1. Takahashi K, Tanabe K, Ohnuki M, et al. 2007; Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131:861–872. DOI:
10.1016/j.cell.2007.11.019. PMID:
18035408.
Article
2. Takahashi K, Yamanaka S. 2006; Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663–676. DOI:
10.1016/j.cell.2006.07.024. PMID:
16904174.
Article
9. Hoffman LM, Carpenter MK. 2005; Characterization and culture of human embryonic stem cells. Nat Biotechnol. 23:699–708. DOI:
10.1038/nbt1102. PMID:
15940242.
Article
11. Ludwig TE, Levenstein ME, Jones JM, et al. 2006; Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol. 24:185–187. DOI:
10.1038/nbt1177. PMID:
16388305.
Article
12. Richards M, Fong CY, Chan WK, Wong PC, Bongso A. 2002; Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol. 20:933–936. DOI:
10.1038/nbt726. PMID:
12161760.
Article
13. Richards M, Tan S, Fong CY, Biswas A, Chan WK, Bongso A. 2003; Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem Cells. 21:546–556. DOI:
10.1634/stemcells.21-5-546. PMID:
12968109.
Article
14. Amit M, Carpenter MK, Inokuma MS, et al. 2000; Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol. 227:271–278. DOI:
10.1006/dbio.2000.9912. PMID:
11071754.
Article
15. Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA. 2005; Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods. 2:185–190. DOI:
10.1038/nmeth744. PMID:
15782187.
Article
16. Watanabe K, Ueno M, Kamiya D, et al. 2007; A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 25:681–686. DOI:
10.1038/nbt1310. PMID:
17529971.
Article
17. Braam SR, Zeinstra L, Litjens S, et al. 2008; Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells. 26:2257–2265. DOI:
10.1634/stemcells.2008-0291. PMID:
18599809.
Article
18. Miyazaki T, Futaki S, Suemori H, et al. 2012; Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun. 3:1236. DOI:
10.1038/ncomms2231. PMID:
23212365. PMCID:
PMC3535336.
Article
19. Rodin S, Domogatskaya A, Ström S, et al. 2010; Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol. 28:611–615. DOI:
10.1038/nbt.1620. PMID:
20512123.
Article
20. Rodin S, Antonsson L, Hovatta O, Tryggvason K. 2014; Monolayer culturing and cloning of human pluripotent stem cells on laminin-521-based matrices under xeno-free and chemically defined conditions. Nat Protoc. 9:2354–2368. DOI:
10.1038/nprot.2014.159. PMID:
25211513.
Article
21. Rodin S, Antonsson L, Niaudet C, et al. 2014; Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nat Commun. 5:3195. DOI:
10.1038/ncomms4195. PMID:
24463987.
Article
22. Olmer R, Haase A, Merkert S, et al. 2010; Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Res. 5:51–64. DOI:
10.1016/j.scr.2010.03.005. PMID:
20478754.
Article
23. Steiner D, Khaner H, Cohen M, et al. 2010; Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol. 28:361–364. DOI:
10.1038/nbt.1616. PMID:
20351691.
Article
29. Arslan-Yildiz A, El Assal R, Chen P, Guven S, Inci F, Demirci U. 2016; Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication. 8:014103. DOI:
10.1088/1758-5090/8/1/014103. PMID:
26930133.
Article
30. Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A. 2016; Bioink properties before, during and after 3D bioprinting. Biofabrication. 8:032002. DOI:
10.1088/1758-5090/8/3/032002. PMID:
27658612.
Article
32. Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 2018; 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev. 132:296–332. DOI:
10.1016/j.addr.2018.07.004. PMID:
29990578.
Article
33. Guillemot F, Souquet A, Catros S, et al. 2010; High-throughput laser printing of cells and biomaterials for tissue engi-neering. Acta Biomater. 6:2494–2500. DOI:
10.1016/j.actbio.2009.09.029. PMID:
19819356.
Article
34. Kim JD, Choi JS, Kim BS, Chan Choi Y, Cho YW. 2010; Piezoelectric inkjet printing of polymers: stem cell patterning on polymer substrates. Polymer. 51:2147–2154. DOI:
10.1016/j.polymer.2010.03.038.
Article
35. Chang CC, Boland ED, Williams SK, Hoying JB. 2011; Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J Biomed Mater Res B Appl Biomater. 98:160–170. DOI:
10.1002/jbm.b.31831. PMID:
21504055. PMCID:
PMC3772543.
Article
39. Smith CM, Stone AL, Parkhill RL, et al. 2004; Three-dimensio-nal bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng. 10:1566–1576. DOI:
10.1089/ten.2004.10.1566. PMID:
15588416.
Article
43. Mirdamadi E, Tashman JW, Shiwarski DJ, Palchesko RN, Feinberg AW. 2020; FRESH 3D bioprinting a full-size model of the human heart. ACS Biomater Sci Eng. 6:6453–6459. DOI:
10.1021/acsbiomaterials.0c01133. PMID:
33449644.
Article
48. Coffin BD, Hudson AR, Lee A, Feinberg AW. 2022; FRESH 3D bioprinting a ventricle-like cardiac construct using human stem cell-derived cardiomyocytes. Methods Mol Biol. 2485:71–85. DOI:
10.1007/978-1-0716-2261-2_5. PMID:
35618899.
49. Maiullari F, Costantini M, Milan M, et al. 2018; A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyo-cytes. Sci Rep. 8:13532. DOI:
10.1038/s41598-018-31848-x. PMID:
30201959. PMCID:
PMC6131510.
Article
52. Choi K, Park CY, Choi JS, et al. 2023; The effect of the mechanical properties of the 3D printed gelatin/hyaluronic acid scaffolds on hMSCs differentiation towards chondrogenesis. Tissue Eng Regen Med. 20:593–605. DOI:
10.1007/s13770-023-00545-w. PMID:
37195569.
Article
53. Narayanan LK, Huebner P, Fisher MB, Spang JT, Starly B, Shirwaiker RA. 2016; 3D-bioprinting of polylactic acid (PLA) nanofiber-alginate hydrogel bioink containing human adipose-derived stem cells. ACS Biomater Sci Eng. 2:1732–1742. DOI:
10.1021/acsbiomaterials.6b00196. PMID:
33440471.
Article
54. Osidak EO, Karalkin PA, Osidak MS, et al. 2019; Viscoll collagen solution as a novel bioink for direct 3D bioprinting. J Mater Sci Mater Med. 30:31. DOI:
10.1007/s10856-019-6233-y. PMID:
30830351.
Article
55. Duarte Campos DF, Rohde M, Ross M, et al. 2019; Corneal bioprinting utilizing collagen-based bioinks and primary human keratocytes. J Biomed Mater Res A. 107:1945–1953. DOI:
10.1002/jbm.a.36702. PMID:
31012205.
Article
56. Park JA, Lee HR, Park SY, Jung S. 2020; Self-organization of fibroblast-laden 3D collagen microstructures from inkjet-printed cell patterns. Adv Biosyst. 4:e1900280. DOI:
10.1002/adbi.201900280. PMID:
32402122.
Article
57. Säljö K, Orrhult LS, Apelgren P, Markstedt K, Kölby L, Gatenholm P. 2020; Successful engraftment, vascularization, and
In vivo survival of 3D-bioprinted human lipoaspirate-derived adipose tissue. Bioprinting. 17:e00065. DOI:
10.1016/j.bprint.2019.e00065.
58. Kim MH, Lee YW, Jung WK, Oh J, Nam SY. 2019; Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting. J Mech Behav Bio-med Mater. 98:187–194. DOI:
10.1016/j.jmbbm.2019.06.014. PMID:
31252328.
Article
59. Faulkner-Jones A, Fyfe C, Cornelissen DJ, et al. 2015; Bioprin-ting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication. 7:044102. DOI:
10.1088/1758-5090/7/4/044102. PMID:
26486521.
Article
60. Poldervaart MT, Gremmels H, van Deventer K, et al. 2014; Pro-longed presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture. J Control Release. 184:58–66. DOI:
10.1016/j.jconrel.2014.04.007. PMID:
24727077.
Article
61. Snyder JE, Hamid Q, Wang C, et al. 2011; Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication. 3:034112. DOI:
10.1088/1758-5082/3/3/034112. PMID:
21881168.
Article
63. Xin S, Chimene D, Garza JE, Gaharwar AK, Alge DL. 2019; Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting. Biomater Sci. 7:1179–1187. DOI:
10.1039/C8BM01286E. PMID:
30656307. PMCID:
PMC9179007.
Article
64. Skardal A, Zhang J, Prestwich GD. 2010; Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials. 31:6173–6181. DOI:
10.1016/j.biomaterials.2010.04.045. PMID:
20546891.
Article
66. Borkar T, Goenka V, Jaiswal AK. 2021; Application of poly-ε-caprolactone in extrusion-based bioprinting. Bioprinting. 21:e00111. DOI:
10.1016/j.bprint.2020.e00111.
Article
68. Duan B, Hockaday LA, Kang KH, Butcher JT. 2013; 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A. 101:1255–1264. DOI:
10.1002/jbm.a.34420. PMID:
23015540. PMCID:
PMC3694360.
Article
69. Pataky K, Braschler T, Negro A, Renaud P, Lutolf MP, Brugger J. 2012; Microdrop printing of hydrogel bioinks into 3D tissue-like geometries. Adv Mater. 24:391–396. DOI:
10.1002/adma.201102800. PMID:
22161949.
Article
70. Huang J, Fu H, Wang Z, et al. 2016; BMSCs-laden gelatin/so-dium alginate/carboxymethyl chitosan hydrogel for 3D bio-printing. RSC Adv. 6:108423–108430. DOI:
10.1039/C6RA24231F.
Article
72. Li Y, Jiang X, Li L, et al. 2018; 3D printing human induced pluripotent stem cells with novel hydroxypropyl chitin bioink: scalable expansion and uniform aggregation. Biofabrication. 10:044101. DOI:
10.1088/1758-5090/aacfc3. PMID:
29952313.
Article
74. Engler AJ, Carag-Krieger C, Johnson CP, et al. 2008; Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci. 121(Pt 22):3794–3802. DOI:
10.1242/jcs.029678. PMID:
18957515. PMCID:
PMC2740334.
Article
79. Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel P. 2014; The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials. 35:49–62. DOI:
10.1016/j.biomaterials.2013.09.078. PMID:
24112804.
Article
80. Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN. 2015; A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv Mater. 27:1607–1614. DOI:
10.1002/adma.201405076. PMID:
25641220. PMCID:
PMC4476973.
Article
81. Kupfer ME, Lin WH, Ravikumar V, et al. 2020; In situ expan-sion, differentiation, and electromechanical coupling of human cardiac muscle in a 3D bioprinted, chambered orga-noid. Circ Res. 127:207–224. DOI:
10.1161/CIRCRESAHA.119.316155. PMID:
32228120. PMCID:
PMC8210857.
Article
82. Reid JA, Mollica PA, Johnson GD, Ogle RC, Bruno RD, Sachs PC. 2016; Accessible bioprinting: adaptation of a low-cost 3D-printer for precise cell placement and stem cell differen-tiation. Biofabrication. 8:025017. DOI:
10.1088/1758-5090/8/2/025017. PMID:
27271208.
Article
83. Gu Q, Tomaskovic-Crook E, Wallace GG, Crook JM. 2017; 3D bioprinting human induced pluripotent stem cell constructs for in situ cell proliferation and successive multili-neage differentiation. Adv Healthc Mater. 6:1700175. DOI:
10.1002/adhm.201700175. PMID:
28544655.
Article
85. Koch L, Deiwick A, Franke A, et al. 2018; Laser bioprinting of human induced pluripotent stem cells-the effect of printing and biomaterials on cell survival, pluripotency, and differen-tiation. Biofabrication. 10:035005. DOI:
10.1088/1758-5090/aab981. PMID:
29578448.
Article
89. Guimarães CF, Gasperini L, Marques AP, Reis RL. 2020; The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater. 5:351–370. DOI:
10.1038/s41578-019-0169-1.
Article
90. Pettikiriarachchi JTS, Parish CL, Shoichet MS, Forsythe JS, Nisbet DR. 2010; Biomaterials for brain tissue engineering. Aust J Chem. 63:1143–1154. DOI:
10.1071/CH10159.
Article
91. Rauti R, Renous N, Maoz BM. 2020; Mimicking the brain extracellular matrix
in vitro: a review of current methodologies and challenges. Israel J Chem. 60:1141–1151. DOI:
10.1002/ijch.201900052.
Article
96. Tebyanian H, Karami A, Nourani MR, et al. 2019; Lung tissue engineering: an update. J Cell Physiol. 234:19256–19270. DOI:
10.1002/jcp.28558. PMID:
30972749.
Article
98. Chen Q-Z, Harding SE, Ali NN, Lyon AR, Boccaccini AR. 2008; Biomaterials in cardiac tissue engineering: ten years of research survey. Mater Sci Eng R Rep. 59:1–37. DOI:
10.1016/j.mser.2007.08.001.
Article
99. Hussain SH, Limthongkul B, Humphreys TR. 2013; The biomechanical properties of the skin. Dermatol Surg. 39:193–203. DOI:
10.1111/dsu.12095. PMID:
23350638.
Article
100. Norouzi M, Boroujeni SM, Omidvarkordshouli N, Soleimani M. 2015; Advances in skin regeneration: application of electrospun scaffolds. Adv Healthc Mater. 4:1114–1133. DOI:
10.1002/adhm.201500001. PMID:
25721694.
Article
102. Ho DLL, Lee S, Du J, et al. 2022; Large-scale production of wholly cellular bioinks via the optimization of human induced pluripotent stem cell aggregate culture in automated bioreactors. Adv Healthc Mater. 11:e2201138. DOI:
10.1002/adhm.202270149. PMID:
36314397. PMCID:
PMC10234214.
Article
103. Skylar-Scott MA, Uzel SGM, Nam LL, et al. 2019; Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci Adv. 5:eaaw2459. DOI:
10.1126/sciadv.aaw2459. PMID:
31523707. PMCID:
PMC6731072.
Article