Cardiovasc Prev Pharmacother.  2023 Jul;5(3):91-97. 10.36011/cpp.2023.5.e12.

Correlation between metformin intake and prostate cancer

Affiliations
  • 1Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
  • 2Department of Statistics and Research Institute of Natural Sciences, Sookmyung Women’s University, Seoul, Korea
  • 3Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea

Abstract

Background
The relationship between metformin intake and prostate cancer incidence remains unclear. Therefore, we examined the correlation between prostate cancer and metformin use.
Methods
The subjects were diabetes patients aged ≥50 years who had been diagnosed with prostate cancer and had undergone surgery at Seoul St. Mary's Hospital. Groups taking metformin (MET(+) group) and not taking metformin (MET(–) group) were divided and compared.
Results
The mean preoperative prostate-specific antigen (PSA) levels in the MET(–) and MET(+) groups were 10.7±11.9 and 8.0±5.6 ng/mL, respectively, with no statistically significant difference between the two groups (P=0.387). The average prostate volume of the MET(–) group was 82.4±98.0 mL, and the average prostate volume of the MET(+) group was 55.4±20.1 mL, but there was no statistically significant difference between the two groups (P=0.226). The mean PSA velocity also did not show a significant difference between the two groups (0.025±0.102 ng/mL vs. 0.005±0.012 ng/mL, P=0.221).
Conclusions
We did not identify a significant positive correlation between metformin and prostate cancer. However, preoperational PSA and PSA velocity tended to be lower in the MET(+) group. A sophisticated prospective study with a large sample size should be planned.

Keyword

Metformin; Prostate neoplasms; Diabetes mellitus

Figure

  • Fig. 1. Inclusion and exclusion of patients. MET(–), patients not taking metformin; MET(+), patients taking metformin.

  • Fig. 2. Differences in prostate variables according to the presence or absence of metformin intake. (A) The mean preoperative prostate-specific antigen (PSA) levels. (B) The average prostate volume. (C) The mean PSA velocity. MET(–), patients not taking metformin; MET(+), patients taking metformin.


Reference

1. Jee SH, Ohrr H, Sull JW, Yun JE, Ji M, Samet JM. Fasting serum glucose level and cancer risk in Korean men and women. JAMA. 2005; 293:194–202.
2. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes and cancer: a consensus report. Diabetes Care. 2010; 33:1674–85.
3. Vigneri P, Frasca F, Sciacca L, Pandini G, Vigneri R. Diabetes and cancer. Endocr Relat Cancer. 2009; 16:1103–23.
4. Decensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B, et al. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res (Phila). 2010; 3:1451–61.
5. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005; 330:1304–5.
6. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2003; 2:28.
7. Ben Sahra I, Le Marchand-Brustel Y, Tanti JF, Bost F. Metformin in cancer therapy: a new perspective for an old antidiabetic drug? Mol Cancer Ther. 2010; 9:1092–9.
8. Spratt DE, Zhang C, Zumsteg ZS, Pei X, Zhang Z, Zelefsky MJ. Metformin and prostate cancer: reduced development of castration-resistant disease and prostate cancer mortality. Eur Urol. 2013; 63:709–16.
9. Wright JL, Stanford JL. Metformin use and prostate cancer in Caucasian men: results from a population-based case-control study. Cancer Causes Control. 2009; 20:1617–22.
10. Margel D, Urbach DR, Lipscombe LL, Bell CM, Kulkarni G, Austin PC, et al. Metformin use and all-cause and prostate cancer-specific mortality among men with diabetes. J Clin Oncol. 2013; 31:3069–75.
11. Kaushik D, Karnes RJ, Eisenberg MS, Rangel LJ, Carlson RE, Bergstralh EJ. Effect of metformin on prostate cancer outcomes after radical prostatectomy. Urol Oncol. 2014; 32:43.e1–7.
12. Currie CJ, Poole CD, Gale EA. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia. 2009; 52:1766–77.
13. Cantagallo A, Delli Castelli M. Cost-free prevention to asymptomatic bacteriuria in diabetic women: two hands, two towels. Diabetes Care. 2001; 24:412–4.
14. Szablewski L. Diabetes mellitus: influences on cancer risk. Diabetes Metab Res Rev. 2014; 30:543–53.
15. Murtola TJ, Vihervuori VJ, Lahtela J, Talala K, Taari K, Tammela TL, et al. Fasting blood glucose, glycaemic control and prostate cancer risk in the Finnish Randomized Study of Screening for Prostate Cancer. Br J Cancer. 2018; 118:1248–54.
16. Grossmann M, Wittert G. Androgens, diabetes and prostate cancer. Endocr Relat Cancer. 2012; 19:F47–62.
17. Tande AJ, Platz EA, Folsom AR. The metabolic syndrome is associated with reduced risk of prostate cancer. Am J Epidemiol. 2006; 164:1094–102.
18. Murtola TJ, Tammela TL, Lahtela J, Auvinen A. Antidiabetic medication and prostate cancer risk: a population-based case-control study. Am J Epidemiol. 2008; 168:925–31.
19. Rodriguez C, Patel AV, Mondul AM, Jacobs EJ, Thun MJ, Calle EE. Diabetes and risk of prostate cancer in a prospective cohort of US men. Am J Epidemiol. 2005; 161:147–52.
20. Chen X, Li C, He T, Mao J, Li C, Lyu J, et al. Metformin inhibits prostate cancer cell proliferation, migration, and tumor growth through upregulation of PEDF expression. Cancer Biol Ther. 2016; 17:507–14.
21. Wang CP, Lehman DM, Lam YF, Kuhn JG, Mahalingam D, Weitman S, et al. Metformin for reducing racial/ethnic difference in prostate cancer incidence for men with type II diabetes. Cancer Prev Res (Phila). 2016; 9:779–87.
22. Wang CP, Hernandez J, Lorenzo C, Pollock B, Lehman DM. Metformin effects on high- vs. low-grade prostate cancer. Diabetes. 2013; 62(Suppl 1):LB31.
23. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM. New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care. 2009; 32:1620–5.
24. Bowker SL, Majumdar SR, Veugelers P, Johnson JA. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care. 2006; 29:254–8.
25. Bowker SL, Yasui Y, Veugelers P, Johnson JA. Glucose-lowering agents and cancer mortality rates in type 2 diabetes: assessing effects of time-varying exposure. Diabetologia. 2010; 53:1631–7.
26. Landman GW, Kleefstra N, van Hateren KJ, Groenier KH, Gans RO, Bilo HJ. Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care. 2010; 33:322–6.
27. Ben Sahra I, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P, et al. Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res. 2010; 70:2465–75.
28. Oliveras-Ferraros C, Vazquez-Martin A, Menendez JA. Genome-wide inhibitory impact of the AMPK activator metformin on [kinesins, tubulins, histones, auroras and polo-like kinases] M-phase cell cycle genes in human breast cancer cells. Cell Cycle. 2009; 8:1633–6.
Full Text Links
  • CPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr