Ann Lab Med.  2023 May;43(3):295-298. 10.3343/alm.2023.43.3.295.

The First Case Report of JAK2–BCR–PPP1R32 Fusion Genes Because of a Translocation (9;22;11)(p24;q11.2;q13) in a Patient With Myeloproliferative Neoplasm

Affiliations
  • 1Department of Hematology, Daping Hospital, Army Medical University, Chongqing, China


Figure

  • Fig. 1 Bone marrow and peripheral blood smears, BCR–ABL1 FISH, and chromosomal karyotype of this patient. (A) Peripheral blood smear demonstrating leukocytosis with left shift (Wright’s staining, ×400). (B) Bone marrow aspirate smear showing severely depressed proliferation of the erythroid lineage, without dysplastic changes in erythroid cells (Wright’s staining, ×400). (C) Bone marrow aspirate smear showing hyperplastic granulocytic marrow with abnormal granulocyte proliferation (mainly in middle- and late-stage cells) and eosinophilia (Wright’s staining, ×400). (D) BCR–ABL1 FISH analysis of the Philadelphia chromosome does not reveal the BCR–ABL1 fusion gene. However, a BCR probe signal is observed in 90% of cells in interphase (green signal). (E) G-banded chromosome analysis (bone marrow) reveals an abnormal 46,XY,t(9;22;11)(p24;q11.2;q13)[20] karyotype. The red arrows represent the chromosomes where translocation occurs.

  • Fig. 2 Typical gene fusions detected by sequencing technology in this patient. (A) Direct sequencing and sequence alignment of reverse transcription-PCR products show that exon 1 of BCR is fused with exon 17 of JAK2. (B) Typical fusion genes, including BCR–JAK2 and BCR–PPP1R32, detected by second-generation sequencing. Lines connect fusion genes, and the circle represents the position of the chromosome where the gene is located. (C) Integrative Genomics Viewer snapshot displaying the BCR–JAK2 and BCR–PPP1R32 fusions.


Reference

1. Pronier E, Quivoron C, Bernard OA, Villeval JL. 2011; JAK2V617F/TET2 mutations: does the order matter? Haematologica. 96:638–40. DOI: 10.3324/haematol.2011.042846. PMID: 21531945. PMCID: PMC3084907.
2. Mead AJ, Mullally A. 2017; Myeloproliferative neoplasm stem cells. Blood. 129:1607–16. DOI: 10.1182/blood-2016-10-696005. PMID: 28159736. PMCID: PMC5413298.
Article
3. Lap CJ, Nassereddine S, Liu ML, Nava VE, Aggarwal A. 2021; Combined ruxolitinib and venetoclax treatment in a patient with a BCR-JAK2 rearranged myeloid neoplasm. Case Rep Hematol. 2021:2348977. DOI: 10.1155/2021/2348977. PMID: 34367701. PMCID: PMC8337103.
4. Reiter A, Gotlib J. 2017; Myeloid neoplasms with eosinophilia. Blood. 129:704–14. DOI: 10.1182/blood-2016-10-695973. PMID: 28028030.
Article
5. Schwaab J, Naumann N, Luebke J, Jawhar M, Somervaille TCP, Williams MS, et al. 2020; Response to tyrosine kinase inhibitors in myeloid neoplasms associated with PCM1-JAK2, BCR-JAK2 and ETV6-ABL1 fusion genes. Am J Hematol. 95:824–33. DOI: 10.1002/ajh.25825. PMID: 32279331.
Article
6. Gerds AT, Gotlib J, Bose P, Deininger MW, Dunbar A, Elshoury A, et al. 2020; Myeloid/lymphoid neoplasms with eosinophilia and TK fusion genes, version 3.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 18:1248–69. DOI: 10.6004/jnccn.2020.0042. PMID: 32886902.
Article
7. Cuesta-Domínguez Á, León-Rico D, Álvarez L, Díez B, Bodega-Mayor I, Baños R, et al. 2015; BCR-JAK2 drives a myeloproliferative neoplasm in transplanted mice. J Pathol. 236:219–28. DOI: 10.1002/path.4513. PMID: 25664618.
Article
8. Baeza V, Cifuentes M, Martínez F, Ramírez E, Nualart F, Ferrada L, et al. 2021; IIIG9 inhibition in adult ependymal cells changes adherens junctions structure and induces cellular detachment. Sci Rep. 11:18537. DOI: 10.1038/s41598-021-97948-3. PMID: 34535732. PMCID: PMC8448829.
Article
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr