1. Uhlenhopp DJ, Then EO, Sunkara T, Gaduputi V. 2020; Epidemiology of esophageal cancer: update in global trends, etiology and risk factors. Clin J Gastroenterol. 13:1010–1021. DOI:
10.1007/s12328-020-01237-x. PMID:
32965635.
Article
2. Then EO, Lopez M, Saleem S, Gayam V, Sunkara T, Culliford A, Gaduputi V. 2020; Esophageal cancer: an updated surveillance epidemiology and end results database analysis. World J Oncol. 11:55–64. DOI:
10.14740/wjon1254. PMID:
32284773. PMCID:
PMC7141161.
Article
3. Shin A, Won YJ, Jung HK, Kong HJ, Jung KW, Oh CM, Choe S, Lee J. 2018; Trends in incidence and survival of esophageal cancer in Korea: analysis of the Korea Central Cancer Registry Database. J Gastroenterol Hepatol. 33:1961–1968. DOI:
10.1111/jgh.14289. PMID:
29802647. PMCID:
PMC6334276.
Article
6. Domper Arnal MJ, Ferrández Arenas Á, Lanas Arbeloa Á. 2015; Esophageal cancer: risk factors, screening and endoscopic treatment in Western and Eastern countries. World J Gastroenterol. 21:7933–7943. DOI:
10.3748/wjg.v21.i26.7933. PMID:
26185366. PMCID:
PMC4499337.
Article
9. Krasna MJ. 2010; Multimodality therapy for esophageal cancer. Oncology (Williston Park). 24:1134–1138. PMID:
21141694.
14. Kassi E, Papoutsi Z, Pratsinis H, Aligiannis N, Manoussakis M, Moutsatsou P. 2007; Ursolic acid, a naturally occurring triterpenoid, demonstrates anticancer activity on human prostate cancer cells. J Cancer Res Clin Oncol. 133:493–500. DOI:
10.1007/s00432-007-0193-1. PMID:
17516089.
Article
15. Navin R, Kim SM. 2016; Therapeutic interventions using ursolic acid for cancer treatment. Med Chem (Los Angeles). 6:339–344. DOI:
10.4172/2161-0444.1000367.
Article
16. Figueroa-Suárez MZ, González Christen J, Cardoso-Taketa AT, Gutiérrez Villafuerte MDC, Rodríguez-López V. 2019; Anti-inflammatory and antihistaminic activity of triterpenoids isolated from Bursera cuneata (Schldl.) Engl. J Ethnopharmacol. 238:111786. DOI:
10.1016/j.jep.2019.03.013. PMID:
30872171.
Article
17. Habtemariam S. 2019; Antioxidant and anti-inflammatory mechanisms of neuroprotection by ursolic acid: addressing brain injury, cerebral ischemia, cognition deficit, anxiety, and depression. Oxid Med Cell Longev. 2019:8512048. DOI:
10.1155/2019/8512048. PMID:
31223427. PMCID:
PMC6541953.
Article
19. Hassan HM, Jiang ZH, Asmussen C, McDonald E, Qin W. 2014; Antibacterial activity of northern Ontario medicinal plant extracts. Can J Plant Sci. 94:417–424. DOI:
10.4141/cjps2013-258.
Article
21. Yang K, Chen Y, Zhou J, Ma L, Shan Y, Cheng X, Wang Y, Zhang Z, Ji X, Chen L, Dai H, Zhu B, Li C, Tao Z, Hu X, Yin W. 2019; Ursolic acid promotes apoptosis and mediates transcriptional suppression of CT45A2 gene expression in non-small-cell lung carcinoma harbouring EGFR T790M mutations. Br J Pharmacol. 176:4609–4624. DOI:
10.1111/bph.14793. PMID:
31322286. PMCID:
PMC6965687.
Article
22. Huang CY, Lin CY, Tsai CW, Yin MC. 2011; Inhibition of cell proliferation, invasion and migration by ursolic acid in human lung cancer cell lines. Toxicol In Vitro. 25:1274–1280. DOI:
10.1016/j.tiv.2011.04.014. PMID:
21539908.
Article
23. Hsu YL, Kuo PL, Lin CC. 2004; Proliferative inhibition, cell-cycle dysregulation, and induction of apoptosis by ursolic acid in human non-small cell lung cancer A549 cells. Life Sci. 75:2303–2316. DOI:
10.1016/j.lfs.2004.04.027. PMID:
15350828.
Article
25. Kim ES, Moon A. 2015; Ursolic acid inhibits the invasive phenotype of SNU-484 human gastric cancer cells. Oncol Lett. 9:897–902. DOI:
10.3892/ol.2014.2735. PMID:
25621065.
Article
26. Liu T, Ma H, Shi W, Duan J, Wang Y, Zhang C, Li C, Lin J, Li S, Lv J, Lin L. 2017; Inhibition of STAT3 signaling pathway by ursolic acid suppresses growth of hepatocellular carcinoma. Int J Oncol. 51:555–562. DOI:
10.3892/ijo.2017.4035. PMID:
28714512.
Article
28. Shanmugam MK, Rajendran P, Li F, Nema T, Vali S, Abbasi T, Kapoor S, Sharma A, Kumar AP, Ho PC, Hui KM, Sethi G. 2011; Ursolic acid inhibits multiple cell survival pathways leading to suppression of growth of prostate cancer xenograft in nude mice. J Mol Med (Berl). 89:713–727. DOI:
10.1007/s00109-011-0746-2. PMID:
21465181.
Article
29. Ye Y, Fang Y, Xu W, Wang Q, Zhou J, Lu R. 2016; 3,3'-Diindolylmethane induces anti-human gastric cancer cells by the miR-30e-ATG5 modulating autophagy. Biochem Pharmacol. 115:77–84. DOI:
10.1016/j.bcp.2016.06.018. PMID:
27372603.
Article
30. Li XJ, Park ES, Park MH, Kim SM. 2013; 3,3'-Diindolylmethane suppresses the growth of gastric cancer cells via activation of the Hippo signaling pathway. Oncol Rep. 30:2419–2426. DOI:
10.3892/or.2013.2717. PMID:
24008339.
Article
31. Jin H, Park MH, Kim SM. 2015; 3,3'-Diindolylmethane potentiates paclitaxel-induced antitumor effects on gastric cancer cells through the Akt/FOXM1 signaling cascade. Oncol Rep. 33:2031–2036. DOI:
10.3892/or.2015.3758. PMID:
25633416.
Article
32. Zhu P, Yu H, Zhou K, Bai Y, Qi R, Zhang S. 2020; 3,3'-Diindolylmethane modulates aryl hydrocarbon receptor of esophageal squamous cell carcinoma to reverse epithelial-mesenchymal transition through repressing RhoA/ROCK1-mediated COX2/PGE
2 pathway. J Exp Clin Cancer Res. 39:113. DOI:
10.1186/s13046-020-01618-7. PMID:
32546278. PMCID:
PMC7298755. PMID:
55aa1451e2f54bc69fa9687a08cc3b69.
33. Kim SJ, Lee JS, Kim SM. 2012; 3,3'-Diindolylmethane suppresses growth of human esophageal squamous cancer cells by G1 cell cycle arrest. Oncol Rep. 27:1669–1673. DOI:
10.3892/or.2012.1662. PMID:
22293900.
Article
34. Li XJ, Leem SH, Park MH, Kim SM. 2013; Regulation of YAP through an Akt-dependent process by 3, 3'-diindolylmethane in human colon cancer cells. Int J Oncol. 43:1992–1998. DOI:
10.3892/ijo.2013.2121. PMID:
24100865.
Article
35. Kong D, Banerjee S, Huang W, Li Y, Wang Z, Kim HR, Sarkar FH. 2008; Mammalian target of rapamycin repression by 3,3'-diindolylmethane inhibits invasion and angiogenesis in platelet-derived growth factor-D-overexpressing PC3 cells. Cancer Res. 68:1927–1934. DOI:
10.1158/0008-5472.CAN-07-3241. PMID:
18339874. PMCID:
PMC3757473.
Article
36. Rahman KW, Sarkar FH. 2005; Inhibition of nuclear translocation of nuclear factor-{kappa}B contributes to 3,3'-diindolylmethane-induced apoptosis in breast cancer cells. Cancer Res. 65:364–371. DOI:
10.1158/0008-5472.364.65.1. PMID:
15665315.
Article
40. Javadinia SA, Shahidsales S, Fanipakdel A, Mostafapour A, Joudi-Mashhad M, Ferns GA, Avan A. 2018; The esophageal cancer and the PI3K/AKT/mTOR signaling regulatory microRNAs: a novel marker for prognosis, and a possible target for immunotherapy. Curr Pharm Des. 24:4646–4651. DOI:
10.2174/1381612825666190110143258. PMID:
30636576.
Article
41. Zhu C, Li L, Zhao B. 2015; The regulation and function of YAP transcription co-activator. Acta Biochim Biophys Sin (Shanghai). 47:16–28. DOI:
10.1093/abbs/gmu110. PMID:
25487920.
Article
44. Tumaneng K, Schlegelmilch K, Russell RC, Yimlamai D, Basnet H, Mahadevan N, Fitamant J, Bardeesy N, Camargo FD, Guan KL. 2012; YAP mediates crosstalk between the Hippo and PI(3)K-TOR pathways by suppressing PTEN via miR-29. Nat Cell Biol. 14:1322–1329. DOI:
10.1038/ncb2615. PMID:
23143395. PMCID:
PMC4019071.
Article
45. Qian X, He L, Hao M, Li Y, Li X, Liu Y, Jiang H, Xu L, Li C, Wu W, Du L, Yin X, Lu Q. 2021; YAP mediates the interaction between the Hippo and PI3K/Akt pathways in mesangial cell proliferation in diabetic nephropathy. Acta Diabetol. 58:47–62. DOI:
10.1007/s00592-020-01582-w. PMID:
32816106.
Article
48. Hu LL, Su T, Luo RC, Zheng YH, Huang J, Zhong ZS, Nie J, Zheng LP. 2019; Hippo pathway functions as a downstream effector of AKT signaling to regulate the activation of primordial follicles in mice. J Cell Physiol. 234:1578–1587. DOI:
10.1002/jcp.27024. PMID:
30078193.
Article
49. Lin Z, Zhou P, von Gise A, Gu F, Ma Q, Chen J, Guo H, van Gorp PR, Wang DZ, Pu WT. 2015; Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival. Circ Res. 116:35–45. DOI:
10.1161/CIRCRESAHA.115.304457. PMID:
25249570. PMCID:
PMC4282610.
Article
50. Xu W, Yang Z, Xie C, Zhu Y, Shu X, Zhang Z, Li N, Chai N, Zhang S, Wu K, Nie Y, Lu N. 2018; PTEN lipid phosphatase inactivation links the hippo and PI3K/Akt pathways to induce gastric tumorigenesis. J Exp Clin Cancer Res. 37:198. DOI:
10.1186/s13046-018-0795-2. PMID:
30134988. PMCID:
PMC6104022. PMID:
fa829ec5bd6b4945a08ad9b0211c1d69.
Article
52. Zou R, Xu Y, Feng Y, Shen M, Yuan F, Yuan Y. 2020; YAP nuclear-cytoplasmic translocation is regulated by mechanical signaling, protein modification, and metabolism. Cell Biol Int. 44:1416–1425. DOI:
10.1002/cbin.11345. PMID:
32190949.
Article
53. Kitagawa Y, Uno T, Oyama T, Kato K, Kato H, Kawakubo H, Kawamura O, Kusano M, Kuwano H, Takeuchi H, Toh Y, Doki Y, Naomoto Y, Nemoto K, Booka E, Matsubara H, Miyazaki T, Muto M, Yanagisawa A, Yoshida M. 2019; Esophageal cancer practice guidelines 2017 edited by the Japan Esophageal Society: part 1. Esophagus. 16:1–24. Erratum in:
Esophagus. 2022;19:726. DOI:
10.1007/s10388-018-0641-9. PMID:
30171413. PMCID:
PMC6510883.
Article
55. Biersack B. 2020; 3,3'-Diindolylmethane and its derivatives: nature-inspired strategies tackling drug resistant tumors by regulation of signal transduction, transcription factors and microRNAs. Cancer Drug Resist. 3:867–878. DOI:
10.20517/cdr.2020.53. PMID:
35582221. PMCID:
PMC8992569.
Article
56. Lin W, Ye H. 2020; Anticancer activity of ursolic acid on human ovarian cancer cells via ROS and MMP mediated apoptosis, cell cycle arrest and downregulation of PI3K/AKT pathway. J BUON. 25:750–756. PMID:
32521863.
57. Meng Y, Lin ZM, Ge N, Zhang DL, Huang J, Kong F. 2015; Ursolic acid induces apoptosis of prostate cancer cells via the PI3K/Akt/mTOR pathway. Am J Chin Med. 43:1471–1486. DOI:
10.1142/S0192415X15500834. PMID:
26503559.
Article
61. Datta S, Cano M, Satyanarayana G, Liu T, Wang L, Wang J, Cheng J, Itoh K, Sharma A, Bhutto I, Kannan R, Qian J, Sinha D, Handa JT. 2023; Mitophagy initiates retrograde mitochondrial-nuclear signaling to guide retinal pigment cell heterogeneity. Autophagy. 19:966–983. DOI:
10.1080/15548627.2022.2109286. PMID:
35921555. PMCID:
PMC9980637.
Article
62. Domoto T, Pyko IV, Furuta T, Miyashita K, Uehara M, Shimasaki T, Nakada M, Minamoto T. 2016; Glycogen synthase kinase-3β is a pivotal mediator of cancer invasion and resistance to therapy. Cancer Sci. 107:1363–1372. DOI:
10.1111/cas.13028. PMID:
27486911. PMCID:
PMC5084660.
Article
63. Duda P, Akula SM, Abrams SL, Steelman LS, Martelli AM, Cocco L, Ratti S, Candido S, Libra M, Montalto G, Cervello M, Gizak A, Rakus D, McCubrey JA. 2020; Targeting GSK3 and associated signaling pathways involved in cancer. Cells. 9:1110. DOI:
10.3390/cells9051110. PMID:
32365809. PMCID:
PMC7290852. PMID:
4013e82b8ba443de968a8ae058a04c3d.
Article
64. Fu Y, Sun S, Sun H, Peng J, Ma X, Bao L, Ji R, Luo C, Gao C, Zhang X, Jin Y. 2019; Scutellarin exerts protective effects against atherosclerosis in rats by regulating the Hippo-FOXO3A and PI3K/AKT signaling pathways. J Cell Physiol. 234:18131–18145. DOI:
10.1002/jcp.28446. PMID:
30891776.
Article