Diabetes Metab J.  2024 Mar;48(2):196-207. 10.4093/dmj.2023.0244.

Risk Prediction and Management of Chronic Kidney Disease in People Living with Type 2 Diabetes Mellitus

Affiliations
  • 1Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
  • 2Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
  • 3Asia Diabetes Foundation, Hong Kong SAR, China

Abstract

People with type 2 diabetes mellitus have increased risk of chronic kidney disease and atherosclerotic cardiovascular disease. Improved care delivery and implementation of guideline-directed medical therapy have contributed to the declining incidence of atherosclerotic cardiovascular disease in high-income countries. By contrast, the global incidence of chronic kidney disease and associated mortality is either plateaued or increased, leading to escalating direct and indirect medical costs. Given limited resources, better risk stratification approaches to identify people at risk of rapid progression to end-stage kidney disease can reduce therapeutic inertia, facilitate timely interventions and identify the need for early nephrologist referral. Among people with chronic kidney disease G3a and beyond, the kidney failure risk equations (KFRE) have been externally validated and outperformed other risk prediction models. The KFRE can also guide the timing of preparation for kidney replacement therapy with improved healthcare resources planning and may prevent multiple complications and premature mortality among people with chronic kidney disease with and without type 2 diabetes mellitus. The present review summarizes the evidence of KFRE to date and call for future research to validate and evaluate its impact on cardiovascular and mortality outcomes, as well as healthcare resource utilization in multiethnic populations and different healthcare settings.

Keyword

Albuminuria; Diabetes mellitus; Glomerular filtration rate; Kidney failure, chronic; Renal insufficiency, chronic; Risk assessment

Figure

  • Fig. 1. Predictive risk factors for diabetes-related kidney disease. eGFR, estimated glomerular filtration rate. aRapid decline in eGFR of >5 mL/min/1.73 m2 per year [16-18].

  • Fig. 2. Gaps in risk prediction and management of chronic kidney disease among people with type 2 diabetes mellitus. ESKD, end-stage kidney disease; KRT, kidney replacement therapy; GDMT, guideline-directed medical therapy; RAS, renin-angiotensin system; SGLT2, sodium-glucose co-transporter 2; nsMRA, non-steroidal mineralocorticoid receptor antagonist; GLP-1 RA, glucagon-like peptide-1 receptor agonist.


Reference

1. International Diabetes Federation. IDF Diabetes Atlas. 10th ed. Brussels: IDF;2021. p. 30–57.
2. GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023; 402:203–34.
3. Lim LL, Chow E, Chan JC. Cardiorenal diseases in type 2 diabetes mellitus: clinical trials and real-world practice. Nat Rev Endocrinol. 2023; 19:151–63.
Article
4. Chan JC, Lim LL, Wareham NJ, Shaw JE, Orchard TJ, Zhang P, et al. The Lancet Commission on diabetes: using data to transform diabetes care and patient lives. Lancet. 2021; 396:2019–82.
Article
5. Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR; UKPDS Study Group. Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes. 2006; 55:1832–9.
6. Bello AK, Okpechi IG, Levin A, Ye F, Saad S, Zaidi D, et al. ISN– Global Kidney Health Atlas. A report by the International Society of Nephrology: an assessment of global kidney health care status focussing on capacity, availability, accessibility, affordability and outcomes of kidney disease. Brussels: International Society of Nephrology;2023.
7. Mogensen CE. Glomerular hyperfiltration in human diabetes. Diabetes Care. 1994; 17:770–5.
Article
8. Tuttle KR, Stein JH, DeFronzo RA. The natural history of diabetic nephropathy. Semin Nephrol. 1990; 10:184–93.
9. Pugliese G, Penno G, Natali A, Barutta F, Di Paolo S, Reboldi G, et al. Diabetic kidney disease: new clinical and therapeutic issues. Joint position statement of the Italian Diabetes Society and the Italian Society of Nephrology on “The natural history of diabetic kidney disease and treatment of hyperglycemia in patients with type 2 diabetes and impaired renal function”. Nutr Metab Cardiovasc Dis. 2019; 29:1127–50.
Article
10. Perez-Gomez MV, Bartsch LA, Castillo-Rodriguez E, Fernandez-Prado R, Fernandez-Fernandez B, Martin-Cleary C, et al. Clarifying the concept of chronic kidney disease for non-nephrologists. Clin Kidney J. 2019; 12:258–61.
Article
11. Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 2020; 98(4S):S1–115.
12. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020; 395:709–33.
13. Koye DN, Magliano DJ, Nelson RG, Pavkov ME. The global epidemiology of diabetes and kidney disease. Adv Chronic Kidney Dis. 2018; 25:121–32.
Article
14. Gansevoort RT, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, et al. Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes: a collaborative meta-analysis of general and high-risk population cohorts. Kidney Int. 2011; 80:93–104.
Article
15. Gonzalez Suarez ML, Thomas DB, Barisoni L, Fornoni A. Diabetic nephropathy: is it time yet for routine kidney biopsy? World J Diabetes. 2013; 4:245–55.
Article
16. Garcia-Carro C, Vergara A, Bermejo S, Azancot MA, Sanchez-Fructuoso AI, Sanchez de la Nieta MD, et al. How to assess diabetic kidney disease progression?: from albuminuria to GFR. J Clin Med. 2021; 10:2505.
Article
17. Liang S, Zhang XG, Cai GY, Zhu HY, Zhou JH, Wu J, et al. Identifying parameters to distinguish non-diabetic renal diseases from diabetic nephropathy in patients with type 2 diabetes mellitus: a meta-analysis. PLoS One. 2013; 8:e64184.
Article
18. American Diabetes Association. Standards of care in diabetes-2023 abridged for primary care providers. Clin Diabetes. 2022; 41:4–31.
19. Ortiz A, Wanner C, Gansevoort R; ERA Council. Chronic kidney disease as cardiovascular risk factor in routine clinical practice: a position statement by the Council of the European Renal Association. Eur J Prev Cardiol. 2022; 29:2211–5.
Article
20. Ling W, Huang Y, Huang YM, Fan RR, Sui Y, Zhao HL. Global trend of diabetes mortality attributed to vascular complications, 2000-2016. Cardiovasc Diabetol. 2020; 19:182.
Article
21. Ali MK, Pearson-Stuttard J, Selvin E, Gregg EW. Interpreting global trends in type 2 diabetes complications and mortality. Diabetologia. 2022; 65:3–13.
Article
22. Ma CX, Ma XN, Guan CH, Li YD, Mauricio D, Fu SB. Cardiovascular disease in type 2 diabetes mellitus: progress toward personalized management. Cardiovasc Diabetol. 2022; 21:74.
Article
23. Pearson-Stuttard J, Bennett J, Cheng YJ, Vamos EP, Cross AJ, Ezzati M, et al. Trends in predominant causes of death in individuals with and without diabetes in England from 2001 to 2018: an epidemiological analysis of linked primary care records. Lancet Diabetes Endocrinol. 2021; 9:165–73.
Article
24. Rawshani A, Rawshani A, Franzen S, Sattar N, Eliasson B, Svensson AM, et al. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2018; 379:633–44.
Article
25. Norhammar A, Bodegard J, Eriksson JW, Haller H, Linssen GC, Banerjee A, et al. Cost of healthcare utilization associated with incident cardiovascular and renal disease in individuals with type 2 diabetes: a multinational, observational study across 12 countries. Diabetes Obes Metab. 2022; 24:1277–87.
Article
26. Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2019; 62:3–16.
Article
27. Kovesdy C, Schmedt N, Folkerts K, Bowrin K, Raad H, Batech M, et al. Predictors of cardio-kidney complications and treatment failure in patients with chronic kidney disease and type 2 diabetes treated with SGLT2 inhibitors. BMC Med. 2022; 20:2.
28. Koye DN, Magliano DJ, Reid CM, Jepson C, Feldman HI, Herman WH, et al. Risk of progression of nonalbuminuric CKD to end-stage kidney disease in people with diabetes: the CRIC (Chronic Renal Insufficiency Cohort) Study. Am J Kidney Dis. 2018; 72:653–61.
29. Yokoyama H, Araki SI, Kawai K, Yamazaki K, Shirabe SI, Sugimoto H, et al. The prognosis of patients with type 2 diabetes and nonalbuminuric diabetic kidney disease is not always poor: implication of the effects of coexisting macrovascular complications (JDDM 54). Diabetes Care. 2020; 43:1102–10.
Article
30. Jiang G, Luk AO, Tam CH, Xie F, Carstensen B, Lau ES, et al. Progression of diabetic kidney disease and trajectory of kidney function decline in Chinese patients with type 2 diabetes. Kidney Int. 2019; 95:178–87.
Article
31. Grams ME, Coresh J. Predicting risk of RRT in patients with CKD. Clin J Am Soc Nephrol. 2017; 12:3–4.
Article
32. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002; 39(2 Suppl 1):S1–66.
33. Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011; 80:17–28.
Article
34. Tangri N, Stevens LA, Griffith J, Tighiouart H, Djurdjev O, Naimark D, et al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA. 2011; 305:1553–9.
Article
35. Xiong XF, Yang Y, Wei L, Xiao Y, Li L, Sun L. Identification of two novel subgroups in patients with diabetes mellitus and their association with clinical outcomes: a two-step cluster analysis. J Diabetes Investig. 2021; 12:1346–58.
Article
36. Ahlqvist E, Storm P, Karajamaki A, Martinell M, Dorkhan M, Carlsson A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018; 6:361–9.
Article
37. Dekker FW, Ramspek CL, van Diepen M. Con: most clinical risk scores are useless. Nephrol Dial Transplant. 2017; 32:752–5.
Article
38. Ramspek CL, Evans M, Wanner C, Drechsler C, Chesnaye NC, Szymczak M, et al. Kidney failure prediction models: a comprehensive external validation study in patients with advanced CKD. J Am Soc Nephrol. 2021; 32:1174–86.
Article
39. Chen Y, Lee K, Ni Z, He JC. Diabetic kidney disease: challenges, advances, and opportunities. Kidney Dis (Basel). 2020; 6:215–25.
Article
40. Chan L, Nadkarni GN, Fleming F, McCullough JR, Connolly P, Mosoyan G, et al. Derivation and validation of a machine learning risk score using biomarker and electronic patient data to predict progression of diabetic kidney disease. Diabetologia. 2021; 64:1504–15.
Article
41. Lam D, Nadkarni GN, Mosoyan G, Neal B, Mahaffey KW, Rosenthal N, et al. Clinical utility of KidneyIntelX in early stages of diabetic kidney disease in the CANVAS trial. Am J Nephrol. 2022; 53:21–31.
Article
42. Connolly P, Stapleton S, Mosoyan G, Fligelman I, Tonar YC, Fleming F, et al. Analytical validation of a multi-biomarker algorithmic test for prediction of progressive kidney function decline in patients with early-stage kidney disease. Clin Proteomics. 2021; 18:26.
Article
43. Nadkarni GN, Takale D, Neal B, Mahaffey KW, Yavin Y, Hansen MK, et al. A post hoc analysis of KidneyIntelX and cardiorenal outcomes in diabetic kidney disease. Kidney360. 2022; 3:1599–602.
Article
44. Tokita J, Vega A, Sinfield C, Naik N, Rathi S, Martin S, et al. Real world evidence and clinical utility of KidneyIntelX on patients with early-stage diabetic kidney disease: interim results on decision impact and outcomes. J Prim Care Community Health. 2022; 13:21501319221138196.
Article
45. Datar M, Ramakrishnan S, Chong J, Montgomery E, Goss TF, Coca SG, et al. A kidney diagnostic’s impact on physician decision-making in diabetic kidney disease. Am J Manag Care. 2022; 28:654–61.
Article
46. Bai Q, Su C, Tang W, Li Y. Machine learning to predict end stage kidney disease in chronic kidney disease. Sci Rep. 2022; 12:8377.
Article
47. Zou Y, Zhao L, Zhang J, Wang Y, Wu Y, Ren H, et al. Development and internal validation of machine learning algorithms for end-stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease. Ren Fail. 2022; 44:562–70.
Article
48. Belur Nagaraj S, Pena MJ, Ju W, Heerspink HL; BEAt-DKD Consortium. Machine-learning-based early prediction of end-stage renal disease in patients with diabetic kidney disease using clinical trials data. Diabetes Obes Metab. 2020; 22:2479–86.
49. Yao L, Zhang H, Zhang M, Chen X, Zhang J, Huang J, et al. Application of artificial intelligence in renal disease. Clin eHealth. 2021; 4:54–61.
Article
50. Gregg EW, Buckley J, Ali MK, Davies J, Flood D, Mehta R, et al. Improving health outcomes of people with diabetes: target setting for the WHO Global Diabetes Compact. Lancet. 2023; 401:1302–12.
Article
51. Mosenzon O, Alguwaihes A, Leon JL, Bayram F, Darmon P, Davis TM, et al. CAPTURE: a multinational, cross-sectional study of cardiovascular disease prevalence in adults with type 2 diabetes across 13 countries. Cardiovasc Diabetol. 2021; 20:154.
Article
52. Van Spall HG, Fonarow GC, Mamas MA. Underutilization of guideline-directed medical therapy in heart failure: can digital health technologies PROMPT change? J Am Coll Cardiol. 2022; 79:2214–8.
53. Heerspink HJ, Parving HH, Andress DL, Bakris G, Correa-Rotter R, Hou FF, et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet. 2019; 393:1937–47.
54. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJ, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019; 380:2295–306.
Article
55. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019; 380:347–57.
Article
56. The EMPA-KIDNEY Collaborative Group, Herrington WG, Staplin N, Wanner C, Green JB, Hauske SJ, et al. Empagliflozin in patients with chronic kidney disease. N Engl J Med. 2023; 388:117–27.
Article
57. Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020; 383:2219–29.
Article
58. Novo Nordisk. Novo Nordisk will stop the once-weekly injectable semaglutide kidney outcomes trial, FLOW, based on interim analysis [Internet]. Available from: https://www.novonordisk.com/content/nncorp/global/en/news-and-media/news-and-ir-materials/news-details.html?id=166327 (cited 2023 Dec 15).
59. Tangri N, Grams ME, Levey AS, Coresh J, Appel LJ, Astor BC, et al. Multinational assessment of accuracy of equations for predicting risk of kidney failure: a meta-analysis. JAMA. 2016; 315:164–74.
Article
60. Lennartz CS, Pickering JW, Seiler-MuBler S, Bauer L, Untersteller K, Emrich IE, et al. External validation of the kidney failure risk equation and re-calibration with addition of ultrasound parameters. Clin J Am Soc Nephrol. 2016; 11:609–15.
Article
61. Major RW, Shepherd D, Medcalf JF, Xu G, Gray LJ, Brunskill NJ. The Kidney Failure Risk Equation for prediction of end stage renal disease in UK primary care: an external validation and clinical impact projection cohort study. PLoS Med. 2019; 16:e1002955.
Article
62. Hallan SI, Rifkin DE, Potok OA, Katz R, Langlo KA, Bansal N, et al. Implementing the European Renal Best Practice Guidelines suggests that prediction equations work well to differentiate risk of end-stage renal disease vs. death in older patients with low estimated glomerular filtration rate. Kidney Int. 2019; 96:728–37.
63. Wang Y, Nguyen FN, Allen JC, Lew JQ, Tan NC, Jafar TH. Validation of the kidney failure risk equation for end-stage kidney disease in Southeast Asia. BMC Nephrol. 2019; 20:451.
Article
64. Tangri N, Ferguson TW, Wiebe C, Eng F, Nash M, Astor BC, et al. Validation of the kidney failure risk equation in kidney transplant recipients. Can J Kidney Health Dis. 2020; 7:2054358120922627.
Article
65. Kang MW, Tangri N, Kim YC, An JN, Lee J, Li L, et al. An independent validation of the kidney failure risk equation in an Asian population. Sci Rep. 2020; 10:12920.
Article
66. Chu CD, Ku E, Fallahzadeh MK, McCulloch CE, Tuot DS. The kidney failure risk equation for prediction of allograft loss in kidney transplant recipients. Kidney Med. 2020; 2:753–61.
Article
67. Hundemer GL, Tangri N, Sood MM, Ramsay T, Bugeja A, Brown PA, et al. Performance of the kidney failure risk equation by disease etiology in advanced CKD. Clin J Am Soc Nephrol. 2020; 15:1424–32.
Article
68. Ali I, Donne RL, Kalra PA. A validation study of the kidney failure risk equation in advanced chronic kidney disease according to disease aetiology with evaluation of discrimination, calibration and clinical utility. BMC Nephrol. 2021; 22:194.
Article
69. Ali I, Kalra PA. A validation study of the 4-variable and 8-variable kidney failure risk equation in transplant recipients in the United Kingdom. BMC Nephrol. 2021; 22:57.
Article
70. Kwek JL, Pang HQ, Li H, Lim WW, Choo JC, Choong HL, et al. Validation of the kidney failure risk equation in predicting the risk of progression to kidney failure in a multi-ethnic Singapore chronic kidney disease cohort. Singapore Med J. 2022; 63:313–8.
Article
71. Irish GL, Cuthbertson L, Kitsos A, Saunder T, Clayton PA, Jose MD. The kidney failure risk equation predicts kidney failure: validation in an Australian cohort. Nephrology (Carlton). 2023; 28:328–35.
Article
72. Cunningham A, Benediktsson H, Muruve DA, Hildebrand AM, Ravani P. Trends in biopsy-based diagnosis of kidney disease: a population study. Can J Kidney Health Dis. 2018; 5:2054358118799690.
Article
73. Ahmed S, Mothi SS, Sequist T, Tangri N, Khinkar RM, Mendu ML. The kidney failure risk equation score and CKD care delivery measures: a cross-sectional study. Kidney Med. 2021; 4:100375.
Article
74. van Mil D, Kieneker LM, Evers-Roeten B, Thelen MH, de Vries H, Hemmelder MH, et al. Participation rate and yield of two home-based screening methods to detect increased albuminuria in the general population in the Netherlands (THOMAS): a prospective, randomised, open-label implementation study. Lancet. 2023; 402:1052–64.
Article
75. Prasad B, Osman M, Jafari M, Gordon L, Tangri N, Ferguson TW, et al. Kidney failure risk equation and cost of care in patients with chronic kidney disease. Clin J Am Soc Nephrol. 2022; 17:17–26.
Article
76. Bhachu HK, Fenton A, Cockwell P, Aiyegbusi O, Kyte D, Calvert M. Use of the kidney failure risk equation to inform clinical care of patients with chronic kidney disease: a mixed-methods systematic review. BMJ Open. 2022; 12:e055572.
Article
77. Hingwala J, Wojciechowski P, Hiebert B, Bueti J, Rigatto C, Komenda P, et al. Risk-based triage for nephrology referrals using the kidney failure risk equation. Can J Kidney Health Dis. 2017; 4:2054358117722782.
Article
78. Harasemiw O, Drummond N, Singer A, Bello A, Komenda P, Rigatto C, et al. Integrating risk-based care for patients with chronic kidney disease in the community: study protocol for a cluster randomized trial. Can J Kidney Health Dis. 2019; 6:2054358119841611.
Article
Full Text Links
  • DMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr