1. Alaggio R, Amador C, Anagnostopoulos I, et al. 2022; The 5th edition of the World Health Organization Classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia. 36:1720–48. DOI:
10.1038/s41375-022-01620-2. PMID:
35732829. PMCID:
PMC9214472.
2. Campo E, Jaffe ES, Cook JR, et al. 2022; The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee. Blood. 140:1229–53. DOI:
10.1182/blood.2022015851. PMID:
35653592. PMCID:
PMC9479027.
3. Yi JH, Jeong SH, Kim SJ, et al. 2023; Outcomes in refractory diffuse large B-cell lymphoma: results from two prospective Korean cohorts. Cancer Res Treat. 55:325–33. DOI:
10.4143/crt.2022.008. PMID:
35468269. PMCID:
PMC9873324.
8. Neefjes J, Jongsma ML, Paul P, Bakke O. 2011; Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 11:823–36. DOI:
10.1038/nri3084. PMID:
22076556.
10. Burger JA, Wiestner A. 2018; Targeting B cell receptor signalling in cancer: preclinical and clinical advances. Nat Rev Cancer. 18:148–67. DOI:
10.1038/nrc.2017.121. PMID:
29348577.
11. Labanieh L, Mackall CL. 2023; CAR immune cells: design principles, resistance and the next generation. Nature. 614:635–48. DOI:
10.1038/s41586-023-05707-3. PMID:
36813894.
12. Holliger P, Hudson PJ. 2005; Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 23:1126–36. DOI:
10.1038/nbt1142. PMID:
16151406.
14. Kawalekar OU, O' Connor RS, Fraietta JA, et al. 2016; Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity. 44:712. DOI:
10.1016/j.immuni.2016.02.023. PMID:
28843072.
15. Selli ME, Landmann JH, Terekhova M, et al. 2023; Costimulatory domains direct distinct fates of CAR-driven T cell dysfunction. Blood. 141:3153–65. DOI:
10.1182/blood.2023020100. PMID:
37130030.
16. Bachy E, Le Gouill S, Di Blasi R, et al. 2022; A real-world comparison of tisagenlecleucel and axicabtagene ciloleucel CAR T cells in relapsed or refractory diffuse large B cell lymphoma. Nat Med. 28:2145–54. DOI:
10.1038/s41591-022-01969-y. PMID:
36138152. PMCID:
PMC9556323.
17. Bethge WA, Martus P, Schmitt M, et al. 2022; GLA/DRST real-world outcome analysis of CAR T-cell therapies for large B-cell lymphoma in Germany. Blood. 140:349–58. DOI:
10.1182/blood.2021015209. PMID:
35316325.
18. Gauthier J, Gazeau N, Hirayama AV, et al. 2022; Impact of CD19 CAR T-cell product type on outcomes in relapsed or refractory aggressive B-NHL. Blood. 139:3722–31. DOI:
10.1182/blood.2021014497. PMID:
35439295. PMCID:
PMC9247364.
20. Locke FL, Rossi JM, Neelapu SS, et al. 2020; Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 4:4898–911. DOI:
10.1182/bloodadvances.2020002394. PMID:
33035333. PMCID:
PMC7556133.
22. Spiegel JY, Patel S, Muffly L, et al. 2021; CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med. 27:1419–31. DOI:
10.1038/s41591-021-01436-0. PMID:
34312556. PMCID:
PMC8363505.
23. Cordoba S, Onuoha S, Thomas S, et al. 2021; CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial. Nat Med. 27:1797–805. DOI:
10.1038/s41591-021-01497-1. PMID:
34642489. PMCID:
PMC8516648.
24. Roddie C, Lekakis LJ, Marzolini MAV, et al. 2023; Dual targeting of CD19 and CD22 with bicistronic CAR-T cells in patients with relapsed/refractory large B-cell lymphoma. Blood. 141:2470–82. DOI:
10.1182/blood.2022018598. PMID:
36821767. PMCID:
PMC10646794.
26. Biasco L, Izotova N, Rivat C, et al. 2021; Clonal expansion of T memory stem cells determines early anti-leukemic responses and long- term CAR T cell persistence in patients. Nat Cancer. 2:629–42. DOI:
10.1038/s43018-021-00207-7. PMID:
34345830. PMCID:
PMC7611448.
28. Cohen AD, Garfall AL, Stadtmauer EA, et al. 2019; B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest. 129:2210–21. DOI:
10.1172/JCI126397. PMID:
30896447. PMCID:
PMC6546468.
29. Garfall AL, Dancy EK, Cohen AD, et al. 2019; T-cell phenotypes associated with effective CAR T-cell therapy in postinduction vs relapsed multiple myeloma. Blood Adv. 3:2812–5. DOI:
10.1182/bloodadvances.2019000600. PMID:
31575532. PMCID:
PMC6784521.
30. Lin Y, Raje NS, Berdeja JG, et al. 2023; Idecabtagene vicleucel for relapsed and refractory multiple myeloma: post hoc 18-month follow-up of a phase 1 trial. Nat Med. 29:2286–94. DOI:
10.1038/s41591-023-02496-0. PMID:
37592106. PMCID:
PMC10504071.
31. Turtle CJ, Hanafi LA, Berger C, et al. 2016; CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 126:2123–38. DOI:
10.1172/JCI85309. PMID:
27111235. PMCID:
PMC4887159.
32. Abramson JS, Palomba ML, Gordon LI, et al. 2020; Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 396:839–52. DOI:
10.1016/S0140-6736(20)31366-0. PMID:
32888407.
33. Westin JR, Oluwole OO, Kersten MJ, et al. 2023; Survival with axicabtagene ciloleucel in large B-cell lymphoma. N Engl J Med. 389:148–57. DOI:
10.1056/NEJMoa2301665. PMID:
37272527.
34. Houot R, Bachy E, Cartron G, et al. 2023; Axicabtagene ciloleucel as second-line therapy in large B cell lymphoma ineligible for autologous stem cell transplantation: a phase 2 trial. Nat Med. 29:2593–601. DOI:
10.1038/s41591-023-02572-5. PMID:
37710005. PMCID:
PMC10579056.
35. Neelapu SS, Dickinson M, Munoz J, et al. 2022; Axicabtagene ciloleucel as first-line therapy in high-risk large B-cell lymphoma: the phase 2 ZUMA-12 trial. Nat Med. 28:735–42. DOI:
10.1038/s41591-022-01731-4. PMID:
35314842. PMCID:
PMC9018426.
36. Rodriguez-Otero P, Ailawadhi S, Arnulf B, et al. 2023; Ide-cel or standard regimens in relapsed and refractory multiple myeloma. N Engl J Med. 388:1002–14. DOI:
10.1056/NEJMoa2213614. PMID:
36762851.
37. San-Miguel J, Dhakal B, Yong K, et al. 2023; Cilta-cel or standard care in lenalidomide-refractory multiple myeloma. N Engl J Med. 389:335–47. DOI:
10.1056/NEJMoa2303379. PMID:
37272512.
40. Mikhael J, Fowler J, Shah N. 2022; Chimeric antigen receptor T-cell therapies: barriers and solutions to access. JCO Oncol Pract. 18:800–7. DOI:
10.1200/OP.22.00315. PMID:
36130152.
42. Moon D, Tae N, Park Y, Lee SW, Kim DH. 2022; Development of bispecific antibody for cancer immunotherapy: focus on T cell engaging antibody. Immune Netw. 22:e4. DOI:
10.4110/in.2022.22.e4. PMID:
35291652. PMCID:
PMC8901699.
43. Lindner SE, Johnson SM, Brown CE, Wang LD. 2020; Chimeric antigen receptor signaling: functional consequences and design implications. Sci Adv. 6:eaaz3223. DOI:
10.1126/sciadv.aaz3223. PMID:
32637585. PMCID:
PMC7314561.
45. Jen EY, Xu Q, Schetter A, et al. 2019; FDA approval: blinatumomab for patients with B-cell precursor acute lymphoblastic leukemia in morphologic remission with minimal residual disease. Clin Cancer Res. 25:473–7. DOI:
10.1158/1078-0432.CCR-18-2337. PMID:
30254079.
46. Moreau P, Garfall AL, van de Donk NWCJ, et al. 2022; Teclistamab in relapsed or refractory multiple myeloma. N Engl J Med. 387:495–505. DOI:
10.1056/NEJMoa2203478. PMID:
35661166. PMCID:
PMC10587778.
47. Lesokhin AM, Tomasson MH, Arnulf B, et al. 2023; Elranatamab in relapsed or refractory multiple myeloma: phase 2 MagnetisMM-3 trial results. Nat Med. 29:2259–67. DOI:
10.1038/s41591-023-02528-9. PMID:
37582952. PMCID:
PMC10504075.
48. Chari A, Minnema MC, Berdeja JG, et al. 2022; Talquetamab, a T-cell-redirecting GPRC5D bispecific antibody for multiple myeloma. N Engl J Med. 387:2232–44. DOI:
10.1056/NEJMoa2204591. PMID:
36507686.
49. Budde LE, Sehn LH, Matasar M, et al. 2022; Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: a single-arm, multicentre, phase 2 study. Lancet Oncol. 23:1055–65. DOI:
10.1016/S1470-2045(22)00335-7. PMID:
35803286.
50. Hutchings M, Mous R, Clausen MR, et al. 2021; Dose escalation of subcutaneous epcoritamab in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: an open-label, phase 1/2 study. Lancet. 398:1157–69. DOI:
10.1016/S0140-6736(21)00889-8. PMID:
34508654.
51. Dickinson MJ, Carlo-Stella C, Morschhauser F, et al. 2022; Glofitamab for relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 387:2220–31. DOI:
10.1056/NEJMoa2206913. PMID:
36507690.
52. Zhu WM, Middleton MR. 2023; Combination therapies for the optimisation of bispecific T-cell engagers in cancer treatment. Immunother Adv. 3:ltad013. DOI:
10.1093/immadv/ltad013. PMID:
37599903. PMCID:
PMC10439528.
54. Wolf NK, Kissiov DU, Raulet DH. 2023; Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat Rev Immunol. 23:90–105. DOI:
10.1038/s41577-022-00732-1. PMID:
35637393.
58. Chiossone L, Dumas PY, Vienne M, Vivier E. 2018; Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol. 18:671–88. DOI:
10.1038/s41577-018-0061-z. PMID:
30209347.
61. Cho H, Kim KH, Lee H, et al. 2021; Adaptive natural killer cells facilitate effector functions of daratumumab in multiple myeloma. Clin Cancer Res. 27:2947–58. DOI:
10.1158/1078-0432.CCR-20-3418. PMID:
33602683.
62. Bigley AB, Spade S, Agha NH, et al. 2021; FcεRIγ-negative NK cells persist in vivo and enhance efficacy of therapeutic monoclonal antibodies in multiple myeloma. Blood Adv. 5:3021–31. DOI:
10.1182/bloodadvances.2020002440. PMID:
34357379. PMCID:
PMC8361460.