1. Abi-Aad KR, Anderies BJ, Welz ME, Bendok BR. Machine Learning as a potential solution for shift during stereotactic brain surgery. Neurosurgery. 82:E102–E103. 2018.
Article
2. Akbari H, Rathore S, Bakas S, Nasrallah MP, Shukla G, Mamourian E, et al. Histopathology-validated machine learning radiographic biomarker for noninvasive discrimination between true progression and pseudoprogression in glioblastoma. Cancer. 126:2625–2636. 2020.
Article
4. Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 8:19–32. 2005.
Article
5. Arle JE, Morriss C, Wang ZJ, Zimmerman RA, Phillips PG, Sutton LN. Prediction of posterior fossa tumor type in children by means of magnetic resonance image properties, spectroscopy, and neural networks. J Neurosurg. 86:755–761. 1997.
Article
6. Banzato T, Causin F, Della Puppa A, Cester G, Mazzai L, Zotti A. Accuracy of deep learning to differentiate the histopathological grading of meningiomas on MR images: a preliminary study. J Magn Reson Imaging. 50:1152–1159. 2019.
Article
7. Bernardo A. Virtual reality and simulation in neurosurgical training. World Neurosurg. 106:1015–1029. 2017.
Article
8. Birkmeyer JD, Stukel TA, Siewers AE, Goodney PP, Wennberg DE, Lucas FL. Surgeon volume and operative mortality in the united states. N Engl J Med. 349:2117–2127. 2003.
Article
9. Carlson ML, Link MJ. Vestibular schwannomas. N Engl J Med. 384:1335–1348. 2021.
Article
10. Christopher AS, Caruso D. Promoting health as a human right in the post-ACA united states. AMA J Ethics. 17:958–965. 2015.
Article
11. Dasgupta A, Gupta T, Pungavkar S, Shirsat N, Epari S, Chinnaswamy G, et al. Nomograms based on preoperative multiparametric magnetic resonance imaging for prediction of molecular subgrouping in medulloblastoma: results from a radiogenomics study of 111 patients. Neuro Oncol. 21:115–124. 2019.
Article
12. Dewan MC, Rattani A, Fieggen G, Arraez MA, Servadei F, Boop FA, et al. Global neurosurgery: the current capacity and deficit in the provision of essential neurosurgical care. Executive summary of the global neurosurgery initiative at the program in global surgery and social change. J Neurosurg. 130:1055–1064. 2018.
Article
14. Dorsey JF, Salinas RD, Dang M : Chapter 63: cancer of the central nervous system in Niederhuber JE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE (eds) : Abeloff’s Clinical Oncology, ed 6. Philadelphia : Elsevier, 2020, pp906-967.
15. Emblem KE, Pinho MC, Zöllner FG, Due-Tonnessen P, Hald JK, Schad LR, et al. A generic support vector machine model for preoperative glioma survival associations. Radiology. 275:228–234. 2015.
Article
16. Fabelo H, Ortega S, Ravi D, Kiran BR, Sosa C, Bulters D, et al. Spatiospectral classification of hyperspectral images for brain cancer detection during surgical operations. PLoS One. 13:e0193721. 2018.
Article
17. Frisken S, Luo M, Machado I, Unadkat P, Juvekar P, Bunevicius A, et al. Preliminary results comparing thin plate splines with finite element methods for modeling brain deformation during neurosurgery using intraoperative ultrasound. Proc SPIE Int Soc Opt Eng. 10951:1095120. 2019.
18. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg. 268:70–76. 2018.
Article
19. He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 25:30–36. 2019.
Article
20. Hollon TC, Pandian B, Adapa AR, Urias E, Save AV, Khalsa SSS. Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nat Med. 26:52–58. 2020.
Article
21. Hu LS, Ning S, Eschbacher JM, Gaw N, Dueck AC, Smith KA, et al. Multi-parametric MRI and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma. PLoS One. 10:e0141506. 2015.
Article
22. Jakola AS, Sagberg LM, Gulati S, Solheim O. Advancements in predicting outcomes in patients with glioma: a surgical perspective. Expert Rev Anticancer Ther. 20:167–177. 2020.
Article
23. Kamen A, Sun S, Wan S, Kluckner S, Chen T, Gigler AM, et al. Automatic tissue differentiation based on confocal endomicroscopic images for intraoperative guidance in neurosurgery. Biomed Res Int. 2016:6183218. 2016.
Article
24. Karhade AV, Ahmed AK, Pennington Z, Chara A, Schilling A, Thio QCBS, et al. External validation of the SORG 90-day and 1-year machine learning algorithms for survival in spinal metastatic disease. Spine J. 20:14–21. 2020.
Article
25. Karhade AV, Thio QCBS, Ogink PT, Shah AA, Bono CM, Oh KS, et al. Development of machine learning algorithms for prediction of 30-day mortality after surgery for spinal metastasis. Neurosurgery. 85:E83–E91. 2019.
Article
26. Ker J, Bai Y, Lee HY, Rao J, Wang L. Automated brain histology classification using machine learning. J Clin Neurosci. 66:239–245. 2019.
Article
27. Khalsa SSS, Hollon TC, Adapa A, Urias E, Srinivasan S, Jairath N, et al. Automated histologic diagnosis of CNS tumors with machine learning. CNS Oncol. 9:CNS56. 2020.
Article
28. Krivoshapkin AL, Sergeev GS, Kalneus LE, Gaytan AS, Murtazin VI, Kurbatov VP, et al. New software for preoperative diagnostics of meningeal tumor histologic types. World Neurosurg. 90:123–132. 2016.
Article
29. Kwoh YS, Hou J, Jonckheere EA, Hayati S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 35:153–160. 1988.
Article
30. Lee JH, Han IH, Kim DH, Yu S, Lee IS, Song YS, et al. Spine computed tomography to magnetic resonance image synthesis using generative adversarial networks : a preliminary study. J Korean Neurosurg Soc. 63:386–396. 2020.
Article
31. Li L, Wang K, Ma X, Liu Z, Wang S, Du J, et al. Radiomic analysis of multiparametric magnetic resonance imaging for differentiating skull base chordoma and chondrosarcoma. Eur J Radiol. 118:81–87. 2019.
Article
32. Li Z, Wang Y, Yu J, Shi Z, Guo Y, Chen L, et al. Low-grade glioma segmentation based on CNN with fully connected CRF. J Healthc Eng. 2017:9283480. 2017.
Article
33. Manni F, Van der Sommen F, Fabelo H, Zinger S, Shan C, Edström E, et al. Hyperspectral imaging for glioblastoma surgery: improving tumor identification using a deep spectral-spatial approach. Sensors (Basel). 20:6955. 2020.
Article
34. Marcus AP, Marcus HJ, Camp SJ, Nandi D, Kitchen N, Thorne L. Improved prediction of surgical resectability in patients with glioblastoma using an artificial neural network. Sci Rep. 10:5143. 2020.
Article
35. Mathur A, Jain N, Kesavadas C, Thomas B, Kapilamoorthy TR. Imaging of skull base pathologies: role of advanced magnetic resonance imaging techniques. Neuroradiol J. 28:426–437. 2015.
Article
36. Mattei TA, Rodriguez AH, Sambhara D, Mendel E. Current state-of-the-art and future perspectives of robotic technology in neurosurgery. Neurosurg Rev. 37:357–366. 2014.
Article
37. McGrath H, Li P, Dorent R, Bradford R, Saeed S, Bisdas S, et al. Manual segmentation versus semi-automated segmentation for quantifying vestibular schwannoma volume on MRI. Int J Comput Assist Radiol Surg. 15:1445–1455. 2020.
Article
38. Nam KH, Seo I, Kim DH, Lee JI, Choi BK, Han IH. Machine learning model to predict osteoporotic spine with hounsfield units on lumbar computed tomography. J Korean Neurosurg Soc. 62:442–449. 2019.
Article
40. Nematollahi M, Jajroudi M, Arbabi F, Azarhomayoun A, Azimifar Z. The benefits of decision tree to predict survival in patients with glioblastoma multiforme with the use of clinical and imaging features. Asian J Neurosurg. 13:697–702. 2018.
Article
41. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 372:n71. 2021.
42. Palmisciano P, Jamjoom AAB, Taylor D, Stoyanov D, Marcus HJ. Attitudes of patients and their relatives toward artificial intelligence in neurosurgery. World Neurosurg. 138:e627–e633. 2020.
Article
43. Peng L, Parekh V, Huang P, Lin DD, Sheikh K, Baker B, et al. Distinguishing true progression from radionecrosis after stereotactic radiation therapy for brain metastases with machine learning and radiomics. Int J Radiat Oncol Biol Phys. 102:1236–1243. 2018.
Article
44. Pope WB. Brain metastases: neuroimaging. Handb Clin Neurol. 149:89–112. 2018.
Article
45. Racine E, Boehlen W, Sample M. Healthcare uses of artificial intelligence: challenges and opportunities for growth. Healthc Manage Forum. 32:272–275. 2019.
Article
46. Scaringi C, Agolli L, Minniti G. Technical advances in radiation therapy for brain tumors. Anticancer Res. 38:6041–6045. 2018.
Article
47. Schlich T. The art and science of surgery: innovation and concepts of medical practice in operative fracture care, 1960s-1970s. Sci Technol Human Values. 32:65–87. 2007.
Article
48. Senders JT, Arnaout O, Karhade AV, Dasenbrock HH, Gormley WB, Broekman ML, et al. Natural and artificial intelligence in neurosurgery: a systematic review. Neurosurgery. 83:181–192. 2018.
Article
49. Senders JT, Zaki MM, Karhade AV, Chang B, Gormley WB, Broekman ML, et al. An introduction and overview of machine learning in neurosurgical care. Acta Neurochir (Wien). 160:29–38. 2018.
Article
50. Shaikhouni A, Elder JB. Computers and neurosurgery. World Neurosurg. 78:392–398. 2012.
Article
51. Shen Z, Xie Y, Shang X, Xiong G, Chen S, Yao Y, et al. The manufacturing procedure of 3D printed models for endoscopic endonasal transsphenoidal pituitary surgery. Technol Health Care. 28:131–150. 2020.
Article
52. Shu C, Wang Q, Yan X, Wang J. Whole-genome expression microarray combined with machine learning to identify prognostic biomarkers for high-grade glioma. J Mol Neurosci. 64:491–500. 2018.
Article
53. Siyar S, Azarnoush H, Rashidi S, Del Maestro RF. Tremor assessment during virtual reality brain tumor resection. J Surg Educ. 77:643–651. 2020.
Article
54. Slosarek K, Bekman B, Wendykier J, Grządziel A, Fogliata A, Cozzi L. In silico assessment of the dosimetric quality of a novel, automated radiation treatment planning strategy for linac-based radiosurgery of multiple brain metastases and a comparison with robotic methods. Radiat Oncol. 13:41. 2018.
Article
55. Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 318:2306–2316. 2017.
Article
56. Stupp R, Wong ET, Kanner AA, Steinberg D, Engelhard H, Heidecke V, et al. NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer. 48:2192–2202. 2012.
Article
57. Van Niftrik CHB, Van der Wouden F, Staartjes VE, Fierstra J, Stienen MN, Akeret K, et al. Machine learning algorithm identifies patients at high risk for early complications after intracranial tumor surgery: registrybased cohort study. Neurosurgery. 85:E756–E764. 2019.
Article
58. Winkler-Schwartz A, Yilmaz R, Mirchi N, Bissonnette V, Ledwos N, Siyar S, et al. Machine learning identification of surgical and operative factors associated with surgical expertise in virtual reality simulation. JAMA Netw Open. 2:e198363. 2019.
Article
59. Yan J, Liu L, Wang W, Zhao Y, Li KK, Li K, et al. Radiomic features from multi-parameter MRI combined with clinical parameters predict molecular subgroups in patients with medulloblastoma. Front Oncol. 10:558162. 2020.
Article
60. Yock AD, Kim GY. Technical note: using K-means clustering to determine the number and position of isocenters in MLC-based multiple target intracranial radiosurgery. J Appl Clin Med Phys. 18:351–357. 2017.
61. Zini G. Artificial intelligence in hematology. Hematology. 10:393–400. 2005.
Article