2. Anway MD, Cupp AS, Uzumcu M, Skinner MK. 2005; Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 308:1466–9. Erratum in: Science 2010;328: 690. DOI:
10.1126/science.1108190. PMID:
15933200.
Article
4. Zorn B, Golob B, Ihan A, Kopitar A, Kolbezen M. 2012; Apoptotic sperm biomarkers and their correlation with conventional sperm parameters and male fertility potential. J Assist Reprod Genet. 29:357–64. DOI:
10.1007/s10815-012-9718-x. PMID:
22361952. PMCID:
PMC3309979.
Article
6. Rafaee A, Mohseni Meybodi A, Yaghmaei P, Hosseini SH, Sabbaghian M. 2020; Single-nucleotide polymorphism c.474G>A in the SEPT12 gene is a predisposing factor in male infertility. Mol Reprod Dev. 87:251–9. DOI:
10.1002/mrd.23310. PMID:
31880374.
7. Hall PA, Jung K, Hillan KJ, Russell SE. 2005; Expression profiling the human septin gene family. J Pathol. 206:269–78. DOI:
10.1002/path.1789. PMID:
15915442.
Article
8. Zhang L, He Y, Lei K, Fang Z, Li Q, Su J, Nie Z, Xu Y, Jin L. 2021; Gene expression profiling of early Parkinson's disease patient reveals redox homeostasis. Neurosci Lett. 753:135893. DOI:
10.1016/j.neulet.2021.135893. PMID:
33857551.
Article
11. Abbey M, Gaestel M, Menon MB. 2019; Septins: active GTPases or just GTP-binding proteins? Cytoskeleton (Hoboken). 76:55–62. DOI:
10.1002/cm.21451. PMID:
29747238.
Article
12. Nagata K, Asano T, Nozawa Y, Inagaki M. 2004; Biochemical and cell biological analyses of a mammalian septin complex, Sept7/9b/11. J Biol Chem. 279:55895–904. DOI:
10.1074/jbc.M406153200. PMID:
15485874.
Article
14. Vickram AS, Anbarasu K, Jeyanthi P, Gulothungan G, Nanmaran R, Thanigaivel S, idharan TB Sr, Rohini K. 2021; Identification and structure prediction of human Septin-4 as a biomarker for diagnosis of asthenozoospermic infertile patients-critical finding toward personalized medicine. Front Med (Lausanne). 8:723019. DOI:
10.3389/fmed.2021.723019. PMID:
34926486. PMCID:
PMC8677696. PMID:
2abac572cab24a1fb55296e24ec8e03e.
Article
16. Kissel H, Georgescu MM, Larisch S, Manova K, Hunnicutt GR, Steller H. 2005; The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev Cell. 8:353–64. DOI:
10.1016/j.devcel.2005.01.021. PMID:
15737931.
Article
17. Ihara M, Kinoshita A, Yamada S, Tanaka H, Tanigaki A, Kitano A, Goto M, Okubo K, Nishiyama H, Ogawa O, Takahashi C, Itohara S, Nishimune Y, Noda M, Kinoshita M. 2005; Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev Cell. 8:343–52. DOI:
10.1016/j.devcel.2004.12.005. PMID:
15737930.
Article
18. Kwitny S, Klaus AV, Hunnicutt GR. 2010; The annulus of the mouse sperm tail is required to establish a membrane diffusion barrier that is engaged during the late steps of spermiogenesis. Biol Reprod. 82:669–78. DOI:
10.1095/biolreprod.109.079566. PMID:
20042538. PMCID:
PMC2842486.
19. Vahabi Barzi N, Kakavand K, Sodeifi N, Ghezelayagh Z, Sabbaghian M. 2020; Expression and localization of Septin 14 gene and protein in infertile men testis. Reprod Biol. 20:164–8. DOI:
10.1016/j.repbio.2020.03.007. PMID:
32249155.
Article
20. Singh S, Sharma S, Jain M, Chauhan R. 2011; Importance of papanicolaou staining for sperm morphologic analysis: comparison with an automated sperm quality analyzer. Am J Clin Pathol. 136:247–51. DOI:
10.1309/AJCPCLCSPP24QPHR. PMID:
21757597.
21. Dooley MP. 1988. The use of eosin B to assess the viability and developmental potential of rat embryos [PhD dissertation]. Iowa State University;Ames: DOI:
10.31274/rtd-180813-11124.
Article
22. Agnihotri SK, Agrawal AK, Hakim BA, Vishwakarma AL, Narender T, Sachan R, Sachdev M. 2016; Mitochondrial membrane potential (MMP) regulates sperm motility. In Vitro Cell Dev Biol Anim. 52:953–60. DOI:
10.1007/s11626-016-0061-x. PMID:
27338736.
Article
23. Ribas-Maynou J, García-Peiró A, Fernández-Encinas A, Abad C, Amengual MJ, Prada E, Navarro J, Benet J. 2013; Comprehensive analysis of sperm DNA fragmentation by five different assays: TUNEL assay, SCSA, SCD test and alkaline and neutral Comet assay. Andrology. 1:715–22. DOI:
10.1111/j.2047-2927.2013.00111.x. PMID:
23843251.
Article
24. Lindemann CB, Lesich KA. 2016; Functional anatomy of the mammalian sperm flagellum. Cytoskeleton (Hoboken). 73:652–69. DOI:
10.1002/cm.21338. PMID:
27712041.
Article
25. Moretti E, Geminiani M, Terzuoli G, Renieri T, Pascarelli N, Collodel G. 2011; Two cases of sperm immotility: a mosaic of flagellar alterations related to dysplasia of the fibrous sheath and abnormalities of head-neck attachment. Fertil Steril. 95:1787.e19–23. DOI:
10.1016/j.fertnstert.2010.11.027. PMID:
21144504.
Article
27. Sugino Y, Ichioka K, Soda T, Ihara M, Kinoshita M, Ogawa O, Nishiyama H. 2008; Septins as diagnostic markers for a subset of human asthenozoospermia. J Urol. 180:2706–9. Erratum in: J Urol 2009;181:924. DOI:
10.1016/j.juro.2008.08.005. PMID:
18951558.
Article
28. Lehti MS, Sironen A. 2017; Formation and function of sperm tail structures in association with sperm motility defects. Biol Reprod. 97:522–36. DOI:
10.1093/biolre/iox096. PMID:
29024992.
Article
29. De Amicis F, Perrotta I, Santoro M, Guido C, Morelli C, Cesario MG, Bruno R, Aquila S. 2013; Human sperm anatomy: different expression and localization of phosphatidylinositol 3-kinase in normal and varicocele human spermatozoa. Ultrastruct Pathol. 37:176–82. DOI:
10.3109/01913123.2013.763881. PMID:
23634797.
Article
30. La Spina FA, Stival C, Krapf D, Buffone MG. Constantinescu G, Schatten H, editors. 2017. Molecular and cellular aspects of mammalian sperm acrosomal exocytosis. Animal Models and Human Reproduction. John Wiley & Sons;p. 409–26. DOI:
10.1002/9781118881286.ch15.
31. Devlin DJ, Agrawal Zaneveld S, Nozawa K, Han X, Moye AR, Liang Q, Harnish JM, Matzuk MM, Chen R. 2020; Knockout of mouse receptor accessory protein 6 leads to sperm function and morphology defects. Biol Reprod. 102:1234–47. DOI:
10.1093/biolre/ioaa024. PMID:
32101290. PMCID:
PMC7253788.
Article
33. Lin YH, Chou CK, Hung YC, Yu IS, Pan HA, Lin SW, Kuo PL. 2011; SEPT12 deficiency causes sperm nucleus damage and developmental arrest of preimplantation embryos. Fertil Steril. 95:363–5. DOI:
10.1016/j.fertnstert.2010.07.1064. PMID:
20801438.
Article
35. Tafuri S, Ciani F, Iorio EL, Esposito L, Cocchia N. Wu B, editor. 2015. Reactive Oxygen Species (ROS) and male fertility. New discoveries in embryology. InTech;p. 19–33. DOI:
10.5772/60632.
36. Walczak-Jedrzejowska R, Wolski JK, Slowikowska-Hilczer J. 2013; The role of oxidative stress and antioxidants in male fertility. Cent European J Urol. 66:60–7. DOI:
10.5173/ceju.2013.01.art19. PMID:
24578993. PMCID:
PMC3921845.
37. Daryoush F, Ardeshir M, Omid R, Ayoob R, Malekzadeh KM. 2018; Reactive oxygenated species (ROS) in male fertility; source, interaction mechanism and antioxidant therapy. Res J Pharm Technol. 11:791–6. DOI:
10.5958/0974-360X.2018.00150.6.
Article
39. Aitken RJ, Warner P, Best FS, Templeton AA, Djahanbakhch O, Mortimer D, Lees MM. 1983; The predictability of subnormal penetrating capacity of sperm in cases of unexplained infertility. Int J Androl. 6:212–20. DOI:
10.1111/j.1365-2605.1983.tb00534.x. PMID:
6688406.
Article
40. Hsieh YY, Chang CC, Lin CS. 2006; Seminal malondialdehyde concentration but not glutathione peroxidase activity is negatively correlated with seminal concentration and motility. Int J Biol Sci. 2:23–9. DOI:
10.7150/ijbs.2.23. PMID:
16680200. PMCID:
PMC1457038.
Article
42. Zhang N, Zhang Y, Zhao S, Sun Y. 2018; Septin4 as a novel binding partner of PARP1 contributes to oxidative stress induced human umbilical vein endothelial cells injure. Biochem Biophys Res Commun. 496:621–7. DOI:
10.1016/j.bbrc.2018.01.105. PMID:
29366480.
Article
43. Zhang N, Zhang Y, Wu B, You S, Sun Y. 2020; Role of WW domain E3 ubiquitin protein ligase 2 in modulating ubiquitination and Degradation of Septin4 in oxidative stress endothelial injury. Redox Biol. 30:101419. DOI:
10.1016/j.redox.2019.101419. PMID:
31924572. PMCID:
PMC6951091.
Article