1. Schoenwolf GC, Smith JL. 1990; Mechanisms of neurulation: traditional viewpoint and recent advances. Development. 109:243–270. DOI:
10.1242/dev.109.2.243. PMID:
2205465.
Article
2. Copp AJ, Greene ND, Murdoch JN. 2003; The genetic basis of mammalian neurulation. Nat Rev Genet. 4:784–793. DOI:
10.1038/nrg1181. PMID:
13679871.
Article
3. Colas JF, Schoenwolf GC. 2001; Towards a cellular and molecular understanding of neurulation. Dev Dyn. 221:117–145. DOI:
10.1002/dvdy.1144. PMID:
11376482.
Article
5. Avagliano L, Massa V, George TM, Qureshy S, Bulfamante GP, Finnell RH. 2019; Overview on neural tube defects: from development to physical characteristics. Birth Defects Res. 111:1455–1467. DOI:
10.1002/bdr2.1380. PMID:
30421543. PMCID:
PMC6511489.
6. Harris MJ, Juriloff DM. 2010; An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure. Birth Defects Res A Clin Mol Teratol. 88:653–669. DOI:
10.1002/bdra.20676. PMID:
20740593.
Article
10. Wang L, Li Z, Jin L, et al. 2014; Indoor air pollution and neural tube defects: effect modification by maternal genes. Epide-miology. 25:658–665. DOI:
10.1097/EDE.0000000000000129. PMID:
25051309.
12. Suarez L, Felkner M, Brender JD, Canfield M, Hendricks K. 2008; Maternal exposures to cigarette smoke, alcohol, and street drugs and neural tube defect occurrence in offspring. Matern Child Health J. 12:394–401. DOI:
10.1007/s10995-007-0251-y. PMID:
17641961.
Article
13. Lee JH, Shin H, Shaker MR, et al. 2022; Production of human spinal-cord organoids recapitulating neural-tube morpho-genesis. Nat Biomed Eng. 6:435–448. DOI:
10.1038/s41551-022-00868-4. PMID:
35347276.
Article
14. Wegner C, Drews E, Nau H. 1990; Zinc concentrations in mouse embryo and maternal plasma. Effect of valproic acid and nonteratogenic metabolite. Biol Trace Elem Res. 25:211–217. DOI:
10.1007/BF02990416. PMID:
1698419.
Article
15. Kim JY, Shaker MR, Lee JH, Lee B, Kim H, Sun W. 2017; Identification of molecular markers distinguishing adult neural stem cells in the subventricular and subcallosal zones. Anim Cells Syst (Seoul). 21:152–159. DOI:
10.1080/19768354.2017.1324522. PMID:
30460064. PMCID:
PMC6138335.
Article
16. Warde-Farley D, Donaldson SL, Comes O, et al. 2010; The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38:W214–W220. DOI:
10.1093/nar/gkq537. PMID:
20576703. PMCID:
PMC2896186.
Article
20. Jang H, Kim SH, Koh Y, Yoon KJ. 2022; Engineering brain organoids: toward mature neural circuitry with an intact cytoarchitecture. Int J Stem Cells. 15:41–59. DOI:
10.15283/ijsc22004. PMID:
35220291. PMCID:
PMC8889333.
Article
23. Haremaki T, Metzger JJ, Rito T, Ozair MZ, Etoc F, Brivanlou AH. 2019; Self-organizing neuruloids model develop-mental aspects of Huntington's disease in the ectodermal compartment. Nat Biotechnol. 37:1198–1208. DOI:
10.1038/s41587-019-0237-5. PMID:
31501559.
Article
29. Zheng Y, Xue X, Resto-Irizarry AM, et al. 2019; Dorsal-ventral patterned neural cyst from human pluripotent stem cells in a neurogenic niche. Sci Adv. 5:eaax5933. DOI:
10.1126/sciadv.aax5933. PMID:
31844664. PMCID:
PMC6905871.
Article
30. Tung EW, Winn LM. 2011; Valproic acid increases formation of reactive oxygen species and induces apoptosis in postimplantation embryos: a role for oxidative stress in valproic acid-induced neural tube defects. Mol Pharmacol. 80:979–987. DOI:
10.1124/mol.111.072314. PMID:
21868484.
Article
31. Wegner C, Nau H. 1992; Alteration of embryonic folate metabolism by valproic acid during organogenesis: implications for mechanism of teratogenesis. Neurology. 42(4 Suppl 5):17–24. PMID:
1574172.
33. Li Z, Ge W, Li Y, Zhang Y, Zhao X, Hu J. 2021; Valproic acid enhance reprogramming of bactrian camel cells through promoting the expression of endogenous gene c-Myc and the process of angiogenesis. Int J Stem Cells. 14:191–202. DOI:
10.15283/ijsc20213. PMID:
33632993. PMCID:
PMC8138656.
Article
35. Elmazar MM, Nau H. 1992; Methotrexate increases valproic acid-induced developmental toxicity, in particular neural tube defects in mice. Teratog Carcinog Mutagen. 12:203–210. DOI:
10.1002/tcm.1770120503. PMID:
1363493.
Article
36. Roy M, Leclerc D, Wu Q, Gupta S, Kruger WD, Rozen R. 2008; Valproic acid increases expression of methylenetetrahydrofolate reductase (MTHFR) and induces lower terato-genicity in MTHFR deficiency. J Cell Biochem. 105:467–476. DOI:
10.1002/jcb.21847. PMID:
18615588. PMCID:
PMC2574752.
Article
38. Muhsen M, Youngs J, Riu A, et al. 2021; Folic acid supplementation rescues valproic acid-induced developmental neurotoxicity and behavioral alterations in zebrafish embryos. Epilepsia. 62:1689–1700. DOI:
10.1111/epi.16915. PMID:
33997963.
Article
40. Bjorklund NK, Gordon R. 2006; A hypothesis linking low folate intake to neural tube defects due to failure of post-translation methylations of the cytoskeleton. Int J Dev Biol. 50:135–141. DOI:
10.1387/ijdb.052102nb. PMID:
16479482.
Article