Ann Lab Med.  2024 May;44(3):222-234. 10.3343/alm.2023.0298.

Current Status of Flow Cytometric Immunophenotyping of Hematolymphoid Neoplasms in Korea

Affiliations
  • 1Department of Laboratory Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
  • 2Department of Laboratory Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
  • 3Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
  • 4Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
  • 5Department of Laboratory Medicine, Dong-A University Hospital, College of Medicine, Dong-A University, Busan, Korea
  • 6Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
  • 7Department of Laboratory Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
  • 8Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
  • 9Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Abstract

Background
Flow cytometric immunophenotyping of hematolymphoid neoplasms (FCIHLN) is essential for diagnosis, classification, and minimal residual disease (MRD) monitoring. FCI-HLN is typically performed using in-house protocols, raising the need for standardization. Therefore, we surveyed the current status of FCI-HLN in Korea to obtain fundamental data for quality improvement and standardization.
Methods
Eight university hospitals actively conducting FCI-HLN participated in our survey. We analyzed responses to a questionnaire that included inquiries regarding test items, reagent antibodies (RAs), fluorophores, sample amounts (SAs), reagent antibody amounts (RAAs), acquisition cell number (ACN), isotype control (IC) usage, positive/negative criteria, and reporting.
Results
Most hospitals used acute HLN, chronic HLN, plasma cell neoplasm (PCN), and MRD panels. The numbers of RAs were heterogeneous, with a maximum of 32, 26, 12, 14, and 10 antibodies used for acute HLN, chronic HLN, PCN, ALL-MRD, and multiple myeloma-MRD, respectively. The number of fluorophores ranged from 4 to 10. RAs, SAs, RAAs, and ACN were diverse. Most hospitals used a positive criterion of 20%, whereas one used 10% for acute and chronic HLN panels. Five hospitals used ICs for the negative criterion. Positive/negative assignments, percentages, and general opinions were commonly reported. In MRD reporting, the limit of detection and lower limit of quantification were included.
Conclusions
This is the first comprehensive study on the current status of FCI-HLN in Korea, confirming the high heterogeneity and complexity of FCI-HLN practices. Standardization of FCI-HLN is urgently needed. The findings provide a reference for establishing standard FCI-HLN guidelines.

Keyword

Flow cytometry; Hematolymphoid neoplasm; Immunophenotyping; Minimal residual disease; Plasma cell neoplasm

Reference

References

1. Glier H, Heijnen I, Hauwel M, Dirks J, Quarroz S, Lehmann T, et al. 2019; Standardization of 8-color flow cytometry across different flow cytometer instruments: a feasibility study in clinical laboratories in Switzerland. J Immunol Methods. 475:112348. DOI: 10.1016/j.jim.2017.07.013. PMID: 28760670.
2. Collective Publication. 2018; Panel proposal for the immunophenotypic diagnosis of hematological malignancies. A collaborative consensus from the Groupe d'Étude Immunologique des Leucémies (GEIL). Cytometry B Clin Cytom. 94:542–7. DOI: 10.1002/cyto.b.21602. PMID: 29160946.
3. CLSI. 2007. Clinical flow cytometric analysis of neoplastic hematolymphoid cells. 2nd ed. CLSI H43-A2. Clinical and Laboratory Standards Institute;Wayne, PA:
4. Solly F, Angelot-Delettre F, Ticchioni M, Geneviève F, Rambaud H, Baseggio L, et al. 2019; Standardization of flow cytometric immunophenotyping for hematological malignancies: the FranceFlow group experience. Cytometry A. 95:1008–18. DOI: 10.1002/cyto.a.23844. PMID: 31364809.
5. Döhner H, Wei AH, Appelbaum FR, Craddock C, DiNardo CD, Dombret H, et al. 2022; Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 140:1345–77. DOI: 10.1182/blood.2022016867. PMID: 35797463.
6. DiGiuseppe JA, Wood BL. 2019; Applications of flow cytometric immunophenotyping in the diagnosis and posttreatment monitoring of B and T lymphoblastic leukemia/lymphoma. Cytometry B Clin Cytom. 96:256–65. DOI: 10.1002/cyto.b.21833. PMID: 31231940.
7. Kumar S, Paiva B, Anderson KC, Durie B, Landgren O, Moreau P, et al. 2016; International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 17:e328–46. DOI: 10.1016/S1470-2045(16)30206-6. PMID: 27511158.
8. Rawstron AC, Fazi C, Agathangelidis A, Villamor N, Letestu R, Nomdedeu J, et al. 2016; A complementary role of multiparameter flow cytometry and high-throughput sequencing for minimal residual disease detection in chronic lymphocytic leukemia: an European research Initiative on CLL study. Leukemia. 30:929–36. DOI: 10.1038/leu.2015.313. PMID: 26639181. PMCID: PMC4832072.
9. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®): multiple myeloma. version 3.2023, December 8, 2022. https://www.nccn.org/professionals/physician_gls/pdf/myeloma.pdf. Updated on July 2023.
10. Riva G, Nasillo V, Ottomano AM, Bergonzini G, Paolini A, Forghieri F, et al. 2021; Multiparametric flow cytometry for MRD monitoring in hematologic malignancies: clinical applications and new challenges. Cancers. 13:4582. DOI: 10.3390/cancers13184582. PMID: 34572809. PMCID: PMC8470441.
11. Maecker HT, McCoy JP, Nussenblatt R. 2012; Standardizing immunophenotyping for the Human Immunology Project. Nat Rev Immunol. 12:191–200. Erratum in: Nat Rev Immunol 2012;12:471. DOI: 10.1038/nri3158. PMID: 22343568. PMCID: PMC3409649.
12. Soh KT, Tario JD Jr, Hahn TE, Hillengass J, McCarthy PL, Wallace PK. 2020; Methodological considerations for the high sensitivity detection of multiple myeloma measurable residual disease. Cytometry B Clin Cytom. 98:161–73. DOI: 10.1002/cyto.b.21862. PMID: 31868315. PMCID: PMC7741435.
13. Diks AM, Bonroy C, Teodosio C, Groenland RJ, de Mooij B, de Maertelaere E, et al. 2019; Impact of blood storage and sample handling on quality of high dimensional flow cytometric data in multicenter clinical research. J Immunol Methods. 475:112616. DOI: 10.1016/j.jim.2019.06.007. PMID: 31181213.
14. Cardoso CC, Santos-Silva MC. 2019; Eight-color panel for immune phenotype monitoring by flow cytometry. J Immunol Methods. 468:40–8. DOI: 10.1016/j.jim.2019.03.010. PMID: 30914269.
15. Kalina T. 2020; Reproducibility of flow cytometry through standardization: opportunities and challenges. Cytometry A. 97:137–47. DOI: 10.1002/cyto.a.23901. PMID: 31593368.
16. Kalina T, Flores-Montero J, van der Velden VH, Martin-Ayuso M, Böttcher S, Ritgen M, et al. 2012; EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 26:1986–2010. DOI: 10.1038/leu.2012.122. PMID: 22948490. PMCID: PMC3437409.
17. Theunissen P, Mejstrikova E, Sedek L, van der Sluijs-Gelling AJ, Gaipa G, Bartels M, et al. 2017; Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood. 129:347–57. DOI: 10.1182/blood-2016-07-726307. PMID: 27903527. PMCID: PMC5291958.
18. Wang L, Hoffman RA. 2017; Standardization, calibration, and control in flow cytometry. Curr Protoc Cytom. 79:1.3.1–1.3.27. DOI: 10.1002/cpcy.14. PMID: 28055116.
19. Lhermitte L, Barreau S, Morf D, Fernandez P, Grigore G, Barrena S, et al. 2021; Automated identification of leukocyte subsets improves standardization of database-guided expert-supervised diagnostic orientation in acute leukemia: a EuroFlow study. Mod Pathol. 34:59–69. DOI: 10.1038/s41379-020-00677-7. PMID: 32999413. PMCID: PMC7806506.
20. Le Lann L, Jouve PE, Alarcón-Riquelme M, Jamin C, Pers JO. PRECISESADS Flow Cytometry Study Group. 2020; PRECISESADS Clinical Consortium Standardization procedure for flow cytometry data harmonization in prospective multicenter studies. Sci Rep. 10:11567. DOI: 10.1038/s41598-020-68468-3. PMID: 32665668. PMCID: PMC7360585.
21. Mizrahi O, Ish Shalom E, Baniyash M, Klieger Y. 2018; Quantitative flow cytometry: concerns and recommendations in clinic and research. Cytometry B Clin Cytom. 94:211–8. DOI: 10.1002/cyto.b.21515. PMID: 28188679.
22. Van Dongen JJ, Lhermitte L, Böttcher S, Almeida J, van der Velden VH, Flores-Montero J, et al. 2012; EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia. 26:1908–75. DOI: 10.1038/leu.2012.120. PMID: 22552007. PMCID: PMC3437410.
23. Stetler-Stevenson M, Paiva B, Stoolman L, Lin P, Jorgensen JL, Orfao A, et al. 2016; Consensus guidelines for myeloma minimal residual disease sample staining and data acquisition. Cytometry B Clin Cytom. 90:26–30. DOI: 10.1002/cyto.b.21249. PMID: 25907102. PMCID: PMC7511978.
24. Foureau DM, Paul BA, Guo F, Lipford EH, Fesenkova K, Tjaden E, et al. 2023; Standardizing clinical workflow for assessing minimal residual disease by flow cytometry in multiple myeloma. Clin Lymphoma Myeloma Leuk. 23:e41–50. DOI: 10.1016/j.clml.2022.10.008. PMID: 36443182. PMCID: PMC10448729.
25. Arroz M, Came N, Lin P, Chen W, Yuan C, Lagoo A, et al. 2016; Consensus guidelines on plasma cell myeloma minimal residual disease analysis and reporting. Cytometry B Clin Cytom. 90:31–9. DOI: 10.1002/cyto.b.21228. PMID: 25619868.
26. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. 2022; The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 36:1703–19. DOI: 10.1038/s41375-022-01613-1. PMID: 35732831. PMCID: PMC9252913.
27. Chan RC, Kotner JS, Chuang CM, Gaur A. 2017; Stabilization of pre-optimized multicolor antibody cocktails for flow cytometry applications. Cytometry B Clin Cytom. 92:508–24. DOI: 10.1002/cyto.b.21371. PMID: 27001933.
28. Verschoor CP, Lelic A, Bramson JL, Bowdish DM. 2015; An introduction to automated flow cytometry gating tools and their implementation. Front Immunol. 6:380. DOI: 10.3389/fimmu.2015.00380. PMID: 26284066. PMCID: PMC4515551.
29. Salem DA, Stetler-Stevenson M. 2019; Clinical flow-cytometric testing in chronic lymphocytic leukemia. Methods Mol Biol. 2032:311–21. DOI: 10.1007/978-1-4939-9650-6_17. PMID: 31522426. PMCID: PMC8276061.
30. Choi Y, Lee JH, Jung CW, Jo JC, Kim JS, Kim I, et al. 2021; Treatment outcome and prognostic factors of Korean patients with chronic lymphocytic leukemia: a multicenter retrospective study. Korean J Intern Med. 36:194–204. DOI: 10.3904/kjim.2019.210. PMID: 32279477. PMCID: PMC7820637.
31. Kim HY, Yoo IY, Lim DJ, Kim HJ, Kim SH, Yoon SE, et al. 2022; Clinical utility of next-generation flow-based minimal residual disease assessment in patients with multiple myeloma. Ann Lab Med. 42:558–65. DOI: 10.3343/alm.2022.42.5.558. PMID: 35470273. PMCID: PMC9057816.
32. Sommer U, Eck S, Marszalek L, Stewart JJ, Bradford J, McCloskey TW, et al. 2021; High-sensitivity flow cytometric assays: considerations for design control and analytical validation for identification of rare events. Cytometry B Clin Cytom. 100:42–51. DOI: 10.1002/cyto.b.21949. PMID: 32940947.
33. Heuser M, Freeman SD, Ossenkoppele GJ, Buccisano F, Hourigan CS, Ngai LL, et al. 2021; 2021 Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 138:2753–67. DOI: 10.1182/blood.2021013626. PMID: 34724563. PMCID: PMC8718623.
34. CLSI. 2021. Validation of assays performed by flow cytometry. CLSI H62. Clinical and Laboratory Standards Institute;Wayne, PA:
35. Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A, et al. 1995; Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 9:1783–6.
36. Maecker HT, Trotter J. 2006; Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A. 69:1037–42. DOI: 10.1002/cyto.a.20333. PMID: 16888771.
37. van den Ancker W, Westers TM, de Leeuw DC, van der Veeken YF, Loonen A, van Beckhoven E, et al. 2013; A threshold of 10% for myeloperoxidase by flow cytometry is valid to classify acute leukemia of ambiguous and myeloid origin. Cytometry B Clin Cytom. 84:114–8. DOI: 10.1002/cyto.b.21072. PMID: 23325578.
38. Guy J, Antony-Debré I, Benayoun E, Arnoux I, Fossat C, Le Garff-Tavernier M, et al. 2013; Flow cytometry thresholds of myeloperoxidase detection to discriminate between acute lymphoblastic or myeloblastic leukaemia. Br J Haematol. 161:551–5. DOI: 10.1111/bjh.12277. PMID: 23432206.
39. Manivannan P, Puri V, Somasundaram V, Purohit A, Sharma RK, Dabas M, et al. 2015; Can threshold for MPO by flow cytometry be reduced in classifying acute leukaemia? A comparison of flow cytometric and cytochemical myeloperoxidase using different flow cytometric cut-offs. Hematology. 20:455–61. DOI: 10.1179/1607845414Y.0000000223. PMID: 25537822.
40. Szalóki G, Goda K. 2015; Compensation in multicolor flow cytometry. Cytometry A. 87:982–5. DOI: 10.1002/cyto.a.22736. PMID: 26349004.
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr