Korean J Pain.  2023 Jul;36(3):281-298. 10.3344/kjp.23129.

Antimicrobial therapies for chronic pain (part 1): analgesic mechanisms

Affiliations
  • 1Department of Anesthesiology and Critical Care Medicine, Division of Pain Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
  • 2Departments of Orthopedic Surgery and Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
  • 3Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
  • 4Department of Physical Medicine and Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA
  • 5Departments of Physical Medicine & Rehabilitation, Neurology, and Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
  • 6Departments of Physical Medicine & Rehabilitation and Anesthesiology, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA

Abstract

There is increasing evidence that the relationship between chronic pain and infections is complex and intertwined. Bacterial and viral infections can cause pain through numerous mechanisms such as direct tissue damage and inflammation, the induction of excessive immunologic activity, and the development of peripheral or central sensitization. Treating infections might relieve pain by attenuating these processes, but a growing body of literature suggests that some antimicrobial therapies confer analgesic effects, including for nociceptive and neuropathic pain symptoms, and affective components of pain. The analgesic mechanisms of antimicrobials are indirect, but might be conceptualized into two broad categories: 1) the reduction of the infectious burden and associated pro-inflammatory processes; and 2) the inhibition of signaling processes (e.g., enzymatic and cytokine activity) necessary for nociception and maladaptive neuroplastic changes via off-target effects (unintended binding sites). For the former, there is evidence that symptoms of chronic low back pain (when associated with Modic type 1 changes), irritable bowel syndrome, inflammatory bowel disease, chronic pelvic pain, and functional dyspepsia might be improved after antibiotic treatment, though significant questions remain regarding specific regimens and dose, and which subpopulations are most likely to benefit. For the latter, there is evidence that several antimicrobial classes and medications exert analgesic effects independent of their reduction of infectious burden, and these include cephalosporins, ribavirin, chloroquine derivatives, rapalogues, minocycline, dapsone, and piscidin-1. This article aims to comprehensively review the existing literature for antimicrobial agents that have demonstrated analgesic efficacy in preclinical or clinical studies.

Keyword

Analgesia; Anti-Bacterial Agents; Anti-Infective Agents; Antiviral Agents; Central Nervous System Sensitization; Chronic Pain; Infections; Neuralgia; Nociceptive Pain; Pain Management

Figure

  • Fig. 1 Indirect analgesic effects of antimicrobial medications. NSAIDs: non-steroidal anti-inflammatory drugs, IL: interleukin, TNF: tumor necrosis factor.

  • Fig. 2 Artistic rendition illustrating representative acute and chronic pain conditions that may result from infectious processes. Antibacterial, antiviral, and anti-parasitic agents have been found to confer analgesia in each of the following conditions via direct effects on pathogen load (e.g., spinal pain, dyspepsia) and/or by off-target effects (e.g., mitigating autoimmune and sensitization processes). Drawing by Seffrah Jin Cohen.


Reference

1. Cohen SP, Wang EJ, Doshi TL, Vase L, Cawcutt KA, Tontisirin N. 2022; Chronic pain and infection: mechanisms, causes, conditions, treatments, and controversies. BMJ Med. 1:e000108. DOI: 10.1136/bmjmed-2021-000108. PMID: 36936554. PMCID: PMC10012866.
Article
2. Brizzi KT, Lyons JL. 2014; Peripheral nervous system manifestations of infectious diseases. Neurohospitalist. 4:230–40. DOI: 10.1177/1941874414535215. PMID: 25360209. PMCID: PMC4212417.
Article
3. Kramer S, Baeumler P, Geber C, Fleckenstein J, Simang M, Haas L, et al. 2019; Somatosensory profiles in acute herpes zoster and predictors of postherpetic neuralgia. Pain. 160:882–94. DOI: 10.1097/j.pain.0000000000001467. PMID: 30585985.
Article
4. Gilligan CJ, Cohen SP, Fischetti VA, Hirsch JA, Czaplewski LG. 2021; Chronic low back pain, bacterial infection and treatment with antibiotics. Spine J. 21:903–14. DOI: 10.1016/j.spinee.2021.02.013. PMID: 33610802.
Article
5. Cai Z, Zhu T, Liu F, Zhuang Z, Zhao L. 2021; Co-pathogens in periodontitis and inflammatory bowel disease. Front Med (Lausanne). 8:723719. DOI: 10.3389/fmed.2021.723719. PMID: 34616755. PMCID: PMC8488124. PMID: b651136bdaec4a04808c734b2be38365.
Article
6. Minerbi A, Shen S. 2022; Gut microbiome in anesthesiology and pain medicine. Anesthesiology. 137:93–108. DOI: 10.1097/ALN.0000000000004204. PMID: 35486831. PMCID: PMC9183187.
Article
7. Song JH. 2003; Introduction: the goals of antimicrobial therapy. Int J Infect Dis. 7 Suppl 1:S1–4. DOI: 10.1016/S1201-9712(03)90064-6. PMID: 12839701.
Article
8. Gilbert DN, Chambers HF, Saag MS, Pavia AT, Boucher HW.
9. Crockett MT, Kelly BS, van Baarsel S, Kavanagh EC. 2017; Modic type 1 vertebral endplate changes: injury, inflammation, or infection? AJR Am J Roentgenol. 209:167–70. DOI: 10.2214/AJR.16.17403. PMID: 28402132.
Article
10. Albert HB, Lambert P, Rollason J, Sorensen JS, Worthington T, Pedersen MB, et al. 2013; Does nuclear tissue infected with bacteria following disc herniations lead to Modic changes in the adjacent vertebrae? Eur Spine J. 22:690–6. DOI: 10.1007/s00586-013-2674-z. PMID: 23397187. PMCID: PMC3631023.
Article
11. Albert HB, Sorensen JS, Christensen BS, Manniche C. 2013; Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double-blind randomized clinical controlled trial of efficacy. Eur Spine J. 22:697–707. DOI: 10.1007/s00586-013-2675-y. PMID: 23404353. PMCID: PMC3631045.
Article
12. Bråten LCH, Rolfsen MP, Espeland A, Wigemyr M, Aßmus J, Froholdt A, et al. AIM study group. 2019; Efficacy of antibiotic treatment in patients with chronic low back pain and Modic changes (the AIM study): double blind, randomised, placebo controlled, multicentre trial. BMJ. 367:l5654. DOI: 10.1136/bmj.l5654. PMID: 31619437. PMCID: PMC6812614.
Article
13. Ford AC, Harris LA, Lacy BE, Quigley EMM, Moayyedi P. 2018; Systematic review with meta-analysis: the efficacy of prebiotics, probiotics, synbiotics and antibiotics in irritable bowel syndrome. Aliment Pharmacol Ther. 48:1044–60. DOI: 10.1111/apt.15001. PMID: 30294792.
Article
14. Norton C, Czuber-Dochan W, Artom M, Sweeney L, Hart A. 2017; Systematic review: interventions for abdominal pain management in inflammatory bowel disease. Aliment Pharmacol Ther. 46:115–25. DOI: 10.1111/apt.14108. PMID: 28470846.
Article
15. Castiglione F, Rispo A, Di Girolamo E, Cozzolino A, Manguso F, Grassia R, et al. 2003; Antibiotic treatment of small bowel bacterial overgrowth in patients with Crohn's disease. Aliment Pharmacol Ther. 18:1107–12. DOI: 10.1046/j.1365-2036.2003.01800.x. PMID: 14653830.
Article
16. Anothaisintawee T, Attia J, Nickel JC, Thammakraisorn S, Numthavaj P, McEvoy M, et al. 2011; Management of chronic prostatitis/chronic pelvic pain syndrome: a systematic review and network meta-analysis. JAMA. 305:78–86. DOI: 10.1001/jama.2010.1913. PMID: 21205969.
Article
17. Du LJ, Chen BR, Kim JJ, Kim S, Shen JH, Dai N. 2016; Helicobacter pylori eradication therapy for functional dyspepsia: systematic review and meta-analysis. World J Gastroenterol. 22:3486–95. DOI: 10.3748/wjg.v22.i12.3486. PMID: 27022230. PMCID: PMC4806206.
18. Tan VP, Liu KS, Lam FY, Hung IF, Yuen MF, Leung WK. 2017; Randomised clinical trial: rifaximin versus placebo for the treatment of functional dyspepsia. Aliment Pharmacol Ther. 45:767–76. DOI: 10.1111/apt.13945. PMID: 28112426.
Article
19. Ford AC, Mahadeva S, Carbone MF, Lacy BE, Talley NJ. 2020; Functional dyspepsia. Lancet. 396:1689–702. DOI: 10.1016/S0140-6736(20)30469-4. PMID: 33049222.
Article
20. Sugano K, Tack J, Kuipers EJ, Graham DY, El-Omar EM, Miura S, et al. faculty members of Kyoto Global Consensus Conference. 2015; Kyoto global consensus report on Helicobacter pylori gastritis. Gut. 64:1353–67. DOI: 10.1136/gutjnl-2015-309252. PMID: 26187502. PMCID: PMC4552923.
Article
21. National Cancer Institute. 2011. NCI dictionary of cancer terms [Internet]. National Cancer Institute;Bethesda (MD): https://www.cancer.gov/publications/dictionaries/cancer-terms.
22. Bennett JE, Dolin R, Blaser MJ. 2015. Mandell, Douglas, and Bennett's principles and practice of infectious diseases. 8th ed. Saunders;p. 278–92.e4. DOI: 10.1016/c2012-1-00075-6.
23. Bui T, Preuss CV. 2023. Cephalosporins. StatPearls [Internet]. StatPearls Publishing.
Article
24. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, et al. 2005; Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 433:73–7. DOI: 10.1038/nature03180. PMID: 15635412.
Article
25. Hu Y, Li W, Lu L, Cai J, Xian X, Zhang M, et al. 2010; An anti-nociceptive role for ceftriaxone in chronic neuropathic pain in rats. Pain. 148:284–301. DOI: 10.1016/j.pain.2009.11.014. PMID: 20022427.
Article
26. Hajhashemi V, Hosseinzadeh H, Amin B. 2013; Antiallodynia and antihyperalgesia effects of ceftriaxone in treatment of chronic neuropathic pain in rats. Acta Neuropsychiatr. 25:27–32. DOI: 10.1111/j.1601-5215.2012.00656.x. PMID: 26953071.
Article
27. Amin B, Hajhashemi V, Hosseinzadeh H. Abnous Kh. 2012; Antinociceptive evaluation of ceftriaxone and minocycline alone and in combination in a neuropathic pain model in rat. Neuroscience. 224:15–25. DOI: 10.1016/j.neuroscience.2012.07.058. PMID: 22871519.
Article
28. Chu K, Lee ST, Sinn DI, Ko SY, Kim EH, Kim JM, et al. 2007; Pharmacological induction of ischemic tolerance by glutamate transporter-1 (EAAT2) upregulation. Stroke. 38:177–82. DOI: 10.1161/01.STR.0000252091.36912.65. PMID: 17122424.
Article
29. Mohan A, Lefstein KM, Chang E. 2021; Minocycline and cephalexin in a patient with spastic neuropathic pain secondary to neurosarcoidosis. Pain Med. 22:2767–79. DOI: 10.1093/pm/pnab044. PMID: 33560414.
Article
30. Macaluso A, Bernabucci M, Trabucco A, Ciolli L, Troisi F, Baldini R, et al. 2013; Analgesic effect of a single preoperative dose of the antibiotic ceftriaxone in humans. J Pain. 14:604–12. DOI: 10.1016/j.jpain.2013.01.774. PMID: 23725677.
Article
31. Rao PS, Goodwani S, Bell RL, Wei Y, Boddu SH, Sari Y. 2015; Effects of ampicillin, cefazolin and cefoperazone treatments on GLT-1 expressions in the mesocorticolimbic system and ethanol intake in alcohol-preferring rats. Neuroscience. 295:164–74. DOI: 10.1016/j.neuroscience.2015.03.038. PMID: 25813713. PMCID: PMC4408259.
Article
32. Loustaud-Ratti V, Debette-Gratien M, Jacques J, Alain S, Marquet P, Sautereau D, et al. 2016; Ribavirin: past, present and future. World J Hepatol. 8:123–30. DOI: 10.4254/wjh.v8.i2.123. PMID: 26807208. PMCID: PMC4716528.
Article
33. Dixit NM, Perelson AS. 2006; The metabolism, pharmacokinetics and mechanisms of antiviral activity of ribavirin against hepatitis C virus. Cell Mol Life Sci. 63:832–42. DOI: 10.1007/s00018-005-5455-y. PMID: 16501888.
Article
34. Abdel-Salam OM. 2006; Antinociceptive and behavioral effects of ribavirin in mice. Pharmacol Biochem Behav. 83:230–8. DOI: 10.1016/j.pbb.2006.01.010. PMID: 16563475.
Article
35. Milicevic I, Pekovic S, Subasic S, Mostarica-Stojkovic M, Stosic-Grujicic S, Medic-Mijacevic L, et al. 2003; Ribavirin reduces clinical signs and pathological changes of experimental autoimmune encephalomyelitis in Dark Agouti rats. J Neurosci Res. 72:268–78. DOI: 10.1002/jnr.10552. PMID: 12672002.
Article
36. Lavrnja I, Savic D, Bjelobaba I, Dacic S, Bozic I, Parabucki A, et al. 2012; The effect of ribavirin on reactive astrogliosis in experimental autoimmune encephalomyelitis. J Pharmacol Sci. 119:221–32. DOI: 10.1254/jphs.12004FP. PMID: 22785017.
Article
37. Liao SH, Li Y, Lai YN, Liu N, Zhang FX, Xu PP. 2017; Ribavirin attenuates the respiratory immune responses to influenza viral infection in mice. Arch Virol. 162:1661–9. DOI: 10.1007/s00705-017-3291-7. PMID: 28243801.
Article
38. Romeo-Guitart D, Casas C. 2020; NeuroHeal treatment alleviates neuropathic pain and enhances sensory axon regeneration. Cells. 9:808. DOI: 10.3390/cells9040808. PMID: 32230770. PMCID: PMC7226810.
Article
39. Fanouriakis A, Kostopoulou M, Alunno A, Aringer M, Bajema I, Boletis JN, et al. 2019; 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann Rheum Dis. 78:736–45. DOI: 10.1136/annrheumdis-2019-215089. PMID: 30926722.
Article
40. Rempenault C, Combe B, Barnetche T, Gaujoux-Viala C, Lukas C, Morel J, et al. 2020; Clinical and structural efficacy of hydroxychloroquine in rheumatoid arthritis: a systematic review. Arthritis Care Res (Hoboken). 72:36–40. DOI: 10.1002/acr.23826. PMID: 30629341.
Article
41. Smolen JS, Landewé RBM, Bergstra SA, Kerschbaumer A, Sepriano A, Aletaha D, et al. 2023; EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann Rheum Dis. 82:3–18. Erratum in: Ann Rheum Dis 2023; 82: e76. DOI: 10.1136/ard-2022-223356corr1. PMID: 36764818.
42. inivasa A Sr, Tosounidou S, Gordon C. 2017; Increased incidence of gastrointestinal side effects in patients taking hydroxychloroquine: a brand-related issue? J Rheumatol. 44:398. DOI: 10.3899/jrheum.161063. PMID: 28250164.
Article
43. Khosa S, Khanlou N, Khosa GS, Mishra SK. 2018; Hydroxychloroquine-induced autophagic vacuolar myopathy with mitochondrial abnormalities. Neuropathology. 38:646–52. DOI: 10.1111/neup.12520. PMID: 30411412.
Article
44. Jorge A, Ung C, Young LH, Melles RB, Choi HK. 2018; Hydroxychloroquine retinopathy - implications of research advances for rheumatology care. Nat Rev Rheumatol. 14:693–703. DOI: 10.1038/s41584-018-0111-8. PMID: 30401979.
Article
45. Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ, et al. 2018; Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 14:1435–55. DOI: 10.1080/15548627.2018.1474314. PMID: 29940786. PMCID: PMC6103682.
Article
46. Kuznik A, Bencina M, Svajger U, Jeras M, Rozman B, Jerala R. 2011; Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol. 186:4794–804. DOI: 10.4049/jimmunol.1000702. PMID: 21398612.
Article
47. Jang CH, Choi JH, Byun MS, Jue DM. 2006; Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. Rheumatology (Oxford). 45:703–10. DOI: 10.1093/rheumatology/kei282. PMID: 16418198.
48. Wu SF, Chang CB, Hsu JM, Lu MC, Lai NS, Li C, et al. 2017; Hydroxychloroquine inhibits CD154 expression in CD4+ T lymphocytes of systemic lupus erythematosus through NFAT, but not STAT5, signaling. Arthritis Res Ther. 19:183. DOI: 10.1186/s13075-017-1393-y. PMID: 28793932. PMCID: PMC5550984. PMID: 5482f95b17cb4423a7109e8d1c88b93e.
Article
49. Schrezenmeier E, Dörner T. 2020; Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol. 16:155–66. DOI: 10.1038/s41584-020-0372-x. PMID: 32034323.
Article
50. Faraone I, Labanca F, Ponticelli M, De Tommasi N, Milella L. 2020; Recent clinical and preclinical studies of hydroxychloroquine on RNA viruses and chronic diseases: a systematic review. Molecules. 25:5318. DOI: 10.3390/molecules25225318. PMID: 33202656. PMCID: PMC7696151. PMID: c057ffbf9b714013a9dfccc8daab1f80.
Article
51. Chou AK, Chiu CC, Wang JJ, Chen YW, Hung CH. 2021; Antimalarial primaquine for spinal sensory and motor blockade in rats. J Pharm Pharmacol. 73:1513–9. DOI: 10.1093/jpp/rgab054. PMID: 34370863.
Article
52. Chang YJ, Liu KS, Wang JJ, Hung CH, Chen YW. 2020; Chloroquine for prolonged skin analgesia in rats. Neurosci Lett. 735:135233. DOI: 10.1016/j.neulet.2020.135233. PMID: 32622927.
Article
53. Chang YJ, Liu KS, Wang JJ, Chen YW, Hung CH. 2021; Antimalarial primaquine for skin infiltration analgesia in rats. J Pharm Pharmacol. 73:206–11. DOI: 10.1093/jpp/rgaa021. PMID: 33793809.
Article
54. Sánchez-Chapula JA, Salinas-Stefanon E, Torres-Jácome J, Benavides-Haro DE, Navarro-Polanco RA. 2001; Blockade of currents by the antimalarial drug chloroquine in feline ventricular myocytes. J Pharmacol Exp Ther. 297:437–45. PMID: 11259572.
55. Lee W, Ruijgrok L, Boxma-de Klerk B, Kok MR, Kloppenburg M, Gerards A, et al. 2018; Efficacy of hydroxychloroquine in hand osteoarthritis: a randomized, double-blind, placebo-controlled trial. Arthritis Care Res (Hoboken). 70:1320–5. DOI: 10.1002/acr.23471. PMID: 29125901.
Article
56. Kingsbury SR, Tharmanathan P, Keding A, Ronaldson SJ, Grainger A, Wakefield RJ, et al. 2018; Hydroxychloroquine effectiveness in reducing symptoms of hand osteoarthritis: a randomized trial. Ann Intern Med. 168:385–95. DOI: 10.7326/M17-1430. PMID: 29459986.
Article
57. Ronaldson SJ, Keding A, Tharmanathan P, Arundel C, Kingsbury SR, Conaghan PG, et al. 2021; Cost-effectiveness of hydroxychloroquine versus placebo for hand osteoarthritis: economic evaluation of the HERO trial. F1000Res. 10:821. DOI: 10.12688/f1000research.55296.1. PMID: 34950454. PMCID: PMC8666991.
Article
58. Williams HJ, Egger MJ, Singer JZ, Willkens RF, Kalunian KC, Clegg DO, et al. 1994; Comparison of hydroxychloroquine and placebo in the treatment of the arthropathy of mild systemic lupus erythematosus. J Rheumatol. 21:1457–62. PMID: 7983646.
59. Kedor C, Detert J, Rau R, Wassenberg S, Listing J, Klaus P, et al. 2021; Hydroxychloroquine in patients with inflammatory and erosive osteoarthritis of the hands: results of the OA-TREAT study-a randomised, double-blind, placebo-controlled, multicentre, investigator-initiated trial. RMD Open. 7:e001660. DOI: 10.1136/rmdopen-2021-001660. PMID: 34215704. PMCID: PMC8256837. PMID: 2d97159671014276959a240b70ed3576.
Article
60. Martí-Carvajal A, Ramon-Pardo P, Javelle E, Simon F, Aldighieri S, Horvath H, et al. 2017; Interventions for treating patients with chikungunya virus infection-related rheumatic and musculoskeletal disorders: a systematic review. PLoS One. 12:e0179028. DOI: 10.1371/journal.pone.0179028. PMID: 28609439. PMCID: PMC5469465. PMID: 66f3c39ff8d9452db920eb764546cb8e.
Article
61. Rodrigo C, Herath T, Wickramarachchi U, Fernando D, Rajapakse S. 2022; Treatment of chikungunya-associated joint pain: a systematic review of controlled clinical trials. Trans R Soc Trop Med Hyg. 116:889–99. DOI: 10.1093/trstmh/trac045. PMID: 35666998.
Article
62. Eisen D. 1993; Hydroxychloroquine sulfate (Plaquenil) improves oral lichen planus: an open trial. J Am Acad Dermatol. 28:609–12. DOI: 10.1016/0190-9622(93)70082-5. PMID: 8463463.
Article
63. Yeshurun A, Bergman R, Bathish N, Khamaysi Z. 2019; Hydroxychloroquine sulphate therapy of erosive oral lichen planus. Australas J Dermatol. 60:e109–12. DOI: 10.1111/ajd.12948. PMID: 30411331.
Article
64. Vermeer HAB, Rashid H, Esajas MD, Oldhoff JM, Horváth B. 2021; The use of hydroxychloroquine as a systemic treatment in erosive lichen planus of the vulva and vagina. Br J Dermatol. 185:201–3. DOI: 10.1111/bjd.19870. PMID: 33548058. PMCID: PMC8360049.
Article
65. Haight ES, Johnson EM, Carroll IR, Tawfik VL. 2020; Of mice, microglia, and (wo)men: a case series and mechanistic investigation of hydroxychloroquine for complex regional pain syndrome. Pain Rep. 5:e841. DOI: 10.1097/PR9.0000000000000841. PMID: 33490839. PMCID: PMC7808678. PMID: ed8454a3c3f045f58bf6a1e1ac2d8feb.
Article
66. Li J, Kim SG, Blenis J. 2014; Rapamycin: one drug, many effects. Cell Metab. 19:373–9. DOI: 10.1016/j.cmet.2014.01.001. PMID: 24508508. PMCID: PMC3972801.
Article
67. Laplante M, Sabatini DM. 2012; mTOR signaling in growth control and disease. Cell. 149:274–93. DOI: 10.1016/j.cell.2012.03.017. PMID: 22500797. PMCID: PMC3331679.
Article
68. Benjamin D, Colombi M, Moroni C, Hall MN. 2011; Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov. 10:868–80. DOI: 10.1038/nrd3531. PMID: 22037041.
Article
69. Gibbons JJ, Abraham RT, Yu K. 2009; Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth. Semin Oncol. 36 Suppl 3:S3–17. DOI: 10.1053/j.seminoncol.2009.10.011. PMID: 19963098.
Article
70. Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, et al. RAD001 in Advanced Neuroendocrine Tumors. Third Trial (RADIANT-3) Study Group. 2011; Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 364:514–23. DOI: 10.1056/NEJMoa1009290. PMID: 21306238. PMCID: PMC4208619.
Article
71. Yangyun W, Guowei S, Shufen S, Jie Y, Rui Y, Yu R. 2022; Everolimus accelerates Erastin and RSL3-induced ferroptosis in renal cell carcinoma. Gene. 809:145992. DOI: 10.1016/j.gene.2021.145992. PMID: 34648917.
Article
72. Khan NA, Nikkanen J, Yatsuga S, Jackson C, Wang L, Pradhan S, et al. 2017; mTORC1 regulates mitochondrial integrated stress response and mitochondrial myopathy progression. Cell Metab. 26:419–28.e5. DOI: 10.1016/j.cmet.2017.07.007. PMID: 28768179.
Article
73. Kang J, Feng D, Yang F, Tian X, Han W, Jia H. 2020; Comparison of rapamycin and methylprednisolone for treating inflammatory muscle disease in a murine model of experimental autoimmune myositis. Exp Ther Med. 20:219–26. DOI: 10.3892/etm.2020.8716. PMID: 32536994. PMCID: PMC7291653.
Article
74. Lilleker JB, Bukhari M, Chinoy H. 2019; Rapamycin for inclusion body myositis: targeting non-inflammatory mechanisms. Rheumatology (Oxford). 58:375–6. DOI: 10.1093/rheumatology/key043. PMID: 29529264.
Article
75. Khaibullina A, Almeida LE, Wang L, Kamimura S, Wong EC, Nouraie M, et al. 2015; Rapamycin increases fetal hemoglobin and ameliorates the nociception phenotype in sickle cell mice. Blood Cells Mol Dis. 55:363–72. DOI: 10.1016/j.bcmd.2015.08.001. PMID: 26460261.
Article
76. Busquets-Garcia A, Gomis-González M, Guegan T, Agustín-Pavón C, Pastor A, Mato S, et al. 2013; Targeting the endocannabinoid system in the treatment of fragile X syndrome. Nat Med. 19:603–7. DOI: 10.1038/nm.3127. PMID: 23542787.
Article
77. Waldner M, Fantus D, Solari M, Thomson AW. 2016; New perspectives on mTOR inhibitors (rapamycin, rapalogs and TORKinibs) in transplantation. Br J Clin Pharmacol. 82:1158–70. DOI: 10.1111/bcp.12893. PMID: 26810941. PMCID: PMC5061789.
Article
78. Wilkinson JE, Burmeister L, Brooks SV, Chan CC, Friedline S, Harrison DE, et al. 2012; Rapamycin slows aging in mice. Aging Cell. 11:675–82. DOI: 10.1111/j.1474-9726.2012.00832.x. PMID: 22587563. PMCID: PMC3434687.
Article
79. Schreiber KH, Arriola Apelo SI, Yu D, Brinkman JA, Velarde MC, Syed FA, et al. 2019; A novel rapamycin analog is highly selective for mTORC1 in vivo. Nat Commun. 10:3194. DOI: 10.1038/s41467-019-11174-0. PMID: 31324799. PMCID: PMC6642166. PMID: 62fe1b728b0148059e306c8857df6c69.
Article
80. Lv J, Li Z, She S, Xu L, Ying Y. 2015; Effects of intrathecal injection of rapamycin on pain threshold and spinal cord glial activation in rats with neuropathic pain. Neurol Res. 37:739–43. DOI: 10.1179/1743132815Y.0000000052. PMID: 26004146.
Article
81. Feng T, Yin Q, Weng ZL, Zhang JC, Wang KF, Yuan SY, et al. 2014; Rapamycin ameliorates neuropathic pain by activating autophagy and inhibiting interleukin-1β in the rat spinal cord. J Huazhong Univ Sci Technolog Med Sci. 34:830–7. DOI: 10.1007/s11596-014-1361-6. PMID: 25480578.
Article
82. Tateda S, Kanno H, Ozawa H, Sekiguchi A, Yahata K, Yamaya S, et al. 2017; Rapamycin suppresses microglial activation and reduces the development of neuropathic pain after spinal cord injury. J Orthop Res. 35:93–103. DOI: 10.1002/jor.23328. PMID: 27279283.
Article
83. Zhang X, Jiang N, Li J, Zhang D, Lv X. 2019; Rapamycin alleviates proinflammatory cytokines and nociceptive behavior induced by chemotherapeutic paclitaxel. Neurol Res. 41:52–9. DOI: 10.1080/01616412.2018.1531199. PMID: 30325723.
Article
84. Kwon M, Han J, Kim UJ, Cha M, Um SW, Bai SJ, et al. 2017; Inhibition of mammalian target of rapamycin (mTOR) signaling in the insular cortex alleviates neuropathic pain after peripheral nerve injury. Front Mol Neurosci. 10:79. DOI: 10.3389/fnmol.2017.00079. PMID: 28377693. PMCID: PMC5359287.
Article
85. Asante CO, Wallace VC, Dickenson AH. 2010; Mammalian target of rapamycin signaling in the spinal cord is required for neuronal plasticity and behavioral hypersensitivity associated with neuropathy in the rat. J Pain. 11:1356–67. DOI: 10.1016/j.jpain.2010.03.013. PMID: 20452291. PMCID: PMC3000494.
Article
86. Géranton SM, Jiménez-Díaz L, Torsney C, Tochiki KK, Stuart SA, Leith JL, et al. 2009; A rapamycin-sensitive signaling pathway is essential for the full expression of persistent pain states. J Neurosci. 29:15017–27. DOI: 10.1523/JNEUROSCI.3451-09.2009. PMID: 19940197. PMCID: PMC2830115.
Article
87. Chen WH, Chang YT, Chen YC, Cheng SJ, Chen CC. 2018; Spinal protein kinase C/extracellular signal-regulated kinase signal pathway mediates hyperalgesia priming. Pain. 159:907–18. DOI: 10.1097/j.pain.0000000000001162. PMID: 29672451.
Article
88. Lyu D, Yu W, Tang N, Wang R, Zhao Z, Xie F, et al. 2013; The mTOR signaling pathway regulates pain-related synaptic plasticity in rat entorhinal-hippocampal pathways. Mol Pain. 9:64. DOI: 10.1186/1744-8069-9-64. PMID: 24313960. PMCID: PMC3892125.
Article
89. Abdelaziz DM, Stone LS, Komarova SV. 2014; Osteolysis and pain due to experimental bone metastases are improved by treatment with rapamycin. Breast Cancer Res Treat. 143:227–37. DOI: 10.1007/s10549-013-2799-0. PMID: 24327332.
Article
90. Xu JT, Zhao JY, Zhao X, Ligons D, Tiwari V, Atianjoh FE, et al. 2014; Opioid receptor-triggered spinal mTORC1 activation contributes to morphine tolerance and hyperalgesia. J Clin Invest. 124:592–603. DOI: 10.1172/JCI70236. PMID: 24382350. PMCID: PMC3904613.
Article
91. Lutz BM, Nia S, Xiong M, Tao YX, Bekker A. 2015; mTOR, a new potential target for chronic pain and opioid-induced tolerance and hyperalgesia. Mol Pain. 11:32. DOI: 10.1186/s12990-015-0030-5. PMID: 26024835. PMCID: PMC4455918.
Article
92. Zhang J, Wang Y, Qi X. 2019; Systemic rapamycin attenuates morphine-induced analgesic tolerance and hyperalgesia in mice. Neurochem Res. 44:465–71. DOI: 10.1007/s11064-018-2699-0. PMID: 30547365.
Article
93. Shirooie S, Sahebgharani M, Esmaeili J, Dehpour AR. 2019; In vitro evaluation of effects of metformin on morphine and methadone tolerance through mammalian target of rapamycin signaling pathway. J Cell Physiol. 234:3058–66. DOI: 10.1002/jcp.27125. PMID: 30146703.
Article
94. Nguyen LS, Vautier M, Allenbach Y, Zahr N, Benveniste O, Funck-Brentano C, et al. 2019; Sirolimus and mTOR inhibitors: a review of side effects and specific management in solid organ transplantation. Drug Saf. 42:813–25. DOI: 10.1007/s40264-019-00810-9. PMID: 30868436.
Article
95. Zhou YQ, Liu DQ, Chen SP, Sun J, Wang XM, Tian YK, et al. 2018; Minocycline as a promising therapeutic strategy for chronic pain. Pharmacol Res. 134:305–10. DOI: 10.1016/j.phrs.2018.07.002. PMID: 30042091.
Article
96. Bastos LF, Merlo LA, Rocha LT, Coelho MM. 2007; Characterization of the antinociceptive and anti-inflammatory activities of doxycycline and minocycline in different experimental models. Eur J Pharmacol. 576:171–9. DOI: 10.1016/j.ejphar.2007.07.049. PMID: 17719028.
Article
97. Bastos LF, Angusti A, Vilaça MC, Merlo LA, Nascimento EB Jr, Rocha LT, et al. 2008; A novel non-antibacterial, non-chelating hydroxypyrazoline derivative of minocycline inhibits nociception and oedema in mice. Br J Pharmacol. 155:714–21. DOI: 10.1038/bjp.2008.303. PMID: 18660827. PMCID: PMC2584916.
Article
98. Guasti L, Richardson D, Jhaveri M, Eldeeb K, Barrett D, Elphick MR, et al. 2009; Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain. Mol Pain. 5:35. DOI: 10.1186/1744-8069-5-35. PMID: 19570201. PMCID: PMC2719614. PMID: 65c67abd410c43ea906c500ab1e1b045.
Article
99. Li K, Fu KY, Light AR, Mao J. 2010; Systemic minocycline differentially influences changes in spinal microglial markers following formalin-induced nociception. J Neuroimmunol. 221:25–31. DOI: 10.1016/j.jneuroim.2010.02.003. PMID: 20202692. PMCID: PMC2874948.
Article
100. Tabassum S, Misrani A, Huo Q, Ahmed A, Long C, Yang L. 2022; Minocycline ameliorates chronic unpredictable mild stress-induced neuroinflammation and abnormal mPFC-HIPP oscillations in mice. Mol Neurobiol. 59:6874–95. DOI: 10.1007/s12035-022-03018-8. PMID: 36048340.
Article
101. Padi SS, Kulkarni SK. 2008; Minocycline prevents the development of neuropathic pain, but not acute pain: possible anti-inflammatory and antioxidant mechanisms. Eur J Pharmacol. 601:79–87. DOI: 10.1016/j.ejphar.2008.10.018. PMID: 18952075.
Article
102. Mika J, Rojewska E, Makuch W, Przewlocka B. 2010; Minocycline reduces the injury-induced expression of prodynorphin and pronociceptin in the dorsal root ganglion in a rat model of neuropathic pain. Neuroscience. 165:1420–8. DOI: 10.1016/j.neuroscience.2009.11.064. PMID: 19961904.
Article
103. Yoon SY, Patel D, Dougherty PM. 2012; Minocycline blocks lipopolysaccharide induced hyperalgesia by suppression of microglia but not astrocytes. Neuroscience. 221:214–24. DOI: 10.1016/j.neuroscience.2012.06.024. PMID: 22742905. PMCID: PMC3424316.
Article
104. Sung CS, Cherng CH, Wen ZH, Chang WK, Huang SY, Lin SL, et al. 2012; Minocycline and fluorocitrate suppress spinal nociceptive signaling in intrathecal IL-1β-induced thermal hyperalgesic rats. Glia. 60:2004–17. DOI: 10.1002/glia.22415. PMID: 22972308.
Article
105. Mei XP, Sakuma Y, Xie C, Wu D, Ho I, Kotani J, et al. 2014; Depressing interleukin-1β contributed to the synergistic effects of tramadol and minocycline on spinal nerve ligation-induced neuropathic pain. Neurosignals. 22:30–42. DOI: 10.1159/000355071. PMID: 24157594. PMID: 6e88a4f509b34c288b42bc8ef2699ec4.
Article
106. Saito O, Svensson CI, Buczynski MW, Wegner K, Hua XY, Codeluppi S, et al. 2010; Spinal glial TLR4-mediated nociception and production of prostaglandin E(2) and TNF. Br J Pharmacol. 160:1754–64. DOI: 10.1111/j.1476-5381.2010.00811.x. PMID: 20649577. PMCID: PMC2936846.
107. Ismail CAN, Ghazali AK, Suppian R, Abd Aziz CB, Long I. 2021; Minocycline alleviates nociceptive response through modulating the expression of NR2B subunit of NMDA receptor in spinal cord of rat model of painful diabetic neuropathy. J Diabetes Metab Disord. 20:793–803. DOI: 10.1007/s40200-021-00820-4. PMID: 34178864. PMCID: PMC8212342.
Article
108. Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, et al. 2010; Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol. 68:360–8. DOI: 10.1002/ana.22082. PMID: 20818791. PMCID: PMC4836445.
109. Wang HL, Liu H, Xue ZG, Liao QW, Fang H. 2016; Minocycline attenuates post-operative cognitive impairment in aged mice by inhibiting microglia activation. J Cell Mol Med. 20:1632–9. DOI: 10.1111/jcmm.12854. PMID: 27061744. PMCID: PMC4988280.
Article
110. Takazawa T, Horiuchi T, Orihara M, Nagumo K, Tomioka A, Ideno Y, et al. 2023; Prevention of postoperative cognitive dysfunction by minocycline in elderly patients after total knee arthroplasty: a randomized, double-blind, placebo-controlled clinical trial. Anesthesiology. 138:172–83. DOI: 10.1097/ALN.0000000000004439. PMID: 36538374.
Article
111. Lin CS, Tsaur ML, Chen CC, Wang TY, Lin CF, Lai YL, et al. 2007; Chronic intrathecal infusion of minocycline prevents the development of spinal-nerve ligation-induced pain in rats. Reg Anesth Pain Med. 32:209–16. DOI: 10.1016/j.rapm.2007.01.005. PMID: 17543815.
Article
112. Taguchi T, Katanosaka K, Yasui M, Hayashi K, Yamashita M, Wakatsuki K, et al. 2015; Peripheral and spinal mechanisms of nociception in a rat reserpine-induced pain model. Pain. 156:415–27. DOI: 10.1097/01.j.pain.0000460334.49525.5e. PMID: 25599239.
Article
113. Cata JP, Weng HR, Dougherty PM. 2008; The effects of thalidomide and minocycline on taxol-induced hyperalgesia in rats. Brain Res. 1229:100–10. DOI: 10.1016/j.brainres.2008.07.001. PMID: 18652810. PMCID: PMC2577234.
Article
114. Masocha W. 2014; Paclitaxel-induced hyposensitivity to nociceptive chemical stimulation in mice can be prevented by treatment with minocycline. Sci Rep. 4:6719. DOI: 10.1038/srep06719. PMID: 25335491. PMCID: PMC4205835.
Article
115. Ismail CAN, Suppian R, Aziz CBA, Long I. 2019; Minocycline attenuates the development of diabetic neuropathy by modulating DREAM and BDNF protein expression in rat spinal cord. J Diabetes Metab Disord. 18:181–90. DOI: 10.1007/s40200-019-00411-4. PMID: 31275889. PMCID: PMC6582076.
Article
116. Amorim D, Puga S, Bragança R, Braga A, Pertovaara A, Almeida A, et al. 2017; Minocycline reduces mechanical allodynia and depressive-like behaviour in type-1 diabetes mellitus in the rat. Behav Brain Res. 327:1–10. DOI: 10.1016/j.bbr.2017.03.003. PMID: 28286285.
Article
117. Miranda HF, Sierralta F, Jorquera V, Poblete P, Prieto JC, Noriega V. 2017; Antinociceptive interaction of gabapentin with minocycline in murine diabetic neuropathy. Inflammopharmacology. 25:91–7. Erratum in: Inflammopharmacology 2017; 25: 485. DOI: 10.1007/s10787-017-0308-5. PMID: 28155118.
Article
118. Bastos LF, Prazeres JD, Godin AM, Menezes RR, Soares DG, Ferreira WC, et al. 2013; Sex-independent suppression of experimental inflammatory pain by minocycline in two mouse strains. Neurosci Lett. 553:110–4. DOI: 10.1016/j.neulet.2013.08.026. PMID: 23973305.
Article
119. Cho IH, Chung YM, Park CK, Park SH, Lee H, Kim D, et al. 2006; Systemic administration of minocycline inhibits formalin-induced inflammatory pain in rat. Brain Res. 1072:208–14. Erratum in: Brain Res 2012; 1464: 89. DOI: 10.1016/j.brainres.2012.05.003. PMID: 16427032.
Article
120. Cho IH, Lee MJ, Jang M, Gwak NG, Lee KY, Jung HS. 2012; Minocycline markedly reduces acute visceral nociception via inhibiting neuronal ERK phosphorylation. Mol Pain. 8:13. DOI: 10.1186/1744-8069-8-13. PMID: 22364340. PMCID: PMC3342906. PMID: c986648b7f3445399c0efb8304f50216.
Article
121. Kannampalli P, Pochiraju S, Bruckert M, Shaker R, Banerjee B, Sengupta JN. 2014; Analgesic effect of minocycline in rat model of inflammation-induced visceral pain. Eur J Pharmacol. 727:87–98. DOI: 10.1016/j.ejphar.2014.01.026. PMID: 24485889. PMCID: PMC3984928.
Article
122. Zhang G, Zhao BX, Hua R, Kang J, Shao BM, Carbonaro TM, et al. 2016; Hippocampal microglial activation and glucocorticoid receptor down-regulation precipitate visceral hypersensitivity induced by colorectal distension in rats. Neuropharmacology. 102:295–303. DOI: 10.1016/j.neuropharm.2015.11.028. PMID: 26656865.
Article
123. Abu-Ghefreh AA, Masocha W. 2010; Enhancement of antinociception by coadministration of minocycline and a non-steroidal anti-inflammatory drug indomethacin in naïve mice and murine models of LPS-induced thermal hyperalgesia and monoarthritis. BMC Musculoskelet Disord. 11:276. DOI: 10.1186/1471-2474-11-276. PMID: 21122103. PMCID: PMC3009629. PMID: 0eaf074ee3de4e28842786b628110246.
124. Song ZP, Xiong BR, Guan XH, Cao F, Manyande A, Zhou YQ, et al. 2016; Minocycline attenuates bone cancer pain in rats by inhibiting NF-κB in spinal astrocytes. Acta Pharmacol Sin. 37:753–62. DOI: 10.1038/aps.2016.1. PMID: 27157092. PMCID: PMC4954763.
Article
125. Bu H, Shu B, Gao F, Liu C, Guan X, Ke C, et al. 2014; Spinal IFN-γ-induced protein-10 (CXCL10) mediates metastatic breast cancer-induced bone pain by activation of microglia in rat models. Breast Cancer Res Treat. 143:255–63. DOI: 10.1007/s10549-013-2807-4. PMID: 24337539.
Article
126. Burke NN, Kerr DM, Moriarty O, Finn DP, Roche M. 2014; Minocycline modulates neuropathic pain behaviour and cortical M1-M2 microglial gene expression in a rat model of depression. Brain Behav Immun. 42:147–56. DOI: 10.1016/j.bbi.2014.06.015. PMID: 24994592.
Article
127. Gajbhiye S, Bhangre A, Tripathi RK, Jalgaonkar S, Shankar A, Koli PG. 2022; Evaluation of antidepressant effect of minocycline in alcohol abstinence-induced depression model in mice. Cureus. 14:e28711. DOI: 10.7759/cureus.28711. PMID: 36211101. PMCID: PMC9529019.
Article
128. Sumitani M, Ueda H, Hozumi J, Inoue R, Kogure T, Yamada Y, et al. 2016; Minocycline does not decrease intensity of neuropathic pain intensity, but does improve its affective dimension. J Pain Palliat Care Pharmacother. 30:31–5. DOI: 10.3109/15360288.2014.1003674. PMID: 25700217.
129. Habibi-Asl B, Hassanzadeh K, Charkhpour M. 2009; Central administration of minocycline and riluzole prevents morphine-induced tolerance in rats. Anesth Analg. 109:936–42. DOI: 10.1213/ane.0b013e3181ae5f13. PMID: 19690270.
Article
130. Mika J, Wawrzczak-Bargiela A, Osikowicz M, Makuch W, Przewlocka B. 2009; Attenuation of morphine tolerance by minocycline and pentoxifylline in naive and neuropathic mice. Brain Behav Immun. 23:75–84. DOI: 10.1016/j.bbi.2008.07.005. PMID: 18684397.
Article
131. Shin DA, Kim TU, Chang MC. 2021; Minocycline for controlling neuropathic pain: a systematic narrative review of studies in humans. J Pain Res. 14:139–45. DOI: 10.2147/JPR.S292824. PMID: 33536779. PMCID: PMC7849188.
Article
132. Pachman DR, Dockter T, Zekan PJ, Fruth B, Ruddy KJ, Ta LE, et al. 2017; A pilot study of minocycline for the prevention of paclitaxel-associated neuropathy:. ACCRU study RU221408I. Support Care Cancer. 25:3407–16. DOI: 10.1007/s00520-017-3760-2. PMID: 28551844.
133. Wang XS, Shi Q, Bhadkamkar NA, Cleeland CS, Garcia-Gonzalez A, Aguilar JR, et al. 2019; Minocycline for symptom reduction during oxaliplatin-based chemotherapy for colorectal cancer: a phase II randomized clinical trial. J Pain Symptom Manage. 58:662–71. DOI: 10.1016/j.jpainsymman.2019.06.018. PMID: 31254639. PMCID: PMC6754803.
Article
134. Wang XS, Shi Q, Mendoza T, Lin S, Chang JY, Bokhari RH, et al. 2020; Minocycline reduces chemoradiation-related symptom burden in patients with non-small cell lung cancer: a phase 2 randomized trial. Int J Radiat Oncol Biol Phys. 106:100–7. DOI: 10.1016/j.ijrobp.2019.10.010. PMID: 31627177. PMCID: PMC7043289.
Article
135. Martinez V, Szekely B, Lemarié J, Martin F, Gentili M, Ben Ammar S, et al. 2013; The efficacy of a glial inhibitor, minocycline, for preventing persistent pain after lumbar discectomy: a randomized, double-blind, controlled study. Pain. 154:1197–203. DOI: 10.1016/j.pain.2013.03.028. PMID: 23706627.
Article
136. Vanelderen P, Van Zundert J, Kozicz T, Puylaert M, De Vooght P, Mestrum R, et al. 2015; Effect of minocycline on lumbar radicular neuropathic pain: a randomized, placebo-controlled, double-blind clinical trial with amitriptyline as a comparator. Anesthesiology. 122:399–406. DOI: 10.1097/ALN.0000000000000508. PMID: 25373391.
137. Syngle A, Verma I, Krishan P, Garg N, Syngle V. 2014; Minocycline improves peripheral and autonomic neuropathy in type 2 diabetes: MIND study. Neurol Sci. 35:1067–73. DOI: 10.1007/s10072-014-1647-2. PMID: 24497205.
Article
138. Narang T, Dogra S. Arshdeep. 2017; Minocycline in leprosy patients with recent onset clinical nerve function impairment. Dermatol Ther. doi: 10.1111/dth.12404. DOI: 10.1111/dth.12404. PMID: 27550711.
Article
139. Curtin CM, Kenney D, Suarez P, Hentz VR, Hernandez-Boussard T, Mackey S, et al. 2017; A double-blind placebo randomized controlled trial of minocycline to reduce pain after carpal tunnel and trigger finger release. J Hand Surg Am. 42:166–74. DOI: 10.1016/j.jhsa.2016.12.011. PMID: 28259273.
Article
140. Martins AM, Marto JM, Johnson JL, Graber EM. 2021; A review of systemic minocycline side effects and topical minocycline as a safer alternative for treating acne and rosacea. Antibiotics (Basel). 10:757. DOI: 10.3390/antibiotics10070757. PMID: 34206485. PMCID: PMC8300648. PMID: da32ab3f5f504b2fb6262822bd816dde.
Article
141. Wozel G, Blasum C. 2014; Dapsone in dermatology and beyond. Arch Dermatol Res. 306:103–24. DOI: 10.1007/s00403-013-1409-7. PMID: 24310318. PMCID: PMC3927068.
Article
142. Wolf R, Matz H, Orion E, Tuzun B, Tuzun Y. 2002; Dapsone. Dermatol Online J. 8:2. DOI: 10.5070/D330M4B5KR. PMID: 12165212.
Article
143. Khalilzadeh M, Shayan M, Jourian S, Rahimi M, Sheibani M, Dehpour AR. 2022; A comprehensive insight into the anti-inflammatory properties of dapsone. Naunyn Schmiedebergs Arch Pharmacol. 395:1509–23. DOI: 10.1007/s00210-022-02297-1. PMID: 36125533.
Article
144. Suda T, Suzuki Y, Matsui T, Inoue T, Niide O, Yoshimaru T, et al. 2005; Dapsone suppresses human neutrophil superoxide production and elastase release in a calcium-dependent manner. Br J Dermatol. 152:887–95. DOI: 10.1111/j.1365-2133.2005.06559.x. PMID: 15888142.
Article
145. Ruzicka T, Wasserman SI, Soter NA, Printz MP. 1983; Inhibition of rat mast cell arachidonic acid cyclooxygenase by dapsone. J Allergy Clin Immunol. 72:365–70. DOI: 10.1016/0091-6749(83)90501-8. PMID: 6413566.
Article
146. Kanoh S, Tanabe T, Rubin BK. 2011; Dapsone inhibits IL-8 secretion from human bronchial epithelial cells stimulated with lipopolysaccharide and resolves airway inflammation in the ferret. Chest. 140:980–90. DOI: 10.1378/chest.10-2908. PMID: 21436242.
Article
147. Abe M, Shimizu A, Yokoyama Y, Takeuchi Y, Ishikawa O. 2008; A possible inhibitory action of diaminodiphenyl sulfone on tumour necrosis factor-alpha production from activated mononuclear cells on cutaneous lupus erythematosus. Clin Exp Dermatol. 33:759–63. DOI: 10.1111/j.1365-2230.2008.02864.x. PMID: 18713254.
148. Rodríguez E, Méndez-Armenta M, Villeda-Hernández J, Galván-Arzate S, Barroso-Moguel R, Rodríguez F, et al. 1999; Dapsone prevents morphological lesions and lipid peroxidation induced by quinolinic acid in rat corpus striatum. Toxicology. 139:111–8. DOI: 10.1016/S0300-483X(99)00116-X. PMID: 10614692.
Article
149. Santamaría A, Ordaz-Moreno J, Rubio-Osornio M, Solís-Hernández F, Ríos C. 1997; Neuroprotective effect of dapsone against quinolinate- and kainate-induced striatal neurotoxicities in rats. Pharmacol Toxicol. 81:271–5. PMID: 9444668.
150. Mata-Bermudez A, Diaz-Ruiz A, Burelo M, García-Martínez BA, Jardon-Guadarrama G, Calderón-Estrella F, et al. 2021; Dapsone prevents allodynia and hyperalgesia and decreased oxidative stress after spinal cord injury in rats. Spine (Phila Pa 1976). 46:1287–94. DOI: 10.1097/BRS.0000000000004015. PMID: 34517396.
Article
151. Ríos C, Orozco-Suarez S, Salgado-Ceballos H, Mendez-Armenta M, Nava-Ruiz C, Santander I, et al. 2015; Anti-apoptotic effects of dapsone after spinal cord injury in rats. Neurochem Res. 40:1243–51. DOI: 10.1007/s11064-015-1588-z. PMID: 25931161.
Article
152. Diaz-Ruiz A, Salgado-Ceballos H, Montes S, Guizar-Sahagún G, Gelista-Herrera N, Mendez-Armenta M, et al. 2011; Delayed administration of dapsone protects from tissue damage and improves recovery after spinal cord injury. J Neurosci Res. 89:373–80. DOI: 10.1002/jnr.22555. PMID: 21259324.
Article
153. Shayesteh S, Khalilzadeh M, Takzaree N, Dehpour AR. 2022; Dapsone improves the vincristine-induced neuropathic nociception by modulating neuroinflammation and oxidative stress. Daru. 30:303–10. DOI: 10.1007/s40199-022-00448-6. PMID: 36104653.
Article
154. Swinson DR, Zlosnick J, Jackson L. 1981; Double-blind trial of dapsone against placebo in the treatment of rheumatoid arthritis. Ann Rheum Dis. 40:235–9. DOI: 10.1136/ard.40.3.235. PMID: 7018409. PMCID: PMC1000754.
Article
155. Fowler PD, Shadforth MF, Crook PR, Lawton A. 1984; Report on chloroquine and dapsone in the treatment of rheumatoid arthritis: a 6-month comparative study. Ann Rheum Dis. 43:200–4. DOI: 10.1136/ard.43.2.200. PMID: 6370150. PMCID: PMC1001465.
Article
156. Haar D, Sølvkjaer M, Unger B, Rasmussen KJ, Christensen L, Hansen TM. 1993; A double-blind comparative study of hydroxychloroquine and dapsone, alone and in combination, in rheumatoid arthritis. Scand J Rheumatol. 22:113–8. DOI: 10.3109/03009749309099254. PMID: 8316771.
Article
157. Gusdorf L, Lipsker D. 2018; Neutrophilic urticarial dermatosis: a review. Ann Dermatol Venereol. 145:735–40. DOI: 10.1016/j.annder.2018.06.010. PMID: 30224079.
Article
158. Shi H, Gudjonsson JE, Kahlenberg JM. 2020; Treatment of cutaneous lupus erythematosus: current approaches and future strategies. Curr Opin Rheumatol. 32:208–14. DOI: 10.1097/BOR.0000000000000704. PMID: 32141953. PMCID: PMC7357847.
Article
159. Zampeli E, Moutsopoulos HM. 2019; Dapsone: an old drug effective for subacute cutaneous lupus erythematosus. Rheumatology (Oxford). 58:920–1. DOI: 10.1093/rheumatology/key434. PMID: 30615176.
Article
160. Ujiie H, Shimizu T, Ito M, Arita K, Shimizu H. 2006; Lupus erythematosus profundus successfully treated with dapsone: review of the literature. Arch Dermatol. 142:399–401. DOI: 10.1001/archderm.142.3.399. PMID: 16549729.
Article
161. de Risi-Pugliese T, Cohen Aubart F, Haroche J, Moguelet P, Grootenboer-Mignot S, Mathian A, et al. 2018; Clinical, histological, immunological presentations and outcomes of bullous systemic lupus erythematosus: 10 new cases and a literature review of 118 cases. Semin Arthritis Rheum. 48:83–9. DOI: 10.1016/j.semarthrit.2017.11.003. PMID: 29191376.
Article
162. Lu Q, Long H, Chow S, Hidayat S, Danarti R, Listiawan Y, et al. 2021; Guideline for the diagnosis, treatment and long-term management of cutaneous lupus erythematosus. J Autoimmun. 123:102707. DOI: 10.1016/j.jaut.2021.102707. PMID: 34364171.
Article
163. Diaz-Ruiz A, Nader-Kawachi J, Calderón-Estrella F, Mata-Bermudez A, Alvarez-Mejia L, Ríos C. 2022; Dapsone, more than an effective neuro and cytoprotective drug. Curr Neuropharmacol. 20:194–210. DOI: 10.2174/1570159X19666210617143108. PMID: 34139984. PMCID: PMC9199557.
Article
164. Nader-Kawachi J, Góngora-Rivera F, Santos-Zambrano J, Calzada P, Ríos C. 2007; Neuroprotective effect of dapsone in patients with acute ischemic stroke: a pilot study. Neurol Res. 29:331–4. DOI: 10.1179/016164107X159234. PMID: 17509235.
Article
165. Lee JH, Lee CJ, Park J, Lee SJ, Choi SH. 2021; The neuroinflammasome in Alzheimer's disease and cerebral stroke. Dement Geriatr Cogn Dis Extra. 11:159–67. DOI: 10.1159/000516074. PMID: 34249072. PMCID: PMC8255751. PMID: a5c8a32d4da94fd48eba1782c1ca6df3.
Article
166. Walling HW, Sontheimer RD. 2009; Cutaneous lupus erythematosus: issues in diagnosis and treatment. Am J Clin Dermatol. 10:365–81. DOI: 10.2165/11310780-000000000-00000. PMID: 19824738.
167. Ahrens EM, Meckler RJ, Callen JP. 1986; Dapsone-induced peripheral neuropathy. Int J Dermatol. 25:314–6. DOI: 10.1111/j.1365-4362.1986.tb02253.x. PMID: 3013789.
Article
168. Gutmann L, Martin JD, Welton W. 1976; Dapsone motor neuropathy--an axonal disease. Neurology. 26(6 PT 1):514–6. DOI: 10.1212/WNL.26.6.514. PMID: 945490.
Article
169. Prussick R, Shear NH. 1996; Dapsone hypersensitivity syndrome. J Am Acad Dermatol. 35(2 Pt 2):346–9. DOI: 10.1016/S0190-9622(96)90667-2. PMID: 8698924.
Article
170. Zaccone G, Capillo G, Fernandes JMO, Kiron V, Lauriano ER, Alesci A, et al. 2022; Expression of the antimicrobial peptide Piscidin 1 and neuropeptides in fish gill and skin: a potential participation in neuro-immune interaction. Mar Drugs. 20:145. DOI: 10.3390/md20020145. PMID: 35200674. PMCID: PMC8879440. PMID: ba10a61b534341f7a8705c598edcd270.
Article
171. Lauriano ER, Capillo G, Icardo JM, Fernandes JMO, Kiron V, Kuciel M, et al. 2021; Neuroepithelial cells (NECs) and mucous cells express a variety of neurotransmitters and neurotransmitter receptors in the gill and respiratory air-sac of the catfish Heteropneustes fossilis (Siluriformes, Heteropneustidae): a possible role in local immune defence. Zoology (Jena). 148:125958. DOI: 10.1016/j.zool.2021.125958. PMID: 34399394.
Article
172. Salger SA, Cassady KR, Reading BJ, Noga EJ. 2016; A diverse family of host-defense peptides (Piscidins) exhibit specialized anti-bacterial and anti-protozoal activities in fishes. PLoS One. 11:e0159423. DOI: 10.1371/journal.pone.0159423. PMID: 27552222. PMCID: PMC4995043. PMID: 3c4c4d9f0bb84ef58a74cc542a1d6019.
Article
173. Chen WF, Huang SY, Liao CY, Sung CS, Chen JY, Wen ZH. 2015; The use of the antimicrobial peptide piscidin (PCD)-1 as a novel anti-nociceptive agent. Biomaterials. 53:1–11. DOI: 10.1016/j.biomaterials.2015.02.069. PMID: 25890701.
Article
174. Cheng MH, Pan CY, Chen NF, Yang SN, Hsieh S, Wen ZH, et al. 2020; Piscidin-1 induces apoptosis via mitochondrial reactive oxygen species-regulated mitochondrial dysfunction in human osteosarcoma cells. Sci Rep. 10:5045. DOI: 10.1038/s41598-020-61876-5. PMID: 32193508. PMCID: PMC7081333.
Article
175. Ting CH, Chen YC, Wu CJ, Chen JY. 2016; Targeting FOSB with a cationic antimicrobial peptide, TP4, for treatment of triple-negative breast cancer. Oncotarget. 7:40329–47. DOI: 10.18632/oncotarget.9612. PMID: 27248170. PMCID: PMC5130011.
176. Ban TA. 2006; The role of serendipity in drug discovery. Dialogues Clin Neurosci. 8:335–44. DOI: 10.31887/DCNS.2006.8.3/tban. PMID: 17117615. PMCID: PMC3181823.
Article
177. Theuretzbacher U, Outterson K, Engel A, Karlén A. 2020; The global preclinical antibacterial pipeline. Nat Rev Microbiol. 18:275–85. DOI: 10.1038/s41579-019-0288-0. PMID: 31745331. PMCID: PMC7223541.
Article
178. Mouraux A, Bannister K, Becker S, Finn DP, Pickering G, Pogatzki-Zahn E, et al. 2021; Challenges and opportunities in translational pain research - An opinion paper of the working group on translational pain research of the European pain federation (EFIC). Eur J Pain. 25:731–56. DOI: 10.1002/ejp.1730. PMID: 33625769. PMCID: PMC9290702.
Article
179. Lapolla W, Digiorgio C, Haitz K, Magel G, Mendoza N, Grady J, et al. 2011; Incidence of postherpetic neuralgia after combination treatment with gabapentin and valacyclovir in patients with acute herpes zoster: open-label study. Arch Dermatol. 147:901–7. DOI: 10.1001/archdermatol.2011.81. PMID: 21482862.
Article
Full Text Links
  • KJP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr