1. Rhodes A, Moreno RP, Azoulay E, Capuzzo M, Chiche JD, Eddleston J, et al. Prospectively defined indicators to improve the safety and quality of care for critically ill patients: a report from the Task Force on Safety and Quality of the European Society of Intensive Care Medicine (ESICM). Intensive Care Med. 2012; 38(4):598–605.
https://doi.org/10.1007/s00134-011-2462-3.
Article
2. Vincent JL, Marshall JC, Namendys-Silva SA, Francois B, Martin-Loeches I, Lipman J, et al. Assessment of the worldwide burden of critical illness: the intensive care over nations (ICON) audit. Lancet Respir Med. 2014; 2(5):380–6.
https://doi.org/10.1016/S2213-2600(14)70061-X.
Article
4. Braun JP, Kumpf O, Deja M, Brinkmann A, Marx G, Bloos F, et al. The German quality indicators in intensive care medicine 2013: second edition. Ger Med Sci. 2013. 11:Doc09.
https://doi.org/10.3205/000177.
Article
5. Kumpf O, Braun JP, Brinkmann A, Bause H, Bellgardt M, Bloos F, et al. Quality indicators in intensive care medicine for Germany: third edition 2017. Ger Med Sci. 2017. 15:Doc10.
https://doi.org/10.3205/000251.
Article
8. Higgins TL, Stark MM, Henson KN, Freeseman-Freeman L.Coronavirus disease 2019 ICU patients have higher-than-expected Acute Physiology and Chronic Health Evaluation-adjusted mortality and length of stay than viral pneumonia ICU patients. Crit Care Med. 2021; 49(7):e701–6.
https://doi.org/10.1097/ccm.0000000000005012.
Article
10. van Sluisveld N, Bakhshi-Raiez F, de Keizer N, Holman R, Wester G, Wollersheim H, et al. Variation in rates of ICU readmissions and post-ICU in-hospital mortality and their association with ICU discharge practices. BMC Health Serv Res. 2017; 17(1):281.
https://doi.org/10.1186/s12913-017-2234-z.
Article
11. Seneff MG, Zimmerman JE, Knaus WA, Wagner DP, Draper EA. Predicting the duration of mechanical ventilation. The importance of disease and patient characteristics. Chest. 1996; 110(2):469–79.
https://doi.org/10.1378/chest.110.2.469.
Article
12. Shashikumar SP, Wardi G, Paul P, Carlile M, Brenner LN, Hibbert KA, et al. Development and prospective validation of a deep learning algorithm for predicting need for mechanical ventilation. Chest. 2021; 159(6):2264–73.
https://doi.org/10.1016/j.chest.2020.12.009.
Article
13. Malmgren J, Waldenstrom AC, Rylander C, Johannesson E, Lundin S.Long-term health-related quality of life and burden of disease after intensive care: development of a patient-reported outcome measure. Crit Care. 2021; 25(1):82.
https://doi.org/10.1186/s13054-021-03496-7.
Article
15. Ferrando-Vivas P, Jones A, Rowan KM, Harrison DA.Development and validation of the new ICNARC model for prediction of acute hospital mortality in adult critical care. J Crit Care. 2017; 38:335–9.
https://doi.org/10.1016/j.jcrc.2016.11.031.
Article
16. Keuning BE, Kaufmann T, Wiersema R, Granholm A, Pettila V, Moller MH, et al. Mortality prediction models in the adult critically ill: a scoping review. Acta Anaesthesiol Scand. 2020; 64(4):424–42.
https://doi.org/10.1111/aas.13527.
Article
20. Subudhi S, Verma A, Patel AB, Hardin CC, Khandekar MJ, Lee H, et al. Comparing machine learning algorithms for predicting ICU admission and mortality in COVID-19. NPJ Digit Med. 2021; 4(1):87.
https://doi.org/10.1038/s41746-021-00456-x.
Article
21. Silva I, Moody G, Scott DJ, Celi LA, Mark RG.Predicting in-hospital mortality of ICU patients: the PhysioNet/computing in cardiology challenge 2012. Comput Cardiol (2010). 2012; 39:245–8.
22. Barboi C, Tzavelis A, Muhammad LN.Comparison of severity of illness scores and artificial intelligence models that are predictive of intensive care unit mortality: meta-analysis and review of the literature. JMIR Med Inform. 2022; 10(5):e35293.
https://doi.org/10.2196/35293.
Article
23. Thorsen-Meyer HC, Nielsen AB, Nielsen AP, Kaas-Hansen BS, Toft P, Schierbeck J, et al. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. Lancet Digit Health. 2020; 2(4):e179–91.
https://doi.org/10.1016/s2589-7500(20)30018-2.
Article
25. Aczon MD, Ledbetter DR, Laksana E, Ho LV, Wetzel RC.Continuous prediction of mortality in the PICU: a recurrent neural network model in a single-center dataset. Pediatr Crit Care Med. 2021; 22(6):519–29.
https://doi.org/10.1097/pcc.0000000000002682.
Article
26. Grnarova P, Schmidt F, Hyland SL, Eickhoff C. Neural document embeddings for intensive care patient mortality prediction [Internet]. Ithaca (NY): arXiv.org;2016. [cited at 2023 Sep 30]. Available from:
http://arxiv.org/abs/1612.00467.
27. Ghassemi M, Pimentel MA, Naumann T, Brennan T, Clifton DA, Szolovits P, et al. A multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data. Proc AAAI Conf Artif Intell. 2015; 2015:446–53.
Article
33. Pirracchio R, Petersen ML, Carone M, Rigon MR, Chevret S, van der Laan MJ.Mortality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA): a population-based study. Lancet Respir Med. 2015; 3(1):42–52.
https://doi.org/10.1016/s2213-2600(14)70239-5.
Article
34. Moser A, Reinikainen M, Jakob SM, Selander T, Pettila V, Kiiski O, et al. Mortality prediction in intensive care units including premorbid functional status improved performance and internal validity. J Clin Epidemiol. 2022; 142:230–41.
https://doi.org/10.1016/j.jclinepi.2021.11.028.
Article
40. Safaei N, Safaei B, Seyedekrami S, Talafidaryani M, Masoud A, Wang S, et al. E-CatBoost: an efficient machine learning framework for predicting ICU mortality using the eICU Collaborative Research Database. PLoS One. 2022; 17(5):e0262895.
https://doi.org/10.1371/journal.pone.0262895.
Article
42. Zhao S, Tang G, Liu P, Wang Q, Li G, Ding Z.Improving mortality risk prediction with routine clinical data: a practical machine learning model based on eICU patients. Int J Gen Med. 2023; 16:3151–61.
https://doi.org/10.2147/ijgm.s391423.
Article
45. Marafino BJ, Park M, Davies JM, Thombley R, Luft HS, Sing DC, et al. Validation of prediction models for critical care outcomes using natural language processing of electronic health record data. JAMA Netw Open. 2018; 1(8):e185097.
https://doi.org/10.1001/jamanet-workopen.2018.5097.
Article
47. Shapley LS. A value for n-person games. Kuhn AW, Tucker HW, editors. Contributions to the theory of games. II. Princeton (NJ): Princeton University Press;1953. p. 307–18.
48. Li L, Liu G. In-hospital mortality prediction for ICU patients on large healthcare MIMIC datasets using class imbalance learning. In : Proceedings of 2020, 5th IEEE International Conference on Big Data Analytics (ICBDA); 2020 May 8–11; Xiamen, China. p. 90–3.
https://doi.org/10.1109/ICBDA49040.2020.9101272.
Article
50. Vasilevskis EE, Kuzniewicz MW, Cason BA, Lane RK, Dean ML, Clay T, et al. Mortality probability model III and simplified acute physiology score II: assessing their value in predicting length of stay and comparison to APACHE IV. Chest. 2009; 136(1):89–101.
https://doi.org/10.1378/chest.08-2591.
Article
52. Bacchi S, Tan Y, Oakden-Rayner L, Jannes J, Kleinig T, Koblar S.Machine learning in the prediction of medical inpatient length of stay. Intern Med J. 2022; 52(2):176–85.
https://doi.org/10.1111/imj.14962.
Article
54. Houthooft R, Ruyssinck J, van der Herten J, Stijven S, Couckuyt I, Gadeyne B, et al. Predictive modelling of survival and length of stay in critically ill patients using sequential organ failure scores. Artif Intell Med. 2015; 63(3):191–207.
https://doi.org/10.1016/j.artmed.2014.12.009.
Article
55. Li C, Chen L, Feng J, Wu D, Zimeng W, Liu J, et al. Prediction of length of stay on the intensive care unit based on least absolute shrinkage and selection operator. IEEE Access. 2019; 7:110710–21.
https://doi.org/10.1109/ACCESS.2019.2934166.
Article
56. Sotoodeh M, Ho JC.Improving length of stay prediction using a hidden Markov model. AMIA Jt Summits Transl Sci Proc. 2019; 2019:425–34.
57. Gentimis T, Ala’J A, Durante A, Cook K, Steele R. Predicting hospital length of stay using neural networks on MIMIC III data. In : Proceedings of 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing, 15th International Conference on Pervasive Intelligence and Computing, 3rd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech); 2017 Nov 6–10; Orlando, FL. p. 1194–201.
https://doi.org/10.1109/DASCPICom-DataCom-CyberSciTec.2017.191.
Article
59. Muhlestein WE, Akagi DS, Davies JM, Chambless LB.Predicting inpatient length of stay after brain tumor surgery: developing machine learning ensembles to improve predictive performance. Neurosurgery. 2019; 85(3):384–93.
https://doi.org/10.1093/neuros/nyy343.
Article
61. Alghatani K, Ammar N, Rezgui A, Shaban-Nejad A.Predicting intensive care unit length of stay and mortality using patient vital signs: machine learning model development and validation. JMIR Med Inform. 2021; 9(5):e21347.
https://doi.org/10.2196/21347.
Article
62. Peres IT, Hamacher S, Cyrino Oliveira FL, Bozza FA, Salluh JI.Data-driven methodology to predict the ICU length of stay: a multicentre study of 99,492 admissions in 109 Brazilian units. Anaesth Crit Care Pain Med. 2022; 41(6):101142.
https://doi.org/10.1016/j.accpm.2022.101142.
Article
63. Weissman GE, Hubbard RA, Ungar LH, Harhay MO, Greene CS, Himes BE, et al. Inclusion of unstructured clinical text improves early prediction of death or prolonged ICU stay. Crit Care Med. 2018; 46(7):1125–32.
https://doi.org/10.1097/ccm.0000000000003148.
Article
64. Williford E, Haley V, McNutt LA, Lazariu V.Dealing with highly skewed hospital length of stay distributions: the use of Gamma mixture models to study delivery hospitalizations. PLoS One. 2020; 15(4):e0231825.
https://doi.org/10.1371/journal.pone.0231825.
Article
66. Sayed M, Riano D, Villar J.Predicting duration of mechanical ventilation in acute respiratory distress syndrome using supervised machine learning. J Clin Med. 2021; 10(17):3824.
https://doi.org/10.3390/jcm10173824.
Article
68. Kulkarni AR, Athavale AM, Sahni A, Sukhal S, Saini A, Itteera M, et al. Deep learning model to predict the need for mechanical ventilation using chest X-ray images in hospitalised patients with COVID-19. BMJ Innov. 2021; 7(2):261–70.
https://doi.org/10.1136/bmjinnov-2020-000593.
Article
70. Douville NJ, Douville CB, Mentz G, Mathis MR, Pancaro C, Tremper KK, et al. Clinically applicable approach for predicting mechanical ventilation in patients with COVID-19. Br J Anaesth. 2021; 126(3):578–89.
https://doi.org/10.1016/j.bja.2020.11.034.
Article
71. Karri R, Chen YP, Burrell AJC, Penny-Dimri JC, Broadley T, Trapani T, et al. Machine learning predicts the short-term requirement for invasive ventilation among Australian critically ill COVID-19 patients. Plops One. 2022; 17(10):e0276509.
https://doi.org/10.1371/journal.pone.0276509.
Article
73. Sauer CM, Dam TA, Celi LA, Faltys M, de la Hoz MAA, Adhikari L, et al. Systematic review and comparison of publicly available ICU data sets: a decision guide for clinicians and data scientists. Crit Care Med. 2022; 50(6):e581–8.
https://doi.org/10.1097/ccm.0000000000005517.
Article