Anat Cell Biol.  2023 Dec;56(4):518-525. 10.5115/acb.22.222.

The correlation of Septin4 gene expression with sperm quality, DNA damage, and oxidative stress level in infertile patients

Affiliations
  • 1Department of Reproductive Biology, Academic Center for Education Culture and Research (ACECR), Qom
  • 2Department of Biology, Faculty of Science, Arak University, Arak, Iran

Abstract

Septin4 belong to a family of polymerizing GTP-binding proteins that are required for many cellular functions, such as membrane compartmentalization, vesicular trafficking, mitosis, and cytoskeletal remodeling. Since, Septin4 is expressed specifically in the testis, we aimed to determine the association between Septin4 gene expression with sperm quality, DNA damage, and stress oxidative level in infertile patients. The present study included 60 semen samples that grouped into three groups: normozoospermia (n=20), asthenozoospermia (n=20), astheno-teratozoospermia (n=20). Initially, semen parameters were analyzed by using the World Health Organization protocol. The mRNA expression of Septin4 in sperm was examined using reverse transcription-polymerase chain reaction. Oxidative stress markers, i.e., total antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase, and malondialdehyde, were determined by ELISA kit. The current study showed a statistically significant highly positive correlation in Septin4 gene expression with sperm motility, normal morphology, viability, capacity, and sperm mitochondrial membrane potential (MMP). However, it showed significant negative correlation with sperm DNA fragmentation. Septin4 had a significant correlation with stress oxidative factor and antioxidant enzyme levels. In conclusion, Septin4 gene expression provides clinical useful information for the diagnosis of male infertility. It might be a marker for discrimination between fertile and infertile patients. The current study showed a statistically significant highly positive correlation in Septin4 gene expression with sperm motility, normal morphology, viability, capacity, and sperm MMP. However, it shows significant negative correlation with sperm DNA fragmentation. Septin4 had a significant correlation with stress oxidative factor and antioxidant enzyme levels.

Keyword

Septin4; Spermatozoa; DNA damage; Oxidative stress

Figure

  • Fig. 1 Expression pattern of Septin4 was analyzed by real-time polymerase chain reaction. Level of mRNA gene expression of Septin4 was highly significantly decreased in asthenozoospermia, and asthenoteratozoospermia compared with the normal group. a, significantly difference with normal group; b, significantly difference with asthenozoospermia group (P<0.05).


Reference

References

1. Ilacqua A, Izzo G, Emerenziani GP, Baldari C, Aversa A. 2018; Lifestyle and fertility: the influence of stress and quality of life on male fertility. Reprod Biol Endocrinol. 16:115. DOI: 10.1186/s12958-018-0436-9. PMID: 30474562. PMCID: PMC6260894. PMID: 8e7247d323a34c1fb20f553cf338314a.
Article
2. Anway MD, Cupp AS, Uzumcu M, Skinner MK. 2005; Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 308:1466–9. Erratum in: Science 2010;328: 690. DOI: 10.1126/science.1108190. PMID: 15933200.
Article
3. Khatun A, Rahman MS, Pang MG. 2018; Clinical assessment of the male fertility. Obstet Gynecol Sci. 61:179–91. DOI: 10.5468/ogs.2018.61.2.179. PMID: 29564308. PMCID: PMC5854897. PMID: 6752681553f8418faf7427c740770e35.
Article
4. Zorn B, Golob B, Ihan A, Kopitar A, Kolbezen M. 2012; Apoptotic sperm biomarkers and their correlation with conventional sperm parameters and male fertility potential. J Assist Reprod Genet. 29:357–64. DOI: 10.1007/s10815-012-9718-x. PMID: 22361952. PMCID: PMC3309979.
Article
5. Lin YH, Kuo YC, Chiang HS, Kuo PL. 2011; The role of the septin family in spermiogenesis. Spermatogenesis. 1:298–302. DOI: 10.4161/spmg.1.4.18326. PMID: 22332113. PMCID: PMC3271641.
Article
6. Rafaee A, Mohseni Meybodi A, Yaghmaei P, Hosseini SH, Sabbaghian M. 2020; Single-nucleotide polymorphism c.474G>A in the SEPT12 gene is a predisposing factor in male infertility. Mol Reprod Dev. 87:251–9. DOI: 10.1002/mrd.23310. PMID: 31880374.
7. Hall PA, Jung K, Hillan KJ, Russell SE. 2005; Expression profiling the human septin gene family. J Pathol. 206:269–78. DOI: 10.1002/path.1789. PMID: 15915442.
Article
8. Zhang L, He Y, Lei K, Fang Z, Li Q, Su J, Nie Z, Xu Y, Jin L. 2021; Gene expression profiling of early Parkinson's disease patient reveals redox homeostasis. Neurosci Lett. 753:135893. DOI: 10.1016/j.neulet.2021.135893. PMID: 33857551.
Article
9. Wang YY, Lai TH, Chen MF, Lee HL, Kuo PL, Lin YH. 2019; SEPT14 mutations and teratozoospermia: genetic effects on sperm head morphology and DNA integrity. J Clin Med. 8:1297. DOI: 10.3390/jcm8091297. PMID: 31450874. PMCID: PMC6780492. PMID: 89f0e544e3d94d0f889e94415461463c.
Article
10. Akhmetova KA, Chesnokov IN, Fedorova SA. 2018; Functional characterization of septin complexes. Mol Biol (Mosk). 52:155–71. Russian. DOI: 10.1134/S0026893317050028. PMID: 29695686. PMCID: PMC6027748.
11. Abbey M, Gaestel M, Menon MB. 2019; Septins: active GTPases or just GTP-binding proteins? Cytoskeleton (Hoboken). 76:55–62. DOI: 10.1002/cm.21451. PMID: 29747238.
Article
12. Nagata K, Asano T, Nozawa Y, Inagaki M. 2004; Biochemical and cell biological analyses of a mammalian septin complex, Sept7/9b/11. J Biol Chem. 279:55895–904. DOI: 10.1074/jbc.M406153200. PMID: 15485874.
Article
13. Shen YR, Wang HY, Kuo YC, Shih SC, Hsu CH, Chen YR, Wu SR, Wang CY, Kuo PL. 2017; SEPT12 phosphorylation results in loss of the septin ring/sperm annulus, defective sperm motility and poor male fertility. PLoS Genet. 13:e1006631. DOI: 10.1371/journal.pgen.1006631. PMID: 28346465. PMCID: PMC5386304. PMID: 5d8d84d14b0b4ed6823364a9864a4899.
Article
14. Vickram AS, Anbarasu K, Jeyanthi P, Gulothungan G, Nanmaran R, Thanigaivel S, idharan TB Sr, Rohini K. 2021; Identification and structure prediction of human Septin-4 as a biomarker for diagnosis of asthenozoospermic infertile patients-critical finding toward personalized medicine. Front Med (Lausanne). 8:723019. DOI: 10.3389/fmed.2021.723019. PMID: 34926486. PMCID: PMC8677696. PMID: 2abac572cab24a1fb55296e24ec8e03e.
Article
15. Tu C, Wang W, Hu T, Lu G, Lin G, Tan YQ. 2020; Genetic underpinnings of asthenozoospermia. Best Pract Res Clin Endocrinol Metab. 34:101472. DOI: 10.1016/j.beem.2020.101472. PMID: 33191078.
Article
16. Kissel H, Georgescu MM, Larisch S, Manova K, Hunnicutt GR, Steller H. 2005; The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev Cell. 8:353–64. DOI: 10.1016/j.devcel.2005.01.021. PMID: 15737931.
Article
17. Ihara M, Kinoshita A, Yamada S, Tanaka H, Tanigaki A, Kitano A, Goto M, Okubo K, Nishiyama H, Ogawa O, Takahashi C, Itohara S, Nishimune Y, Noda M, Kinoshita M. 2005; Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev Cell. 8:343–52. DOI: 10.1016/j.devcel.2004.12.005. PMID: 15737930.
Article
18. Kwitny S, Klaus AV, Hunnicutt GR. 2010; The annulus of the mouse sperm tail is required to establish a membrane diffusion barrier that is engaged during the late steps of spermiogenesis. Biol Reprod. 82:669–78. DOI: 10.1095/biolreprod.109.079566. PMID: 20042538. PMCID: PMC2842486.
19. Vahabi Barzi N, Kakavand K, Sodeifi N, Ghezelayagh Z, Sabbaghian M. 2020; Expression and localization of Septin 14 gene and protein in infertile men testis. Reprod Biol. 20:164–8. DOI: 10.1016/j.repbio.2020.03.007. PMID: 32249155.
Article
20. Singh S, Sharma S, Jain M, Chauhan R. 2011; Importance of papanicolaou staining for sperm morphologic analysis: comparison with an automated sperm quality analyzer. Am J Clin Pathol. 136:247–51. DOI: 10.1309/AJCPCLCSPP24QPHR. PMID: 21757597.
21. Dooley MP. 1988. The use of eosin B to assess the viability and developmental potential of rat embryos [PhD dissertation]. Iowa State University;Ames: DOI: 10.31274/rtd-180813-11124.
Article
22. Agnihotri SK, Agrawal AK, Hakim BA, Vishwakarma AL, Narender T, Sachan R, Sachdev M. 2016; Mitochondrial membrane potential (MMP) regulates sperm motility. In Vitro Cell Dev Biol Anim. 52:953–60. DOI: 10.1007/s11626-016-0061-x. PMID: 27338736.
Article
23. Ribas-Maynou J, García-Peiró A, Fernández-Encinas A, Abad C, Amengual MJ, Prada E, Navarro J, Benet J. 2013; Comprehensive analysis of sperm DNA fragmentation by five different assays: TUNEL assay, SCSA, SCD test and alkaline and neutral Comet assay. Andrology. 1:715–22. DOI: 10.1111/j.2047-2927.2013.00111.x. PMID: 23843251.
Article
24. Lindemann CB, Lesich KA. 2016; Functional anatomy of the mammalian sperm flagellum. Cytoskeleton (Hoboken). 73:652–69. DOI: 10.1002/cm.21338. PMID: 27712041.
Article
25. Moretti E, Geminiani M, Terzuoli G, Renieri T, Pascarelli N, Collodel G. 2011; Two cases of sperm immotility: a mosaic of flagellar alterations related to dysplasia of the fibrous sheath and abnormalities of head-neck attachment. Fertil Steril. 95:1787.e19–23. DOI: 10.1016/j.fertnstert.2010.11.027. PMID: 21144504.
Article
26. Gilpin W, Bull MS, Prakash M. 2020; The multiscale physics of cilia and flagella. Nat Rev Phys. 2:74–88. DOI: 10.1038/s42254-019-0129-0.
Article
27. Sugino Y, Ichioka K, Soda T, Ihara M, Kinoshita M, Ogawa O, Nishiyama H. 2008; Septins as diagnostic markers for a subset of human asthenozoospermia. J Urol. 180:2706–9. Erratum in: J Urol 2009;181:924. DOI: 10.1016/j.juro.2008.08.005. PMID: 18951558.
Article
28. Lehti MS, Sironen A. 2017; Formation and function of sperm tail structures in association with sperm motility defects. Biol Reprod. 97:522–36. DOI: 10.1093/biolre/iox096. PMID: 29024992.
Article
29. De Amicis F, Perrotta I, Santoro M, Guido C, Morelli C, Cesario MG, Bruno R, Aquila S. 2013; Human sperm anatomy: different expression and localization of phosphatidylinositol 3-kinase in normal and varicocele human spermatozoa. Ultrastruct Pathol. 37:176–82. DOI: 10.3109/01913123.2013.763881. PMID: 23634797.
Article
30. La Spina FA, Stival C, Krapf D, Buffone MG. Constantinescu G, Schatten H, editors. 2017. Molecular and cellular aspects of mammalian sperm acrosomal exocytosis. Animal Models and Human Reproduction. John Wiley & Sons;p. 409–26. DOI: 10.1002/9781118881286.ch15.
31. Devlin DJ, Agrawal Zaneveld S, Nozawa K, Han X, Moye AR, Liang Q, Harnish JM, Matzuk MM, Chen R. 2020; Knockout of mouse receptor accessory protein 6 leads to sperm function and morphology defects. Biol Reprod. 102:1234–47. DOI: 10.1093/biolre/ioaa024. PMID: 32101290. PMCID: PMC7253788.
Article
32. Yeh CH, Kuo PL, Wang YY, Wu YY, Chen MF, Lin DY, Lai TH, Chiang HS, Lin YH. 2015; SEPT12/SPAG4/LAMINB1 complexes are required for maintaining the integrity of the nuclear envelope in postmeiotic male germ cells. PLoS One. 10:e0120722. DOI: 10.1371/journal.pone.0120722. PMID: 25775403. PMCID: PMC4361620. PMID: b4fa3badf11f4b3286511c4d62335591.
Article
33. Lin YH, Chou CK, Hung YC, Yu IS, Pan HA, Lin SW, Kuo PL. 2011; SEPT12 deficiency causes sperm nucleus damage and developmental arrest of preimplantation embryos. Fertil Steril. 95:363–5. DOI: 10.1016/j.fertnstert.2010.07.1064. PMID: 20801438.
Article
34. Kinoshita M, Takeda S. 2007; Connecting the dots between septins and the DNA damage checkpoint. Cell. 130:777–9. DOI: 10.1016/j.cell.2007.08.022. PMID: 17803900.
Article
35. Tafuri S, Ciani F, Iorio EL, Esposito L, Cocchia N. Wu B, editor. 2015. Reactive Oxygen Species (ROS) and male fertility. New discoveries in embryology. InTech;p. 19–33. DOI: 10.5772/60632.
36. Walczak-Jedrzejowska R, Wolski JK, Slowikowska-Hilczer J. 2013; The role of oxidative stress and antioxidants in male fertility. Cent European J Urol. 66:60–7. DOI: 10.5173/ceju.2013.01.art19. PMID: 24578993. PMCID: PMC3921845.
37. Daryoush F, Ardeshir M, Omid R, Ayoob R, Malekzadeh KM. 2018; Reactive oxygenated species (ROS) in male fertility; source, interaction mechanism and antioxidant therapy. Res J Pharm Technol. 11:791–6. DOI: 10.5958/0974-360X.2018.00150.6.
Article
38. Agarwal A, Varghese AC, Sharma RK. 2009; Markers of oxidative stress and sperm chromatin integrity. Methods Mol Biol. 590:377–402. DOI: 10.1007/978-1-60327-378-7_24. PMID: 19763517.
Article
39. Aitken RJ, Warner P, Best FS, Templeton AA, Djahanbakhch O, Mortimer D, Lees MM. 1983; The predictability of subnormal penetrating capacity of sperm in cases of unexplained infertility. Int J Androl. 6:212–20. DOI: 10.1111/j.1365-2605.1983.tb00534.x. PMID: 6688406.
Article
40. Hsieh YY, Chang CC, Lin CS. 2006; Seminal malondialdehyde concentration but not glutathione peroxidase activity is negatively correlated with seminal concentration and motility. Int J Biol Sci. 2:23–9. DOI: 10.7150/ijbs.2.23. PMID: 16680200. PMCID: PMC1457038.
Article
41. Kim YW, Byzova TV. 2014; Oxidative stress in angiogenesis and vascular disease. Blood. 123:625–31. DOI: 10.1182/blood-2013-09-512749. PMID: 24300855. PMCID: PMC3907751.
Article
42. Zhang N, Zhang Y, Zhao S, Sun Y. 2018; Septin4 as a novel binding partner of PARP1 contributes to oxidative stress induced human umbilical vein endothelial cells injure. Biochem Biophys Res Commun. 496:621–7. DOI: 10.1016/j.bbrc.2018.01.105. PMID: 29366480.
Article
43. Zhang N, Zhang Y, Wu B, You S, Sun Y. 2020; Role of WW domain E3 ubiquitin protein ligase 2 in modulating ubiquitination and Degradation of Septin4 in oxidative stress endothelial injury. Redox Biol. 30:101419. DOI: 10.1016/j.redox.2019.101419. PMID: 31924572. PMCID: PMC6951091.
Article
Full Text Links
  • ACB
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr