Neurointervention.  2023 Nov;18(3):159-165. 10.5469/neuroint.2023.00353.

Endovascular Reperfusion Therapy in Minor Stroke with Neurologic Deterioration beyond 24 Hours from Onset

Affiliations
  • 1Department of Neurology, School of Medicine, Chosun University, Gwangju, Korea
  • 2Department of Neurosurgery, School of Medicine, Chosun University, Gwangju, Korea

Abstract

Purpose
Patients with minor stroke (National Institutes of Health Stroke Scale score ≤5) and large vessel occlusion (LVO) often experience neurological deterioration >24 hours after onset. However, the efficacy of endovascular reperfusion therapy in these patients remains unclear. The aim of this study was to determine the efficacy and safety of reperfusion therapy in patients with minor stroke and neurological deterioration >24 hours after onset.
Materials and Methods
Data were retrospectively reviewed from patients between January 2019 and April 2022 who met the following criteria: (1) minor stroke and small definitive ischemic lesions at initial visit, (2) onset to neurological deterioration >24 hours, (3) cortical signs, Alberta Stroke Program Early computed tomography (CT) Score >6 points, and large artery occlusion confirmed by CT angiography at neurological deterioration. Efficacy and safety outcomes were based on final thrombolysis in cerebral infarction (TICI), incidence of symptomatic intracranial hemorrhage (ICH), and mortality. Outcomes were assessed using the modified Rankin Scale (mRS) at 3 months. Good outcome was defined as a mRS of 0, 1, or 2.
Results
Data from 26 patients (38.4% female, mean age 75.8 years) were analyzed; 18 (69.2%) had a good outcome. A final TICI of 2b or 3 was observed in 24 (92.3%) patients. No other adverse events, including dissection, vasospasm or distal embolization, were observed during the procedures. Hemorrhagic events occurred in 8 patients after the procedure; however, there were no symptomatic ICHs. Good prognostic factors were younger age (P=0.062) and carotid stenting (P=0.025).
Conclusion
Endovascular reperfusion therapy performed in selected patients with minor stroke, LVO, and neurological deterioration >24 hours after stroke onset demonstrated favorable outcomes and safety.

Keyword

Acute ischemic stroke; Minor stroke; Disease progression; Thrombectomy; Angioplasty

Figure

  • Fig. 1. Endovascular recanalization therapy and brain diffusion-weighted imaging before and after 24 hours of the procedure. (A) In digital subtraction angiography performed 83.9 hours after occurrence, left MCA proximal site occlusion and decreased filling on distal flow. (B) After 1 thrombectomy, a partially recanalized, but left MCA mid portion diffuse severe atherosclerotic stenosis and decreased distal flow were detected. (C) Stent insertion was carried out, full recanalization and TICI grade 3 of distal flow were identified. (D) Diffusion restriction of left periventricular area and temporo-parietal lobe at initial. (E) After 24 hours of the procedure, there was no significant difference compared with the previous ischemic lesion. MCA, middle cerebral artery; TICI, thrombolysis in cerebral infarction.


Reference

1. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, HERMES Collaborators, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016; 387:1723–1731.
Article
2. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019; 50:e344–e418.
Article
3. Park TH, Lee JK, Park MS, Park SS, Hong KS, Ryu WS, et al. Neurologic deterioration in patients with acute ischemic stroke or transient ischemic attack. Neurology. 2020; 95:e2178–e2191.
Article
4. Saleem Y, Nogueira RG, Rodrigues GM, Kim S, Sharashidze V, Frankel M, et al. Acute neurological deterioration in large vessel occlusions and mild symptoms managed medically. Stroke. 2020; 51:1428–1434.
Article
5. Nagel S, Bouslama M, Krause LU, Küpper C, Messer M, Petersen M, et al. Mechanical thrombectomy in patients with milder strokes and large vessel occlusions. Stroke. 2018; 49:2391–2397.
Article
6. Dargazanli C, Arquizan C, Gory B, Consoli A, Labreuche J, Redjem H, ETIS REGISTRY Investigators, et al. Mechanical thrombectomy for minor and mild stroke patients harboring large vessel occlusion in the anterior circulation: a multicenter cohort study. Stroke. 2017; 48:3274–3281.
Article
7. Messer MP, Schönenberger S, Möhlenbruch MA, Pfaff J, Herweh C, Ringleb PA, et al. Minor stroke syndromes in large-vessel occlusions: mechanical thrombectomy or thrombolysis only? AJNR Am J Neuroradiol. 2017; 38:1177–1179.
Article
8. Sartor EA, Albright K, Boehme AK, Morales MM, Shaban A, Grotta JC, et al. The NIHSS score and its components can predict cortical stroke. J Neurol Disord Stroke. 2013; 2:1026.
9. Jadhav AP, Desai SM, Jovin TG. Indications for mechanical thrombectomy for acute ischemic stroke: current guidelines and beyond. Neurology. 2021; 97(20 Suppl 2):S126–S136.
10. Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC, American Heart Association Stroke Council, et al. 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015; 46:3020–3035.
Article
11. Kwon DH, Jang SH, Park H, Sohn SI, Hong JH. Emergency cervical carotid artery stenting after intravenous thrombolysis in patients with hyperacute ischemic stroke. J Korean Med Sci. 2022; 37:e156.
Article
12. Luo Y, Yang Y, Xie Y, Yuan Z, Li X, Li J. Therapeutic effect of pre-operative tirofiban on patients with acute ischemic stroke with mechanical thrombectomy within 6-24 hours. Interv Neuroradiol. 2019; 25:705–709.
Article
13. Fiorelli M, Bastianello S, von Kummer R, del Zoppo GJ, Larrue V, Lesaffre E, et al. Hemorrhagic transformation within 36 hours of a cerebral infarct: relationships with early clinical deterioration and 3-month outcome in the European Cooperative Acute Stroke Study I (ECASS I) cohort. Stroke. 1999; 30:2280–2284.
Article
14. Dhillon PS, Butt W, Podlasek A, Barrett E, McConachie N, Lenthall R, et al. Endovascular thrombectomy beyond 24 hours from ischemic stroke onset: a propensity score matched cohort study. J Neurointerv Surg. 2023; 15:233–237.
Article
15. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, DEFUSE 3 Investigators, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018; 378:708–718.
Article
16. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, DAWN Trial Investigators, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018; 378:11–21.
17. Purrucker JC, Ringleb PA, Seker F, Potreck A, Nagel S, Schönenberger S, et al. Leaving the day behind: endovascular therapy beyond 24h in acute stroke of the anterior and posterior circulation. Ther Adv Neurol Disord. 2022; 15:17562864221101083.
Article
18. Zhu F, Bracard S, Anxionnat R, Derelle AL, Tonnelet R, Liao L, et al. Impact of emergent cervical carotid stenting in tandem occlusion strokes treated by thrombectomy: a review of the TITAN Collaboration. Front Neurol. 2019; 10:206.
Article
19. Christensen S, Mlynash M, Kemp S, Yennu A, Heit JJ, Marks MP, et al. Persistent target mismatch profile >24 hours after stroke onset in DEFUSE 3. Stroke. 2019; 50:754–757.
Article
20. Vagal A, Aviv R, Sucharew H, Reddy M, Hou Q, Michel P, et al. Collateral clock is more important than time clock for tissue fate. Stroke. 2018; 49:2102–2107.
Article
Full Text Links
  • NI
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr