1. Magee JC. 2000; Dendritic integration of excitatory synaptic input. Nat Rev Neurosci. 1:181–190. DOI:
10.1038/35044552. PMID:
11257906.
2. Stuart GJ, Spruston N. 2015; Dendritic integration: 60 years of progress. Nat Neurosci. 18:1713–1721. DOI:
10.1038/nn.4157. PMID:
26605882.
Article
3. Grace AA, Bunney BS. 1983; Intracellular and extracellular electrophysiology of nigral dopaminergic neurons--1. Identification and characterization. Neuroscience. 10:301–315. DOI:
10.1016/0306-4522(83)90135-5. PMID:
6633863.
Article
4. Grace AA, Bunney BS. 1983; Intracellular and extracellular electrophysiology of nigral dopaminergic neurons--2. Action potential generating mechanisms and morphological correlates. Neuroscience. 10:317–331. DOI:
10.1016/0306-4522(83)90136-7. PMID:
6633864.
Article
7. Häusser M, Stuart G, Racca C, Sakmann B. 1995; Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron. 15:637–647. DOI:
10.1016/0896-6273(95)90152-3. PMID:
7546743.
Article
13. González-Cabrera C, Meza R, Ulloa L, Merino-Sepúlveda P, Luco V, Sanhueza A, Oñate-Ponce A, Bolam JP, Henny P. 2017; Characterization of the axon initial segment of mice substantia nigra dopaminergic neurons. J Comp Neurol. 525:3529–3542. DOI:
10.1002/cne.24288. PMID:
28734032.
Article
14. Jang J, Um KB, Jang M, Kim SH, Cho H, Chung S, Kim HJ, Park MK. 2014; Balance between the proximal dendritic compartment and the soma determines spontaneous firing rate in midbrain dopamine neurons. J Physiol. 592:2829–2844. DOI:
10.1113/jphysiol.2014.275032. PMID:
24756642. PMCID:
PMC4221823.
Article
15. Medvedev GS, Wilson CJ, Callaway JC, Kopell N. 2003; Dendritic synchrony and transient dynamics in a coupled oscillator model of the dopaminergic neuron. J Comput Neurosci. 15:53–69. DOI:
10.1023/A:1024422802673. PMID:
12843695.
16. Grace AA, Floresco SB, Goto Y, Lodge DJ. 2007; Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci. 30:220–227. DOI:
10.1016/j.tins.2007.03.003. PMID:
17400299.
Article
17. Pucak ML, Grace AA. 1994; Regulation of substantia nigra dopamine neurons. Crit Rev Neurobiol. 9:67–89.
20. Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, Deisseroth K. 2009; Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 324:1080–1084. DOI:
10.1126/science.1168878. PMID:
19389999. PMCID:
PMC5262197.
Article
25. Um KB, Hahn S, Kim SW, Lee YJ, Birnbaumer L, Kim HJ, Park MK. 2021; TRPC3 and NALCN channels drive pacemaking in substantia nigra dopaminergic neurons. Elife. 10:e70920. DOI:
10.7554/eLife.70920. PMID:
34409942. PMCID:
PMC8456572.
Article
26. Hahn S, Um KB, Kim SW, Kim HJ, Park MK. 2023; Proximal dendritic localization of NALCN channels underlies tonic and burst firing in nigral dopaminergic neurons. J Physiol. 601:171–193. DOI:
10.1113/JP283716. PMID:
36398712.
Article
27. Jang M, Um KB, Jang J, Kim HJ, Cho H, Chung S, Park MK. 2015; Coexistence of glutamatergic spine synapses and shaft synapses in substantia nigra dopamine neurons. Sci Rep. 5:14773. DOI:
10.1038/srep14773. PMID:
26435058. PMCID:
PMC4593176.
Article
28. Choi YM, Kim SH, Uhm DY, Park MK. 2003; Glutamate-mediated [Ca
2+]c dynamics in spontaneously firing dopamine neurons of the rat substantia nigra pars compacta. J Cell Sci. 116:2665–2675. DOI:
10.1242/jcs.00481. PMID:
12746490.
Article
30. Ping HX, Shepard PD. 1999; Blockade of SK-type Ca
2+-activated K+ channels uncovers a Ca
2+-dependent slow afterdepolarization in nigral dopamine neurons. J Neurophysiol. 81:977–984. DOI:
10.1152/jn.1999.81.3.977. PMID:
10085326.
Article
31. Wolfart J, Roeper J. 2002; Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J Neurosci. 22:3404–3413. Erratum in:
J Neurosci. 2002;22:5250. DOI:
10.1523/JNEUROSCI.22-09-03404.2002. PMID:
11978817. PMCID:
PMC6758365.
Article
32. Wolfart J, Neuhoff H, Franz O, Roeper J. 2001; Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J Neurosci. 21:3443–3456. DOI:
10.1523/JNEUROSCI.21-10-03443.2001. PMID:
11331374. PMCID:
PMC6762487.
Article
33. Deignan J, Luján R, Bond C, Riegel A, Watanabe M, Williams JT, Maylie J, Adelman JP. 2012; SK2 and SK3 expression differentially affect firing frequency and precision in dopamine neurons. Neuroscience. 217:67–76. DOI:
10.1016/j.neuroscience.2012.04.053. PMID:
22554781. PMCID:
PMC3383402.
Article
34. Kuznetsov AS, Kopell NJ, Wilson CJ. 2006; Transient high-frequency firing in a coupled-oscillator model of the mesencephalic dopaminergic neuron. J Neurophysiol. 95:932–947. DOI:
10.1152/jn.00691.2004. PMID:
16207783.
Article
36. Fiorillo CD, Williams JT. 1998; Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Nature. 394:78–82. DOI:
10.1038/27919. PMID:
9665131.
Article
37. Kim SH, Choi YM, Chung S, Uhm DY, Park MK. 2004; Two different Ca
2+-dependent inhibitory mechanisms of spontaneous firing by glutamate in dopamine neurons. J Neurochem. 91:983–995. DOI:
10.1111/j.1471-4159.2004.02783.x. PMID:
15525352.
Article
39. Berridge MJ, Bootman MD, Roderick HL. 2003; Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 4:517–529. DOI:
10.1038/nrm1155. PMID:
12838335.
Article
40. Papaioannou VE, Verkerk AO, Amin AS, de Bakker JM. 2013; Intracardiac origin of heart rate variability, pacemaker funny current and their possible association with critical illness. Curr Cardiol Rev. 9:82–96. DOI:
10.2174/1573403X11309010010.
Article
41. Yaniv Y, Lyashkov AE, Sirenko S, Okamoto Y, Guiriba TR, Ziman BD, Morrell CH, Lakatta EG. 2014; Stochasticity intrinsic to coupled-clock mechanisms underlies beat-to-beat variability of spontaneous action potential firing in sinoatrial node pacemaker cells. J Mol Cell Cardiol. 77:1–10. DOI:
10.1016/j.yjmcc.2014.09.008. PMID:
25257916. PMCID:
PMC4312254.
Article
44. Kuznetsova AY, Huertas MA, Kuznetsov AS, Paladini CA, Canavier CC. 2010; Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron. J Comput Neurosci. 28:389–403. DOI:
10.1007/s10827-010-0222-y. PMID:
20217204. PMCID:
PMC2929809.
Article
45. Kole MH, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ. 2008; Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci. 11:178–186. DOI:
10.1038/nn2040. PMID:
18204443.
Article
47. Tucker KR, Huertas MA, Horn JP, Canavier CC, Levitan ES. 2012; Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act. J Neurosci. 32:14519–14531. DOI:
10.1523/JNEUROSCI.1251-12.2012. PMID:
23077037. PMCID:
PMC3494994.
Article
49. Migliore M, Shepherd GM. 2002; Emerging rules for the distributions of active dendritic conductances. Nat Rev Neurosci. 3:362–370. DOI:
10.1038/nrn810. PMID:
11988775.
Article
50. Amini B, Clark JW Jr, Canavier CC. 1999; Calcium dynamics underlying pacemaker-like and burst firing oscillations in midbrain dopaminergic neurons: a computational study. J Neurophysiol. 82:2249–2261. DOI:
10.1152/jn.1999.82.5.2249. PMID:
10561403.
Article
51. Katayama J, Akaike N, Nabekura J. 2003; Characterization of pre- and post-synaptic metabotropic glutamate receptor-mediated inhibitory responses in substantia nigra dopamine neurons. Neurosci Res. 45:101–115. DOI:
10.1016/S0168-0102(02)00202-X. PMID:
12507729.
Article