAVIGATE ESUS randomized trial. Eur J Neurol. 2020; 27:841–848.
88. Conen D, Wong JA, Sandhu RK, Cook NR, Lee IM, Buring JE, et al. Risk of malignant cancer among women with new-onset atrial fibrillation. JAMA Cardiol. 2016; 14:389–396.
Article
89. Menichelli D, Vicario T, Ameri P, Toma M, Violi F, Pignatelli P, et al. Cancer and atrial fibrillation: epidemiology, mechanisms, and anticoagulation treatment. Prog Cardiovasc Dis. 2021; 66:28–36.
Article
90. Hung YP, Hu YW, Liu CJ, Lin YJ, Chang SL, Lo LW, et al. Risk and predictors of subsequent cancers of patients with newlydiagnosed atrial fibrillation - a nationwide population-based study. Int J Cardiol. 2019; 296:81–86.
Article
91. Atterman A, Asplund K, Friberg L, Engdahl J. Use of oral anticoagulants after ischaemic stroke in patients with atrial fibrillation and cancer. J Intern Med. 2020; 288:457–468.
Article
92. Kim K, Lee YJ, Kim TH, Uhm JS, Pak HN, Lee MH, et al. Effect of non-vitamin K antagonist oral anticoagulants in atrial fibrillation patients with newly diagnosed cancer. Korean Circ J. 2018; 48:406–417.
Article
93. Shah S, Norby FL, Datta YH, Lutsey PL, MacLehose RF, Chen LY, et al. Comparative effectiveness of direct oral anticoagulants and warfarin in patients with cancer and atrial fibrillation. Blood Adv. 2018; 2:200–209.
Article
94. Yang P, Zhu D, Xu X, Shen W, Wang C, Jiang Y, et al. Efficacy and safety of oral anticoagulants in atrial fibrillation patients with cancer—a network meta-analysis. Heart Fail Rev. 2020; 25:823–831.
Article
95. Chen Y, Mao M, Chang J, Yan J, Yang T, Liu Y, et al. Safety and efficacy of new oral anticoagulants compared to those of warfarin in AF patients with cancer: a meta-analysis of randomized clinical trials and observational studies. Eur J Clin Pharmacol. 2021; 77:849–857.
Article
96. Chan YH, Chao TF, Lee HF, Chen SW, Li PR, Liu JR, et al. Clinical outcomes in atrial fibrillation patients with a history of cancer treated with non-vitamin K antagonist oral anticoagulants: a nationwide cohort study. Stroke. 2021; 52:3132–3141.
Article
97. Deitelzweig S, Keshishian AV, Zhang Y, Kang A, Dhamane AD, Luo X, et al. Effectiveness and safety of oral anticoagulants among nonvalvular atrial fibrillation patients with active cancer. JACC CardioOncol. 2021; 3:411–424.
98. Garg A, Chopra S, Starr M, Rocha M, Dawod J, Leira E, et al. In-hospital outcomes and recurrence of acute ischemic stroke in patients with solid organ malignancy. Neurology. 2022; 99:e393–e401.
Article
Full Text Links
  • JOS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr