1. Kolagar TA, Farzaneh M, Nikkar N, Khoshnam SE. 2020; Hu-man pluripotent stem cells in neurodegenerative diseases: potentials, advances and limitations. Curr Stem Cell Res Ther. 15:102–110. DOI:
10.2174/1574888X14666190823142911. PMID:
31441732.
5. McCracken KW, Catá EM, Crawford CM, et al. 2014; Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature. 516:400–404. DOI:
10.1038/nature13863. PMID:
25363776. PMCID:
PMC4270898.
Article
6. Spence JR, Mayhew CN, Rankin SA, et al. 2011; Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 470:105–109. DOI:
10.1038/nature09691. PMID:
21151107. PMCID:
PMC3033971.
Article
8. Petersen MBK, Gonçalves CAC, Kim YH, Grapin-Botton A. 2018; Recapitulating and deciphering human pancreas development from human pluripotent stem cells in a dish. Curr Top Dev Biol. 129:143–190. DOI:
10.1016/bs.ctdb.2018.02.009. PMID:
29801529.
Article
9. Heslop JA, Duncan SA. 2019; The use of human pluripotent stem cells for modeling liver development and disease. Hepatology. 69:1306–1316. DOI:
10.1002/hep.30288. PMID:
30251414.
Article
12. Tanaka J, Senpuku H, Ogawa M, et al. 2022; Human induced pluripotent stem cell-derived salivary gland organoids model SARS-CoV-2 infection and replication. Nat Cell Biol. 24:1595–1605. DOI:
10.1038/s41556-022-01007-6. PMID:
36253535.
Article
13. Zhang S, Sui Y, Zhang Y, et al. 2023; Derivation of human salivary epithelial progenitors from pluripotent stem cells via activation of RA and Wnt signaling. Stem Cell Rev Rep. 19:430–442. DOI:
10.1007/s12015-022-10431-y. PMID:
35948781.
Article
15. Sermet-Gaudelus I, Vallée B, Urbin I, et al. 2002; Normal function of the cystic fibrosis conductance regulator protein can be associated with homozygous (Delta)F508 mutation. Pediatr Res. 52:628–635. DOI:
10.1203/01.PDR.0000032981.64413.AD. PMID:
12409506.
Article
16. Trapnell BC, Chu CS, Paakko PK, et al. 1991; Expression of the cystic fibrosis transmembrane conductance regulator gene in the respiratory tract of normal individuals and indivi-duals with cystic fibrosis. Proc Natl Acad Sci U S A. 88:6565–6569. DOI:
10.1073/pnas.88.15.6565. PMID:
1713683. PMCID:
PMC52127.
Article
18. da Silva Modesto KB, de Godói Simões JB, de Souza AF, et al. 2015; Salivary flow rate and biochemical composition analysis in stimulated whole saliva of children with cystic fibro-sis. Arch Oral Biol. 60:1650–1654. DOI:
10.1016/j.archoralbio.2015.08.007. PMID:
26351748.
Article
19. El Khoury J, Haber E, Nasr M, Hokayem N. 2016; Botulinum neurotoxin A for parotid enlargement in cystic fibrosis: the first case report. J Oral Maxillofac Surg. 74:1771–1773. DOI:
10.1016/j.joms.2016.03.038. PMID:
27131031.
Article
22. Liu Z, Guo J, Wang Y, et al. 2017; CFTR-β-catenin interaction regulates mouse embryonic stem cell differentiation and embryonic development. Cell Death Differ. 24:98–110. DOI:
10.1038/cdd.2016.118. PMID:
27834953. PMCID:
PMC5260497.
Article
26. Nichols DP, Chmiel JF. 2015; Inflammation and its genesis in cystic fibrosis. Pediatr Pulmonol. 50 Suppl 40:S39–S56. DOI:
10.1002/ppul.23242. PMID:
26335954.
Article
31. Zinn VZ, Khatri A, Mednieks MI, Hand AR. 2015; Localization of cystic fibrosis transmembrane conductance regulator signaling complexes in human salivary gland striated duct cells. Eur J Oral Sci. 123:140–148. DOI:
10.1111/eos.12184. PMID:
25903037. PMCID:
PMC4425606.
Article
32. Alshahran SA, Almufareh NA, Almarshady B, Alotaibi RK, Al-Qahtani WS. 2020; Effects of consuming
Catha edulis Forsk (khat) on the gene manifestation of CHRM1 and CHRM3 in relation to salivary glands, saliva flow rates, pH and dental caries in Yemeni consumers. Open Dent J. 14:482–488. DOI:
10.2174/1874210602014010482.
33. Jeong J, Baek H, Kim YJ, et al. 2013; Human salivary gland stem cells ameliorate hyposalivation of radiation-damaged rat salivary glands. Exp Mol Med. 45:e58. DOI:
10.1038/emm.2013.121. PMID:
24232257. PMCID:
PMC3849572.
Article
34. Fonseca I, Moura Nunes JF, Soares J. 2000; Expression of CD44 isoforms in normal salivary gland tissue: an immunohis-tochemical and ultrastructural study. Histochem Cell Biol. 114:483–488. DOI:
10.1007/s004180000220. PMID:
11201610.
Article
35. Gonzalez-Begne M, Nakamoto T, Nguyen HV, Stewart AK, Alper SL, Melvin JE. 2007; Enhanced formation of a HCO3-transport metabolon in exocrine cells of Nhe1-/-mice. J Biol Chem. 282:35125–35132. DOI:
10.1074/jbc.M707266200. PMID:
17890222.
Article
36. Shen ZJ, Han YC, Nie MW, Xiang RL, Xie HZ. 2021; Analyses of circRNA and mRNA profiles in the submandibular gland in hypertension. Genomics. 113(1 Pt 1):57–65. DOI:
10.1016/j.ygeno.2020.11.016. PMID:
33227410.
Article
38. Harutyunyan SA, Simonyan KG, Mkrtchyan NM, Kashir-skaya NY, Libik M, Macek M. 2020; Sialadenitis in cystic fibrosis: case report. Doctor.Ru. 19:66–68. Russian. DOI:
10.31550/1727-2378-2020-19-10-66-68.
39. Bachvarov DR, Hess JF, Menke JG, Larrivée JF, Marceau F. 1996; Structure and genomic organization of the human B1 receptor gene for kinins (BDKRB1). Genomics. 33:374–381. DOI:
10.1006/geno.1996.0213. PMID:
8660997.
Article