Healthc Inform Res.  2023 Oct;29(4):301-314. 10.4258/hir.2023.29.4.301.

Machine Learning for Benchmarking Critical Care Outcomes

Affiliations
  • 1Clinical Integration and Insights, Philips, Cambridge, MA, USA
  • 2Clinical Integration and Insights, Philips, Eindhoven, The Netherlands
  • 3EMR & Care Management, Philips, Cambridge, MA, USA

Abstract


Objectives
Enhancing critical care efficacy involves evaluating and improving system functioning. Benchmarking, a retrospective comparison of results against standards, aids risk-adjusted assessment and helps healthcare providers identify areas for improvement based on observed and predicted outcomes. The last two decades have seen the development of several models using machine learning (ML) for clinical outcome prediction. ML is a field of artificial intelligence focused on creating algorithms that enable computers to learn from and make predictions or decisions based on data. This narrative review centers on key discoveries and outcomes to aid clinicians and researchers in selecting the optimal methodology for critical care benchmarking using ML.
Methods
We used PubMed to search the literature from 2003 to 2023 regarding predictive models utilizing ML for mortality (592 articles), length of stay (143 articles), or mechanical ventilation (195 articles). We supplemented the PubMed search with Google Scholar, making sure relevant articles were included. Given the narrative style, papers in the cohort were manually curated for a comprehensive reader perspective.
Results
Our report presents comparative results for benchmarked outcomes and emphasizes advancements in feature types, preprocessing, model selection, and validation. It showcases instances where ML effectively tackled critical care outcome-prediction challenges, including nonlinear relationships, class imbalances, missing data, and documentation variability, leading to enhanced results.
Conclusions
Although ML has provided novel tools to improve the benchmarking of critical care outcomes, areas that require further research include class imbalance, fairness, improved calibration, generalizability, and long-term validation of published models.

Keyword

Benchmarking, Critical Care, Length of Stay, Machine Learning, Mortality, Ventilation

Reference

References

1. Rhodes A, Moreno RP, Azoulay E, Capuzzo M, Chiche JD, Eddleston J, et al. Prospectively defined indicators to improve the safety and quality of care for critically ill patients: a report from the Task Force on Safety and Quality of the European Society of Intensive Care Medicine (ESICM). Intensive Care Med. 2012; 38(4):598–605. https://doi.org/10.1007/s00134-011-2462-3.
Article
2. Vincent JL, Marshall JC, Namendys-Silva SA, Francois B, Martin-Loeches I, Lipman J, et al. Assessment of the worldwide burden of critical illness: the intensive care over nations (ICON) audit. Lancet Respir Med. 2014; 2(5):380–6. https://doi.org/10.1016/S2213-2600(14)70061-X.
Article
3. Higgins TL.Quantifying risk and benchmarking performance in the adult intensive care unit. J Intensive Care Med. 2007; 22(3):141–56. https://doi.org/10.1177/0885066607299520.
Article
4. Braun JP, Kumpf O, Deja M, Brinkmann A, Marx G, Bloos F, et al. The German quality indicators in intensive care medicine 2013: second edition. Ger Med Sci. 2013. 11:Doc09. https://doi.org/10.3205/000177.
Article
5. Kumpf O, Braun JP, Brinkmann A, Bause H, Bellgardt M, Bloos F, et al. Quality indicators in intensive care medicine for Germany: third edition 2017. Ger Med Sci. 2017. 15:Doc10. https://doi.org/10.3205/000251.
Article
6. Brown SE, Ratcliffe SJ, Halpern SD.An empirical comparison of key statistical attributes among potential ICU quality indicators. Crit Care Med. 2014; 42(8):1821–31. https://doi.org/10.1097/CCM.0000000000000334.
Article
7. Salluh JIF, Soares M, Keegan MT.Understanding intensive care unit benchmarking. Intensive Care Med. 2017; 43(11):1703–7. https://doi.org/10.1007/s00134-017-4760-x.
Article
8. Higgins TL, Stark MM, Henson KN, Freeseman-Freeman L.Coronavirus disease 2019 ICU patients have higher-than-expected Acute Physiology and Chronic Health Evaluation-adjusted mortality and length of stay than viral pneumonia ICU patients. Crit Care Med. 2021; 49(7):e701–6. https://doi.org/10.1097/ccm.0000000000005012.
Article
9. Verburg IW, Atashi A, Eslami S, Holman R, Abu-Hanna A, de Jonge E, et al. Which models can I use to predict adult ICU length of stay? A systematic review. Crit Care Med. 2017; 45(2):e222–31. https://doi.org/10.1097/ccm.0000000000002054.
Article
10. van Sluisveld N, Bakhshi-Raiez F, de Keizer N, Holman R, Wester G, Wollersheim H, et al. Variation in rates of ICU readmissions and post-ICU in-hospital mortality and their association with ICU discharge practices. BMC Health Serv Res. 2017; 17(1):281. https://doi.org/10.1186/s12913-017-2234-z.
Article
11. Seneff MG, Zimmerman JE, Knaus WA, Wagner DP, Draper EA. Predicting the duration of mechanical ventilation. The importance of disease and patient characteristics. Chest. 1996; 110(2):469–79. https://doi.org/10.1378/chest.110.2.469.
Article
12. Shashikumar SP, Wardi G, Paul P, Carlile M, Brenner LN, Hibbert KA, et al. Development and prospective validation of a deep learning algorithm for predicting need for mechanical ventilation. Chest. 2021; 159(6):2264–73. https://doi.org/10.1016/j.chest.2020.12.009.
Article
13. Malmgren J, Waldenstrom AC, Rylander C, Johannesson E, Lundin S.Long-term health-related quality of life and burden of disease after intensive care: development of a patient-reported outcome measure. Crit Care. 2021; 25(1):82. https://doi.org/10.1186/s13054-021-03496-7.
Article
14. Higgins TL, Teres D, Nathanson B.Outcome prediction in critical care: the Mortality Probability Models. Curr Opin Crit Care. 2008; 14(5):498–505. https://doi.org/10.1097/mcc.0b013e3283101643.
Article
15. Ferrando-Vivas P, Jones A, Rowan KM, Harrison DA.Development and validation of the new ICNARC model for prediction of acute hospital mortality in adult critical care. J Crit Care. 2017; 38:335–9. https://doi.org/10.1016/j.jcrc.2016.11.031.
Article
16. Keuning BE, Kaufmann T, Wiersema R, Granholm A, Pettila V, Moller MH, et al. Mortality prediction models in the adult critically ill: a scoping review. Acta Anaesthesiol Scand. 2020; 64(4):424–42. https://doi.org/10.1111/aas.13527.
Article
17. Strand K, Flaatten H.Severity scoring in the ICU: a review. Acta Anaesthesiol Scand. 2008; 52(4):467–78. https://doi.org/10.1111/j.1399-6576.2008.01586.x.
Article
18. Siontis GC, Tzoulaki I, Ioannidis JP.Predicting death: an empirical evaluation of predictive tools for mortality. Arch Intern Med. 2011; 171(19):1721–6. https://doi.org/10.1001/archinternmed.2011.334.
Article
19. Raj R, Luostarinen T, Pursiainen E, Posti JP, Takala RS, Bendel S, et al. Machine learning-based dynamic mortality prediction after traumatic brain injury. Sci Rep. 2019; 9(1):17672. https://doi.org/10.1038/s41598-019-53889-6.
Article
20. Subudhi S, Verma A, Patel AB, Hardin CC, Khandekar MJ, Lee H, et al. Comparing machine learning algorithms for predicting ICU admission and mortality in COVID-19. NPJ Digit Med. 2021; 4(1):87. https://doi.org/10.1038/s41746-021-00456-x.
Article
21. Silva I, Moody G, Scott DJ, Celi LA, Mark RG.Predicting in-hospital mortality of ICU patients: the PhysioNet/computing in cardiology challenge 2012. Comput Cardiol (2010). 2012; 39:245–8.
22. Barboi C, Tzavelis A, Muhammad LN.Comparison of severity of illness scores and artificial intelligence models that are predictive of intensive care unit mortality: meta-analysis and review of the literature. JMIR Med Inform. 2022; 10(5):e35293. https://doi.org/10.2196/35293.
Article
23. Thorsen-Meyer HC, Nielsen AB, Nielsen AP, Kaas-Hansen BS, Toft P, Schierbeck J, et al. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. Lancet Digit Health. 2020; 2(4):e179–91. https://doi.org/10.1016/s2589-7500(20)30018-2.
Article
24. Caicedo-Torres W, Gutierrez J.ISeeU: visually interpretable deep learning for mortality prediction inside the ICU. J Biomed Inform. 2019; 98:103269. https://doi.org/10.1016/j.jbi.2019.103269.
Article
25. Aczon MD, Ledbetter DR, Laksana E, Ho LV, Wetzel RC.Continuous prediction of mortality in the PICU: a recurrent neural network model in a single-center dataset. Pediatr Crit Care Med. 2021; 22(6):519–29. https://doi.org/10.1097/pcc.0000000000002682.
Article
26. Grnarova P, Schmidt F, Hyland SL, Eickhoff C. Neural document embeddings for intensive care patient mortality prediction [Internet]. Ithaca (NY): arXiv.org;2016. [cited at 2023 Sep 30]. Available from: http://arxiv.org/abs/1612.00467.
27. Ghassemi M, Pimentel MA, Naumann T, Brennan T, Clifton DA, Szolovits P, et al. A multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data. Proc AAAI Conf Artif Intell. 2015; 2015:446–53.
Article
28. Badawi O, Breslow MJ.Readmissions and death after ICU discharge: development and validation of two predictive models. PLoS One. 2012; 7(11):e48758. https://doi.org/10.1371/journal.pone.0048758.
Article
29. Bhattacharya S, Rajan V, Shrivastava H.ICU mortality prediction: a classification algorithm for imbalanced datasets. Proc AAAI Conf Artif Intell. 2017; 31(1):1288–94. https://doi.org/10.1609/aaai.v31i1.10721.
Article
30. Guo C, Liu M, Lu M.A dynamic ensemble learning algorithm based on K-means for ICU mortality prediction. Appl Soft Comput. 2021; 103:107166. https://doi.org/10.1016/j.asoc.2021.107166.
Article
31. Kim S, Kim W, Park RW.A comparison of intensive care unit mortality prediction models through the use of data mining techniques. Healthc Inform Res. 2011; 17(4):232–43. https://doi.org/10.4258/hir.2011.17.4.232.
Article
32. Awad A, Bader-El-Den M, McNicholas J, Briggs J.Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. Int J Med Inform. 2017; 108:185–95. https://doi.org/10.1016/j.ijmedinf.2017.10.002.
Article
33. Pirracchio R, Petersen ML, Carone M, Rigon MR, Chevret S, van der Laan MJ.Mortality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA): a population-based study. Lancet Respir Med. 2015; 3(1):42–52. https://doi.org/10.1016/s2213-2600(14)70239-5.
Article
34. Moser A, Reinikainen M, Jakob SM, Selander T, Pettila V, Kiiski O, et al. Mortality prediction in intensive care units including premorbid functional status improved performance and internal validity. J Clin Epidemiol. 2022; 142:230–41. https://doi.org/10.1016/j.jclinepi.2021.11.028.
Article
35. El-Rashidy N, El-Sappagh S, Abuhmed T, Abdelrazek S, El-Bakry HM.Intensive care unit mortality prediction: an improved patient-specific stacking ensemble model. IEEE Access. 2020; 8:133541–64. https://doi.org/10.1109/ACCESS.2020.3010556.
Article
36. Badawi O, Liu X, Hassan E, Amelung PJ, Swami S.Evaluation of ICU risk models adapted for use as continuous markers of severity of illness throughout the ICU stay. Crit Care Med. 2018; 46(3):361–7. https://doi.org/10.1097/ccm.0000000000002904.
Article
37. Chiu CC, Wu CM, Chien TN, Kao LJ, Qiu JT.Predicting the mortality of ICU patients by topic model with machine-learning techniques. Healthcare (Basel). 2022; 10(6):1087. https://doi.org/10.3390/healthcare10061087.
Article
38. Iwase S, Nakada TA, Shimada T, Oami T, Shimazui T, Takahashi N, et al. Prediction algorithm for ICU mortality and length of stay using machine learning. Sci Rep. 2022; 12(1):12912. https://doi.org/10.1038/s41598-022-17091-5.
Article
39. Pang K, Li L, Ouyang W, Liu X, Tang Y.Establishment of ICU mortality risk prediction models with machine learning algorithm using MIMIC-IV database. Diagnostics (Basel). 2022; 12(5):1068. https://doi.org/10.3390/diagnostics12051068.
Article
40. Safaei N, Safaei B, Seyedekrami S, Talafidaryani M, Masoud A, Wang S, et al. E-CatBoost: an efficient machine learning framework for predicting ICU mortality using the eICU Collaborative Research Database. PLoS One. 2022; 17(5):e0262895. https://doi.org/10.1371/journal.pone.0262895.
Article
41. Stenwig E, Salvi G, Rossi PS, Skjaervold NK.Comparative analysis of explainable machine learning prediction models for hospital mortality. BMC Med Res Methodol. 2022; 22(1):53. https://doi.org/10.1186/s12874-022-01540-w.
Article
42. Zhao S, Tang G, Liu P, Wang Q, Li G, Ding Z.Improving mortality risk prediction with routine clinical data: a practical machine learning model based on eICU patients. Int J Gen Med. 2023; 16:3151–61. https://doi.org/10.2147/ijgm.s391423.
Article
43. Meiring C, Dixit A, Harris S, MacCallum NS, Brealey DA, Watkinson PJ, et al. Optimal intensive care outcome prediction over time using machine learning. PLoS One. 2018; 13(11):e0206862. https://doi.org/10.1371/journal.pone.0206862.
Article
44. Davoodi R, Moradi MH.Mortality prediction in intensive care units (ICUs) using a deep rule-based fuzzy classifier. J Biomed Inform. 2018; 79:48–59. https://doi.org/10.1016/j.jbi.2018.02.008.
Article
45. Marafino BJ, Park M, Davies JM, Thombley R, Luft HS, Sing DC, et al. Validation of prediction models for critical care outcomes using natural language processing of electronic health record data. JAMA Netw Open. 2018; 1(8):e185097. https://doi.org/10.1001/jamanet-workopen.2018.5097.
Article
46. Purushotham S, Meng C, Che Z, Liu Y.Benchmarking deep learning models on large healthcare datasets. J Biomed Inform. 2018; 83:112–34. https://doi.org/10.1016/j.jbi.2018.04.007.
Article
47. Shapley LS. A value for n-person games. Kuhn AW, Tucker HW, editors. Contributions to the theory of games. II. Princeton (NJ): Princeton University Press;1953. p. 307–18.
48. Li L, Liu G. In-hospital mortality prediction for ICU patients on large healthcare MIMIC datasets using class imbalance learning. In : Proceedings of 2020, 5th IEEE International Conference on Big Data Analytics (ICBDA); 2020 May 8–11; Xiamen, China. p. 90–3. https://doi.org/10.1109/ICBDA49040.2020.9101272.
Article
49. Zimmerman JE, Kramer AA, McNair DS, Malila FM, Shaffer VL.Intensive care unit length of stay: benchmarking based on Acute Physiology and Chronic Health Evaluation (APACHE) IV. Crit Care Med. 2006; 34(10):2517–29. https://doi.org/10.1097/01.ccm.0000240233.01711.d9.
Article
50. Vasilevskis EE, Kuzniewicz MW, Cason BA, Lane RK, Dean ML, Clay T, et al. Mortality probability model III and simplified acute physiology score II: assessing their value in predicting length of stay and comparison to APACHE IV. Chest. 2009; 136(1):89–101. https://doi.org/10.1378/chest.08-2591.
Article
51. Peres IT, Hamacher S, Oliveira FLC, Bozza FA, Salluh JIF.Prediction of intensive care units length of stay: a concise review. Rev Bras Ter Intensiva. 2021; 33(2):183–7. https://doi.org/10.5935/0103-507x.20210025.
Article
52. Bacchi S, Tan Y, Oakden-Rayner L, Jannes J, Kleinig T, Koblar S.Machine learning in the prediction of medical inpatient length of stay. Intern Med J. 2022; 52(2):176–85. https://doi.org/10.1111/imj.14962.
Article
53. Harutyunyan H, Khachatrian H, Kale DC, Ver Steeg G, Galstyan A.Multitask learning and benchmarking with clinical time series data. Sci Data. 2019; 6(1):96. https://doi.org/10.1038/s41597-019-0103-9.
Article
54. Houthooft R, Ruyssinck J, van der Herten J, Stijven S, Couckuyt I, Gadeyne B, et al. Predictive modelling of survival and length of stay in critically ill patients using sequential organ failure scores. Artif Intell Med. 2015; 63(3):191–207. https://doi.org/10.1016/j.artmed.2014.12.009.
Article
55. Li C, Chen L, Feng J, Wu D, Zimeng W, Liu J, et al. Prediction of length of stay on the intensive care unit based on least absolute shrinkage and selection operator. IEEE Access. 2019; 7:110710–21. https://doi.org/10.1109/ACCESS.2019.2934166.
Article
56. Sotoodeh M, Ho JC.Improving length of stay prediction using a hidden Markov model. AMIA Jt Summits Transl Sci Proc. 2019; 2019:425–34.
57. Gentimis T, Ala’J A, Durante A, Cook K, Steele R. Predicting hospital length of stay using neural networks on MIMIC III data. In : Proceedings of 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing, 15th International Conference on Pervasive Intelligence and Computing, 3rd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech); 2017 Nov 6–10; Orlando, FL. p. 1194–201. https://doi.org/10.1109/DASCPICom-DataCom-CyberSciTec.2017.191.
Article
58. Ma X, Si Y, Wang Z, Wang Y.Length of stay prediction for ICU patients using individualized single classification algorithm. Comput Methods Programs Biomed. 2020; 186:105224. https://doi.org/10.1016/j.cmpb.2019.105224.
Article
59. Muhlestein WE, Akagi DS, Davies JM, Chambless LB.Predicting inpatient length of stay after brain tumor surgery: developing machine learning ensembles to improve predictive performance. Neurosurgery. 2019; 85(3):384–93. https://doi.org/10.1093/neuros/nyy343.
Article
60. Wu J, Lin Y, Li P, Hu Y, Zhang L, Kong G.Predicting prolonged length of ICU stay through machine learning. Diagnostics (Basel). 2021; 11(12):2242. https://doi.org/10.3390/diagnostics11122242.
Article
61. Alghatani K, Ammar N, Rezgui A, Shaban-Nejad A.Predicting intensive care unit length of stay and mortality using patient vital signs: machine learning model development and validation. JMIR Med Inform. 2021; 9(5):e21347. https://doi.org/10.2196/21347.
Article
62. Peres IT, Hamacher S, Cyrino Oliveira FL, Bozza FA, Salluh JI.Data-driven methodology to predict the ICU length of stay: a multicentre study of 99,492 admissions in 109 Brazilian units. Anaesth Crit Care Pain Med. 2022; 41(6):101142. https://doi.org/10.1016/j.accpm.2022.101142.
Article
63. Weissman GE, Hubbard RA, Ungar LH, Harhay MO, Greene CS, Himes BE, et al. Inclusion of unstructured clinical text improves early prediction of death or prolonged ICU stay. Crit Care Med. 2018; 46(7):1125–32. https://doi.org/10.1097/ccm.0000000000003148.
Article
64. Williford E, Haley V, McNutt LA, Lazariu V.Dealing with highly skewed hospital length of stay distributions: the use of Gamma mixture models to study delivery hospitalizations. PLoS One. 2020; 15(4):e0231825. https://doi.org/10.1371/journal.pone.0231825.
Article
65. Peres IT, Hamacher S, Oliveira FLC, Thome AMT, Bozza FA.What factors predict length of stay in the intensive care unit? Systematic review and meta-analysis. J Crit Care. 2020; 60:183–94. https://doi.org/10.1016/j.jcrc.2020.08.003.
Article
66. Sayed M, Riano D, Villar J.Predicting duration of mechanical ventilation in acute respiratory distress syndrome using supervised machine learning. J Clin Med. 2021; 10(17):3824. https://doi.org/10.3390/jcm10173824.
Article
67. Kramer AA, Gershengorn HB, Wunsch H, Zimmerman JE.Variations in case-mix-adjusted duration of mechanical ventilation among ICUs. Crit Care Med. 2016; 44(6):1042–8. https://doi.org/10.1097/ccm.0000000000001636.
Article
68. Kulkarni AR, Athavale AM, Sahni A, Sukhal S, Saini A, Itteera M, et al. Deep learning model to predict the need for mechanical ventilation using chest X-ray images in hospitalised patients with COVID-19. BMJ Innov. 2021; 7(2):261–70. https://doi.org/10.1136/bmjinnov-2020-000593.
Article
69. Yu L, Halalau A, Dalal B, Abbas AE, Ivascu F, Amin M, et al. Machine learning methods to predict mechanical ventilation and mortality in patients with COVID-19. PLoS One. 2021; 16(4):e0249285. https://doi.org/10.1371/journal.pone.0249285.
Article
70. Douville NJ, Douville CB, Mentz G, Mathis MR, Pancaro C, Tremper KK, et al. Clinically applicable approach for predicting mechanical ventilation in patients with COVID-19. Br J Anaesth. 2021; 126(3):578–89. https://doi.org/10.1016/j.bja.2020.11.034.
Article
71. Karri R, Chen YP, Burrell AJC, Penny-Dimri JC, Broadley T, Trapani T, et al. Machine learning predicts the short-term requirement for invasive ventilation among Australian critically ill COVID-19 patients. Plops One. 2022; 17(10):e0276509. https://doi.org/10.1371/journal.pone.0276509.
Article
72. Parreco J, Hidalgo A, Parks JJ, Kozol R, Rattan R.Using artificial intelligence to predict prolonged mechanical ventilation and tracheostomy placement. J Surg Res. 2018; 228:179–87. https://doi.org/10.1016/j.jss.2018.03.028.
Article
73. Sauer CM, Dam TA, Celi LA, Faltys M, de la Hoz MAA, Adhikari L, et al. Systematic review and comparison of publicly available ICU data sets: a decision guide for clinicians and data scientists. Crit Care Med. 2022; 50(6):e581–8. https://doi.org/10.1097/ccm.0000000000005517.
Article
74. Liu X, Badawi O.369: ICU length-of-stay models should account for the interaction between survival and patient severity. Crit Care Med. 2020; 48(1):166. https://doi.org/10.1097/01.ccm.0000619828.57026.19.
Article
75. Leevy JL, Khoshgoftaar TM, Bauder RA, Seliya N.A survey on addressing high-class imbalance in big data. J Big Data. 2018; 5(1):42. https://doi.org/10.1186/s40537-018-0151-6.
Article
76. Johnson JM, Khoshgoftaar TM.Survey on deep learning with class imbalance. J Big Data. 2019; 6(1):27. https://doi.org/10.1186/s40537-019-0192-5.
Article
77. Zimmerman JE, Kramer AA, McNair DS, Malila FM.Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients. Crit Care Med. 2006; 34(5):1297–310. https://doi.org/10.1097/01.ccm.0000215112.84523.f0.
Article
78. Roosli E, Bozkurt S, Hernandez-Boussard T.Peeking into a black box, the fairness and generalizability of a MIMIC-III benchmarking model. Sci Data. 2022; 9(1):24. https://doi.org/10.1038/s41597-021-01110-7.
Article
79. Xu J, Glicksberg BS, Su C, Walker P, Bian J, Wang F.Federated learning for healthcare informatics. J Healthc Inform Res. 2021; 5(1):1–19. https://doi.org/10.1007/s41666-020-00082-4.
Article
80. Lane-Fall MB, Neuman MD.Outcomes measures and risk adjustment. Int Anesthesiol Clin. 2013; 51(4):10–21. https://doi.org/10.1097/aia.0b013e3182a70a52.
Article
Full Text Links
  • HIR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr