Korean J Gastroenterol.  2023 Oct;82(4):171-179. 10.4166/kjg.2023.097.

Helicobacter pylori-associated Chronic Atrophic Gastritis and Progression of Gastric Carcinogenesis

Affiliations
  • 1Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea

Abstract

Chronic inflammation due to a Helicobacter pylori (H. pylori) infection is a representative cause of gastric cancer that can promote gastric carcinogenesis by abnormally activating immune cells and increasing the inflammatory cytokines levels. H. pylori infections directly cause DNA double-strand breaks in gastric epithelial cells and genetic damage by increasing the enzymatic activity of cytidine deaminase. Eventually, gastric cancer is induced through dysplasia. Hypermethylation of tumor suppressor genes is an important cause of gastric cancer because of a H. pylori infection. In addition, the changes in gastric microbiota and the mucosal inflammatory changes associated with a co-infection with the Epstein-Barr virus are associated with gastric cancer development. DNA damage induced by H. pylori and the subsequent responses of gastric stem cells have implications for gastric carcinogenesis. Although the pathogenesis of H. pylori has been established, many uncertainties remain, requiring more study.

Keyword

Helicobacter pylori; Inflammation; Gastric cancer

Figure

  • Fig. 1 Metachronous gastric cancer after Helicobacter pylori eradication. (A) A 2.0 cm elevated mucosal lesion with a central depression (arrow) is identified on the anterior wall of the proximal antrum on the initial endoscopy. After endoscopic submucosal dissection, successful Helicobacter pylori is performed. (B) After six years of endoscopic treatment, surveillance endoscopy shows a surgical scar on the anterior wall of the proximal antrum. A 1.4 cm elevated mucosal lesion with central depression is shown on the greater curvature side of the high body. It is a metachronous lesion.


Reference

1. Hooi JKY, Lai WY, Ng WK, et al. 2017; Global prevalence of Helicobacter pylori infection: Systematic review and meta-analysis. Gastroenterology. 153:420–429. DOI: 10.1053/j.gastro.2017.04.022. PMID: 28456631.
Article
2. Uemura N, Okamoto S, Yamamoto S, et al. 2001; Helicobacter pylori infection and the development of gastric cancer. N Engl J Med. 345:784–789. DOI: 10.1056/NEJMoa001999. PMID: 11556297.
Article
3. Ohata H, Kitauchi S, Yoshimura N, et al. 2004; Progression of chronic atrophic gastritis associated with Helicobacter pylori infection increases risk of gastric cancer. Int J Cancer. 109:138–143. DOI: 10.1002/ijc.11680. PMID: 14735480.
Article
4. Kawamura M, Uedo N, Koike T, et al. 2022; Kyoto classification risk scoring system and endoscopic grading of gastric intestinal metaplasia for gastric cancer: Multicenter observation study in Japan. Dig Endosc. 34:508–516. DOI: 10.1111/den.14114. PMID: 34415621.
Article
5. Kim GH. 2023; Clinical Application of the Kyoto classification of gastritis. Korean J Helicobacter Up Gastrointest Res. 23:89–98. DOI: 10.7704/kjhugr.2023.0013.
Article
6. Senchukova MA. 2022; Helicobacter pylori and gastric cancer progression. Curr Microbiol. 79:383. DOI: 10.1007/s00284-022-03089-9. PMID: 36329283.
Article
7. Dooyema SDR, Noto JM, Wroblewski LE, et al. 2022; Helicobacter pylori actively suppresses innate immune nucleic acid receptors. Gut Microbes. 14:2105102. DOI: 10.1080/19490976.2022.2105102. PMID: 35905376. PMCID: PMC9341374.
8. Maubach G, Vieth M, Boccellato F, Naumann M. 2022; Helicobacter pylori-induced NF-κB: trailblazer for gastric pathophysiology. Trends Mol Med. 28:210–222. DOI: 10.1016/j.molmed.2021.12.005. PMID: 35012886.
Article
9. Araújo GRL, Marques HS, Santos MLC, et al. 2022; Helicobacter pylori infection: How does age influence the inflammatory pattern? World J Gastroenterol. 28:402–411. DOI: 10.3748/wjg.v28.i4.402. PMID: 35125826. PMCID: PMC8790560.
Article
10. Yan L, Chen Y, Chen F, et al. 2022; Effect of Helicobacter pylori eradication on gastric cancer prevention: Updated report from a randomized controlled trial with 26.5 years of follow-up. Gastroenterology. 163:154–162.e3. DOI: 10.1053/j.gastro.2022.03.039. PMID: 35364066.
Article
11. Hoffmann W. 2008; Regeneration of the gastric mucosa and its glands from stem cells. Curr Med Chem. 15:3133–3144. DOI: 10.2174/092986708786848587. PMID: 19075658.
Article
12. Suganuma M, Watanabe T, Sueoka E, Lim IK, Fujiki H. 2021; Role of TNF-α-inducing protein secreted by Helicobacter pylori as a tumor promoter in gastric cancer and emerging preventive strategies. Toxins (Basel). 13:181. DOI: 10.3390/toxins13030181. PMID: 33804551. PMCID: PMC7999756.
Article
13. Di Mario F, Crafa P, Barchi A, et al. 2022; Pepsinogen II in gastritis and Helicobacter pylori infection. Helicobacter. 27:e12872. DOI: 10.1111/hel.12872. PMID: 34997989.
Article
14. Goldenring JR. 2018; Pyloric metaplasia, pseudopyloric metaplasia, ulcer-associated cell lineage and spasmolytic polypeptide-expressing metaplasia: reparative lineages in the gastrointestinal mucosa. J Pathol. 245:132–137. DOI: 10.1002/path.5066. PMID: 29508389. PMCID: PMC6026529.
Article
15. Yang H, Zhou X, Hu B. 2022; The 'reversibility' of chronic atrophic gastritis after the eradication of Helicobacter pylori. Postgrad Med. 134:474–479. DOI: 10.1080/00325481.2022.2063604. PMID: 35382697.
Article
16. Nephew KP, Huang TH. 2003; Epigenetic gene silencing in cancer initiation and progression. Cancer Lett. 190:125–133. DOI: 10.1016/S0304-3835(02)00511-6. PMID: 12565166.
Article
17. Esteller M, Herman JG. 2002; Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol. 196:1–7. DOI: 10.1002/path.1024. PMID: 11748635.
Article
18. Chan AO, Lam SK, Wong BC, et al. 2003; Promoter methylation of E-cadherin gene in gastric mucosa associated with Helicobacter pylori infection and in gastric cancer. Gut. 52:502–506. DOI: 10.1136/gut.52.4.502. PMID: 12631658. PMCID: PMC1773595.
Article
19. Leung WK, Man EP, Yu J, et al. 2006; Effects of Helicobacter pylori eradication on methylation status of E-cadherin gene in noncancerous stomach. Clin Cancer Res. 12:3216–3221. DOI: 10.1158/1078-0432.CCR-05-2442. PMID: 16707623.
Article
20. Grady WM, Willis J, Guilford PJ, et al. 2000; Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat Genet. 26:16–17. DOI: 10.1038/79120. PMID: 10973239.
Article
21. Tamura G, Yin J, Wang S, et al. 2000; E-Cadherin gene promoter hypermethylation in primary human gastric carcinomas. J Natl Cancer Inst. 92:569–573. DOI: 10.1093/jnci/92.7.569. PMID: 10749913.
Article
22. Shi J, Zhang G, Yao D, et al. 2012; Prognostic significance of aberrant gene methylation in gastric cancer. Am J Cancer Res. 2:116–129.
23. Miao R, Guo X, Zhi Q, et al. 2013; VEZT, a novel putative tumor suppressor, suppresses the growth and tumorigenicity of gastric cancer. PLoS One. 8:e74409. DOI: 10.1371/journal.pone.0074409. PMID: 24069310. PMCID: PMC3775783.
Article
24. Wang Y, Huang LH, Xu CX, et al. 2014; Connexin 32 and 43 promoter methylation in Helicobacter pylori-associated gastric tumorigenesis. World J Gastroenterol. 20:11770–11779. DOI: 10.3748/wjg.v20.i33.11770. PMID: 25206281. PMCID: PMC4155367.
Article
25. Kaneda A, Wakazono K, Tsukamoto T, et al. 2004; Lysyl oxidase is a tumor suppressor gene inactivated by methylation and loss of heterozygosity in human gastric cancers. Cancer Res. 64:6410–6415. DOI: 10.1158/0008-5472.CAN-04-1543. PMID: 15374948.
Article
26. Kang GH, Lee S, Cho NY, et al. 2008; DNA methylation profiles of gastric carcinoma characterized by quantitative DNA methylation analysis. Lab Invest. 88:161–170. DOI: 10.1038/labinvest.3700707. PMID: 18158559.
Article
27. Nardone G, Compare D. 2008; Epigenetic alterations due to diet and Helicobacter pylori infection in gastric carcinogenesis. Expert Rev Gastroenterol Hepatol. 2:243–248. DOI: 10.1586/17474124.2.2.243. PMID: 19072359.
Article
28. Shu XS, Geng H, Li L, et al. 2011; The epigenetic modifier PRDM5 functions as a tumor suppressor through modulating WNT/β-catenin signaling and is frequently silenced in multiple tumors. PLoS One. 6:e27346. DOI: 10.1371/journal.pone.0027346. PMID: 22087297. PMCID: PMC3210799.
Article
29. Joo JK, Kim SH, Kim HG, et al. 2010; CpG methylation of transcription factor 4 in gastric carcinoma. Ann Surg Oncol. 17:3344–3353. DOI: 10.1245/s10434-010-1131-z. PMID: 20585880.
Article
30. Perri F, Cotugno R, Piepoli A, et al. 2007; Aberrant DNA methylation in non-neoplastic gastric mucosa of H. Pylori infected patients and effect of eradication. Am J Gastroenterol. 102:1361–1371. DOI: 10.1111/j.1572-0241.2007.01284.x. PMID: 17509026.
Article
31. Sepulveda AR, Yao Y, Yan W, et al. 2010; CpG methylation and reduced expression of O6-methylguanine DNA methyltransferase is associated with Helicobacter pylori infection. Gastroenterology. 138:1836–1844. DOI: 10.1053/j.gastro.2009.12.042. PMID: 20044995.
Article
32. Kim KK, Kim HB. 2009; Protein interaction network related to Helicobacter pylori infection response. World J Gastroenterol. 15:4518–4528. DOI: 10.3748/wjg.15.4518. PMID: 19777610. PMCID: PMC2751996.
Article
33. Sugita H, Iida S, Inokuchi M, et al. 2011; Methylation of BNIP3 and DAPK indicates lower response to chemotherapy and poor prognosis in gastric cancer. Oncol Rep. 25:513–518. DOI: 10.3892/or.2010.1085. PMID: 21152877.
Article
34. Yan J, Zhang M, Zhang J, Chen X, Zhang X. 2011; Helicobacter pylori infection promotes methylation of WWOX gene in human gastric cancer. Biochem Biophys Res Commun. 408:99–102. DOI: 10.1016/j.bbrc.2011.03.127. PMID: 21466786.
Article
35. Kang GH, Lee S, Kim JS, Jung HY. 2003; Profile of aberrant CpG island methylation along the multistep pathway of gastric carcinogenesis. Lab Invest. 83:635–641. DOI: 10.1097/01.LAB.0000067481.08984.3F. PMID: 12746473.
Article
36. Yu J, Cheng YY, Tao Q, et al. 2009; Methylation of protocadherin 10, a novel tumor suppressor, is associated with poor prognosis in patients with gastric cancer. Gastroenterology. 136:640–651. e1. DOI: 10.1053/j.gastro.2008.10.050. PMID: 19084528.
Article
37. Hu X, Sui X, Li L, et al. 2013; Protocadherin 17 acts as a tumour suppressor inducing tumour cell apoptosis and autophagy, and is frequently methylated in gastric and colorectal cancers. J Pathol. 229:62–73. DOI: 10.1002/path.4093. PMID: 22926751.
Article
38. Cheng YY, Yu J, Wong YP, et al. 2007; Frequent epigenetic inactivation of secreted frizzled-related protein 2 (SFRP2) by promoter methylation in human gastric cancer. Br J Cancer. 97:895–901. DOI: 10.1038/sj.bjc.6603968. PMID: 17848950. PMCID: PMC2360406.
Article
39. Peterson AJ, Menheniott TR, O'Connor L, et al. 2010; Helicobacter pylori infection promotes methylation and silencing of trefoil factor 2, leading to gastric tumor development in mice and humans. Gastroenterology. 139:2005–2017. DOI: 10.1053/j.gastro.2010.08.043. PMID: 20801119. PMCID: PMC3970568.
Article
40. Katayama Y, Takahashi M, Kuwayama H. 2009; Helicobacter pylori causes runx3 gene methylation and its loss of expression in gastric epithelial cells, which is mediated by nitric oxide produced by macrophages. Biochem Biophys Res Commun. 388:496–500. DOI: 10.1016/j.bbrc.2009.08.003. PMID: 19665002.
Article
41. Lu XX, Yu JL, Ying LS, et al. 2012; Stepwise cumulation of RUNX3 methylation mediated by Helicobacter pylori infection contributes to gastric carcinoma progression. Cancer. 118:5507–5517. DOI: 10.1002/cncr.27604. PMID: 22576578.
Article
42. Wang LJ, Jin HC, Wang X, et al. 2009; ZIC1 is downregulated through promoter hypermethylation in gastric cancer. Biochem Biophys Res Commun. 379:959–963. DOI: 10.1016/j.bbrc.2008.12.180. PMID: 19135984.
Article
43. Cheng AS, Li MS, Kang W, et al. 2013; Helicobacter pylori causes epigenetic dysregulation of FOXD3 to promote gastric carcinogenesis. Gastroenterology. 144:122–133.e9. DOI: 10.1053/j.gastro.2012.10.002. PMID: 23058321.
Article
44. Bussière FI, Michel V, Mémet S, et al. 2010; H. pylori-induced promoter hypermethylation downregulates USF1 and USF2 transcription factor gene expression. Cell Microbiol. 12:1124–1133. DOI: 10.1111/j.1462-5822.2010.01457.x. PMID: 20180799.
Article
45. Wen XZ, Akiyama Y, Pan KF, et al. 2010; Methylation of GATA-4 and GATA-5 and development of sporadic gastric carcinomas. World J Gastroenterol. 16:1201–1208. DOI: 10.3748/wjg.v16.i10.1201. PMID: 20222162. PMCID: PMC2839171.
Article
46. Muhammad JS, Nanjo S, Ando T, et al. 2017; Autophagy impairment by Helicobacter pylori-induced methylation silencing of MAP1LC3Av1 promotes gastric carcinogenesis. Int J Cancer. 140:2272–2283. DOI: 10.1002/ijc.30657. PMID: 28214334.
Article
47. Tanaka S, Nagashima H, Uotani T, Graham DY, Yamaoka Y. 2017; Autophagy-related genes in Helicobacter pylori infection. Helicobacter. 22:e12376. DOI: 10.1111/hel.12376. PMID: 28111844. PMCID: PMC5422124.
Article
48. Wang H, Duan XL, Qi XL, et al. 2017; Concurrent hypermethylation of SFRP2 and DKK2 activates the Wnt/β-Catenin pathway and is associated with poor prognosis in patients with gastric cancer. Mol Cells. 40:45–53. DOI: 10.14348/molcells.2017.2245. PMID: 28152305. PMCID: PMC5303888.
Article
49. Oshimo Y, Kuraoka K, Nakayama H, et al. 2004; Epigenetic inactivation of SOCS-1 by CpG island hypermethylation in human gastric carcinoma. Int J Cancer. 112:1003–1009. DOI: 10.1002/ijc.20521. PMID: 15386345.
Article
50. Oue N, Mitani Y, Motoshita J, et al. 2006; Accumulation of DNA methylation is associated with tumor stage in gastric cancer. Cancer. 106:1250–1259. DOI: 10.1002/cncr.21754. PMID: 16475210.
Article
51. Yu J, Tao Q, Cheng YY, et al. 2009; Promoter methylation of the Wnt/beta-catenin signaling antagonist Dkk-3 is associated with poor survival in gastric cancer. Cancer. 115:49–60. DOI: 10.1002/cncr.23989. PMID: 19051296.
Article
52. Hibi K, Goto T, Kitamura YH, et al. 2010; Methylation of the TFPI2 gene is frequently detected in advanced gastric carcinoma. Anticancer Res. 30:4131–4133.
53. Choi JM, Kim SG. 2021; Effect of Helicobacter pylori eradication on epigenetic changes in gastric cancer-related genes. Korean J Helicobacter Up Gastrointest Res. 21:256–266. DOI: 10.7704/kjhugr.2021.0042.
Article
54. Tahara T, Arisawa T. 2015; DNA methylation as a molecular biomarker in gastric cancer. Epigenomics. 7:475–486. DOI: 10.2217/epi.15.4. PMID: 26077432.
Article
55. Lee JR, Chung WC, Kim JD, et al. 2011; Differential LINE-1 hypomethylation of gastric low-grade dysplasia from high grade dysplasia and intramucosal cancer. Gut Liver. 5:149–153. DOI: 10.5009/gnl.2011.5.2.149. PMID: 21814593. PMCID: PMC3140658.
Article
56. Kim EJ, Chung WC, Kim DB, et al. 2016; Long interspersed nuclear element (LINE)-1 methylation level as a molecular marker of early gastric cancer. Dig Liver Dis. 48:1093–1097. DOI: 10.1016/j.dld.2016.06.002. PMID: 27375206.
Article
57. Capparelli R, Iannelli D. 2022; Epigenetics and Helicobacter pylori. Int J Mol Sci. 23:1759. DOI: 10.3390/ijms23031759. PMID: 35163679. PMCID: PMC8836069.
Article
58. Kubota Y, Tanabe S, Azuma M, et al. 2021; Predictive significance of promoter DNA methylation of cysteine dioxygenase type 1 (CDO1) in metachronous gastric cancer. J Gastric Cancer. 21:379–391. DOI: 10.5230/jgc.2021.21.e35. PMID: 35079440. PMCID: PMC8753284.
Article
59. Huang G, Wang S, Wang J, et al. 2022; Bile reflux alters the profile of the gastric mucosa microbiota. Front Cell Infect Microbiol. 12:940687. DOI: 10.3389/fcimb.2022.940687. PMID: 36159635. PMCID: PMC9500345.
Article
60. Bessède E, Mégraud F. 2022; Microbiota and gastric cancer. Semin Cancer Biol. 86:11–17. DOI: 10.1016/j.semcancer.2022.05.001. PMID: 35533800.
Article
61. Guo Y, Cao XS, Guo GY, Zhou MG, Yu B. 2022; Effect of Helicobacter pylori eradication on human gastric microbiota: A systematic review and meta-analysis. Front Cell Infect Microbiol. 12:899248. DOI: 10.3389/fcimb.2022.899248. PMID: 35601105. PMCID: PMC9114356.
Article
62. Liu C, Ng SK, Ding Y, et al. 2022; Meta-analysis of mucosal microbiota reveals universal microbial signatures and dysbiosis in gastric carcinogenesis. Oncogene. 41:3599–3610. DOI: 10.1038/s41388-022-02377-9. PMID: 35680985. PMCID: PMC9270228.
Article
63. Png CW, Lee WJJ, Chua SJ, et al. 2022; Mucosal microbiome associates with progression to gastric cancer. Theranostics. 12:48–58. DOI: 10.7150/thno.65302. PMID: 34987633. PMCID: PMC8690935.
Article
64. Li Y, Jiang L, Li Z, et al. 2022; Differences in gastric microbiota and mucosal function between patients with chronic superficial gastritis and intestinal metaplasia. Front Microbiol. 13:950325. DOI: 10.3389/fmicb.2022.950325. PMID: 36466659. PMCID: PMC9712754.
Article
65. Ignatova E, Seriak D, Fedyanin M, et al. 2020; Epstein-Barr virus-associated gastric cancer: disease that requires special approach. Gastric Cancer. 23:951–960. DOI: 10.1007/s10120-020-01095-z. PMID: 32514646.
Article
66. Song HJ, Srivastava A, Lee J, et al. 2010; Host inflammatory response predicts survival of patients with Epstein-Barr virus-associated gastric carcinoma. Gastroenterology. 139:84–92.e2. DOI: 10.1053/j.gastro.2010.04.002. PMID: 20398662.
Article
67. Naseem M, Barzi A, Brezden-Masley C, et al. 2018; Outlooks on Epstein-Barr virus associated gastric cancer. Cancer Treat Rev. 66:15–22. DOI: 10.1016/j.ctrv.2018.03.006. PMID: 29631196. PMCID: PMC5964025.
Article
68. Noh JH, Shin JY, Lee JH, et al. 2023; Clinical significance of Epstein-Barr Virus and Helicobacter pylori infection in gastric carcinoma. Gut Liver. 17:69–77. DOI: 10.5009/gnl210593. PMID: 35611669. PMCID: PMC9840931.
Article
69. Lee JH, Kim S, Han S, et al. 2022; p57Kip2 imposes the reserve stem cell state of gastric chief cells. Cell Stem Cell. 29:826–839. e9. DOI: 10.1016/j.stem.2022.04.001. PMID: 35523142. PMCID: PMC9097776.
Article
70. Liabeuf D, Oshima M, Stange DE, Sigal M. 2022; Stem cells, Helicobacter pylori, and mutational landscape: utility of preclinical models to understand carcinogenesis and to direct management of gastric cancer. Gastroenterology. 162:1067–1087. DOI: 10.1053/j.gastro.2021.12.252. PMID: 34942172.
Article
71. He J, Hu W, Ouyang Q, et al. 2022; Helicobacter pylori infection induces stem cell-like properties in Correa cascade of gastric cancer. Cancer Lett. 542:215764. DOI: 10.1016/j.canlet.2022.215764. PMID: 35654291.
Article
72. Uehara T, Ma D, Yao Y, et al. 2013; H. pylori infection is associated with DNA damage of Lgr5-positive epithelial stem cells in the stomach of patients with gastric cancer. Dig Dis Sci. 58:140–149. DOI: 10.1007/s10620-012-2360-8. PMID: 22945475. PMCID: PMC3816997.
Article
73. Abe H, Ushiku T. 2022; Pathological diversity of gastric cancer from the viewpoint of background condition. Digestion. 103:45–53. DOI: 10.1159/000519337. PMID: 34628409.
Article
74. Iwamuro M, Kusumoto C, Nakagawa M, et al. 2022; Endoscopic features of oxyntic gland adenoma and gastric adenocarcinoma of the fundic gland type differ between patients with and without Helicobacter pylori infection: a retrospective observational study. BMC Gastroenterol. 22:294. DOI: 10.1186/s12876-022-02368-w. PMID: 35692036. PMCID: PMC9188703.
Article
75. Yamamoto Y, Fujisaki J, Omae M, Hirasawa T, Igarashi M. 2015; Helicobacter pylori-negative gastric cancer: characteristics and endoscopic findings. Dig Endosc. 27:551–561. DOI: 10.1111/den.12471. PMID: 25807972.
Article
76. Yasuda T, Lee HS, Nam SY, et al. 2022; Non-Helicobacter pylori Helicobacter (NHPH) positive gastric cancer. Sci Rep. 12:4811. DOI: 10.1038/s41598-022-08962-y. PMID: 35314746. PMCID: PMC8938428.
Article
77. Tsai KF, Liou JM, Chen MJ, et al. 2017; Distinct clinicopathological features and prognosis of Helicobacter pylori negative gastric cancer. PLoS One. 12:e0170942. DOI: 10.1371/journal.pone.0170942. PMID: 28152027. PMCID: PMC5289528.
Article
Full Text Links
  • KJG
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr