3. Kramer S, Baeumler P, Geber C, Fleckenstein J, Simang M, Haas L, et al. 2019; Somatosensory profiles in acute herpes zoster and predictors of postherpetic neuralgia. Pain. 160:882–94. DOI:
10.1097/j.pain.0000000000001467. PMID:
30585985.
Article
4. Gilligan CJ, Cohen SP, Fischetti VA, Hirsch JA, Czaplewski LG. 2021; Chronic low back pain, bacterial infection and treatment with antibiotics. Spine J. 21:903–14. DOI:
10.1016/j.spinee.2021.02.013. PMID:
33610802.
Article
8. Gilbert DN, Chambers HF, Saag MS, Pavia AT, Boucher HW.
9. Crockett MT, Kelly BS, van Baarsel S, Kavanagh EC. 2017; Modic type 1 vertebral endplate changes: injury, inflammation, or infection? AJR Am J Roentgenol. 209:167–70. DOI:
10.2214/AJR.16.17403. PMID:
28402132.
Article
10. Albert HB, Lambert P, Rollason J, Sorensen JS, Worthington T, Pedersen MB, et al. 2013; Does nuclear tissue infected with bacteria following disc herniations lead to Modic changes in the adjacent vertebrae? Eur Spine J. 22:690–6. DOI:
10.1007/s00586-013-2674-z. PMID:
23397187. PMCID:
PMC3631023.
Article
11. Albert HB, Sorensen JS, Christensen BS, Manniche C. 2013; Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double-blind randomized clinical controlled trial of efficacy. Eur Spine J. 22:697–707. DOI:
10.1007/s00586-013-2675-y. PMID:
23404353. PMCID:
PMC3631045.
Article
12. Bråten LCH, Rolfsen MP, Espeland A, Wigemyr M, Aßmus J, Froholdt A, et al. AIM study group. 2019; Efficacy of antibiotic treatment in patients with chronic low back pain and Modic changes (the AIM study): double blind, randomised, placebo controlled, multicentre trial. BMJ. 367:l5654. DOI:
10.1136/bmj.l5654. PMID:
31619437. PMCID:
PMC6812614.
Article
13. Ford AC, Harris LA, Lacy BE, Quigley EMM, Moayyedi P. 2018; Systematic review with meta-analysis: the efficacy of prebiotics, probiotics, synbiotics and antibiotics in irritable bowel syndrome. Aliment Pharmacol Ther. 48:1044–60. DOI:
10.1111/apt.15001. PMID:
30294792.
Article
14. Norton C, Czuber-Dochan W, Artom M, Sweeney L, Hart A. 2017; Systematic review: interventions for abdominal pain management in inflammatory bowel disease. Aliment Pharmacol Ther. 46:115–25. DOI:
10.1111/apt.14108. PMID:
28470846.
Article
15. Castiglione F, Rispo A, Di Girolamo E, Cozzolino A, Manguso F, Grassia R, et al. 2003; Antibiotic treatment of small bowel bacterial overgrowth in patients with Crohn's disease. Aliment Pharmacol Ther. 18:1107–12. DOI:
10.1046/j.1365-2036.2003.01800.x. PMID:
14653830.
Article
16. Anothaisintawee T, Attia J, Nickel JC, Thammakraisorn S, Numthavaj P, McEvoy M, et al. 2011; Management of chronic prostatitis/chronic pelvic pain syndrome: a systematic review and network meta-analysis. JAMA. 305:78–86. DOI:
10.1001/jama.2010.1913. PMID:
21205969.
Article
17. Du LJ, Chen BR, Kim JJ, Kim S, Shen JH, Dai N. 2016; Helicobacter pylori eradication therapy for functional dyspepsia: systematic review and meta-analysis. World J Gastroenterol. 22:3486–95. DOI:
10.3748/wjg.v22.i12.3486. PMID:
27022230. PMCID:
PMC4806206.
18. Tan VP, Liu KS, Lam FY, Hung IF, Yuen MF, Leung WK. 2017; Randomised clinical trial: rifaximin versus placebo for the treatment of functional dyspepsia. Aliment Pharmacol Ther. 45:767–76. DOI:
10.1111/apt.13945. PMID:
28112426.
Article
20. Sugano K, Tack J, Kuipers EJ, Graham DY, El-Omar EM, Miura S, et al. faculty members of Kyoto Global Consensus Conference. 2015; Kyoto global consensus report on Helicobacter pylori gastritis. Gut. 64:1353–67. DOI:
10.1136/gutjnl-2015-309252. PMID:
26187502. PMCID:
PMC4552923.
Article
22. Bennett JE, Dolin R, Blaser MJ. 2015. Mandell, Douglas, and Bennett's principles and practice of infectious diseases. 8th ed. Saunders;p. 278–92.e4. DOI:
10.1016/c2012-1-00075-6.
23. Bui T, Preuss CV. 2023. Cephalosporins. StatPearls [Internet]. StatPearls Publishing.
Article
24. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, et al. 2005; Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 433:73–7. DOI:
10.1038/nature03180. PMID:
15635412.
Article
25. Hu Y, Li W, Lu L, Cai J, Xian X, Zhang M, et al. 2010; An anti-nociceptive role for ceftriaxone in chronic neuropathic pain in rats. Pain. 148:284–301. DOI:
10.1016/j.pain.2009.11.014. PMID:
20022427.
Article
26. Hajhashemi V, Hosseinzadeh H, Amin B. 2013; Antiallodynia and antihyperalgesia effects of ceftriaxone in treatment of chronic neuropathic pain in rats. Acta Neuropsychiatr. 25:27–32. DOI:
10.1111/j.1601-5215.2012.00656.x. PMID:
26953071.
Article
27. Amin B, Hajhashemi V, Hosseinzadeh H. Abnous Kh. 2012; Antinociceptive evaluation of ceftriaxone and minocycline alone and in combination in a neuropathic pain model in rat. Neuroscience. 224:15–25. DOI:
10.1016/j.neuroscience.2012.07.058. PMID:
22871519.
Article
29. Mohan A, Lefstein KM, Chang E. 2021; Minocycline and cephalexin in a patient with spastic neuropathic pain secondary to neurosarcoidosis. Pain Med. 22:2767–79. DOI:
10.1093/pm/pnab044. PMID:
33560414.
Article
30. Macaluso A, Bernabucci M, Trabucco A, Ciolli L, Troisi F, Baldini R, et al. 2013; Analgesic effect of a single preoperative dose of the antibiotic ceftriaxone in humans. J Pain. 14:604–12. DOI:
10.1016/j.jpain.2013.01.774. PMID:
23725677.
Article
31. Rao PS, Goodwani S, Bell RL, Wei Y, Boddu SH, Sari Y. 2015; Effects of ampicillin, cefazolin and cefoperazone treatments on GLT-1 expressions in the mesocorticolimbic system and ethanol intake in alcohol-preferring rats. Neuroscience. 295:164–74. DOI:
10.1016/j.neuroscience.2015.03.038. PMID:
25813713. PMCID:
PMC4408259.
Article
32. Loustaud-Ratti V, Debette-Gratien M, Jacques J, Alain S, Marquet P, Sautereau D, et al. 2016; Ribavirin: past, present and future. World J Hepatol. 8:123–30. DOI:
10.4254/wjh.v8.i2.123. PMID:
26807208. PMCID:
PMC4716528.
Article
33. Dixit NM, Perelson AS. 2006; The metabolism, pharmacokinetics and mechanisms of antiviral activity of ribavirin against hepatitis C virus. Cell Mol Life Sci. 63:832–42. DOI:
10.1007/s00018-005-5455-y. PMID:
16501888.
Article
35. Milicevic I, Pekovic S, Subasic S, Mostarica-Stojkovic M, Stosic-Grujicic S, Medic-Mijacevic L, et al. 2003; Ribavirin reduces clinical signs and pathological changes of experimental autoimmune encephalomyelitis in Dark Agouti rats. J Neurosci Res. 72:268–78. DOI:
10.1002/jnr.10552. PMID:
12672002.
Article
36. Lavrnja I, Savic D, Bjelobaba I, Dacic S, Bozic I, Parabucki A, et al. 2012; The effect of ribavirin on reactive astrogliosis in experimental autoimmune encephalomyelitis. J Pharmacol Sci. 119:221–32. DOI:
10.1254/jphs.12004FP. PMID:
22785017.
Article
37. Liao SH, Li Y, Lai YN, Liu N, Zhang FX, Xu PP. 2017; Ribavirin attenuates the respiratory immune responses to influenza viral infection in mice. Arch Virol. 162:1661–9. DOI:
10.1007/s00705-017-3291-7. PMID:
28243801.
Article
39. Fanouriakis A, Kostopoulou M, Alunno A, Aringer M, Bajema I, Boletis JN, et al. 2019; 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann Rheum Dis. 78:736–45. DOI:
10.1136/annrheumdis-2019-215089. PMID:
30926722.
Article
40. Rempenault C, Combe B, Barnetche T, Gaujoux-Viala C, Lukas C, Morel J, et al. 2020; Clinical and structural efficacy of hydroxychloroquine in rheumatoid arthritis: a systematic review. Arthritis Care Res (Hoboken). 72:36–40. DOI:
10.1002/acr.23826. PMID:
30629341.
Article
41. Smolen JS, Landewé RBM, Bergstra SA, Kerschbaumer A, Sepriano A, Aletaha D, et al. 2023; EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann Rheum Dis. 82:3–18. Erratum in: Ann Rheum Dis 2023; 82: e76. DOI:
10.1136/ard-2022-223356corr1. PMID:
36764818.
42. inivasa A Sr, Tosounidou S, Gordon C. 2017; Increased incidence of gastrointestinal side effects in patients taking hydroxychloroquine: a brand-related issue? J Rheumatol. 44:398. DOI:
10.3899/jrheum.161063. PMID:
28250164.
Article
43. Khosa S, Khanlou N, Khosa GS, Mishra SK. 2018; Hydroxychloroquine-induced autophagic vacuolar myopathy with mitochondrial abnormalities. Neuropathology. 38:646–52. DOI:
10.1111/neup.12520. PMID:
30411412.
Article
44. Jorge A, Ung C, Young LH, Melles RB, Choi HK. 2018; Hydroxychloroquine retinopathy - implications of research advances for rheumatology care. Nat Rev Rheumatol. 14:693–703. DOI:
10.1038/s41584-018-0111-8. PMID:
30401979.
Article
46. Kuznik A, Bencina M, Svajger U, Jeras M, Rozman B, Jerala R. 2011; Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol. 186:4794–804. DOI:
10.4049/jimmunol.1000702. PMID:
21398612.
Article
47. Jang CH, Choi JH, Byun MS, Jue DM. 2006; Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. Rheumatology (Oxford). 45:703–10. DOI:
10.1093/rheumatology/kei282. PMID:
16418198.
49. Schrezenmeier E, Dörner T. 2020; Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol. 16:155–66. DOI:
10.1038/s41584-020-0372-x. PMID:
32034323.
Article
51. Chou AK, Chiu CC, Wang JJ, Chen YW, Hung CH. 2021; Antimalarial primaquine for spinal sensory and motor blockade in rats. J Pharm Pharmacol. 73:1513–9. DOI:
10.1093/jpp/rgab054. PMID:
34370863.
Article
53. Chang YJ, Liu KS, Wang JJ, Chen YW, Hung CH. 2021; Antimalarial primaquine for skin infiltration analgesia in rats. J Pharm Pharmacol. 73:206–11. DOI:
10.1093/jpp/rgaa021. PMID:
33793809.
Article
54. Sánchez-Chapula JA, Salinas-Stefanon E, Torres-Jácome J, Benavides-Haro DE, Navarro-Polanco RA. 2001; Blockade of currents by the antimalarial drug chloroquine in feline ventricular myocytes. J Pharmacol Exp Ther. 297:437–45. PMID:
11259572.
55. Lee W, Ruijgrok L, Boxma-de Klerk B, Kok MR, Kloppenburg M, Gerards A, et al. 2018; Efficacy of hydroxychloroquine in hand osteoarthritis: a randomized, double-blind, placebo-controlled trial. Arthritis Care Res (Hoboken). 70:1320–5. DOI:
10.1002/acr.23471. PMID:
29125901.
Article
56. Kingsbury SR, Tharmanathan P, Keding A, Ronaldson SJ, Grainger A, Wakefield RJ, et al. 2018; Hydroxychloroquine effectiveness in reducing symptoms of hand osteoarthritis: a randomized trial. Ann Intern Med. 168:385–95. DOI:
10.7326/M17-1430. PMID:
29459986.
Article
57. Ronaldson SJ, Keding A, Tharmanathan P, Arundel C, Kingsbury SR, Conaghan PG, et al. 2021; Cost-effectiveness of hydroxychloroquine versus placebo for hand osteoarthritis: economic evaluation of the HERO trial. F1000Res. 10:821. DOI:
10.12688/f1000research.55296.1. PMID:
34950454. PMCID:
PMC8666991.
Article
58. Williams HJ, Egger MJ, Singer JZ, Willkens RF, Kalunian KC, Clegg DO, et al. 1994; Comparison of hydroxychloroquine and placebo in the treatment of the arthropathy of mild systemic lupus erythematosus. J Rheumatol. 21:1457–62. PMID:
7983646.
59. Kedor C, Detert J, Rau R, Wassenberg S, Listing J, Klaus P, et al. 2021; Hydroxychloroquine in patients with inflammatory and erosive osteoarthritis of the hands: results of the OA-TREAT study-a randomised, double-blind, placebo-controlled, multicentre, investigator-initiated trial. RMD Open. 7:e001660. DOI:
10.1136/rmdopen-2021-001660. PMID:
34215704. PMCID:
PMC8256837. PMID:
2d97159671014276959a240b70ed3576.
Article
61. Rodrigo C, Herath T, Wickramarachchi U, Fernando D, Rajapakse S. 2022; Treatment of chikungunya-associated joint pain: a systematic review of controlled clinical trials. Trans R Soc Trop Med Hyg. 116:889–99. DOI:
10.1093/trstmh/trac045. PMID:
35666998.
Article
63. Yeshurun A, Bergman R, Bathish N, Khamaysi Z. 2019; Hydroxychloroquine sulphate therapy of erosive oral lichen planus. Australas J Dermatol. 60:e109–12. DOI:
10.1111/ajd.12948. PMID:
30411331.
Article
64. Vermeer HAB, Rashid H, Esajas MD, Oldhoff JM, Horváth B. 2021; The use of hydroxychloroquine as a systemic treatment in erosive lichen planus of the vulva and vagina. Br J Dermatol. 185:201–3. DOI:
10.1111/bjd.19870. PMID:
33548058. PMCID:
PMC8360049.
Article
68. Benjamin D, Colombi M, Moroni C, Hall MN. 2011; Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov. 10:868–80. DOI:
10.1038/nrd3531. PMID:
22037041.
Article
69. Gibbons JJ, Abraham RT, Yu K. 2009; Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth. Semin Oncol. 36 Suppl 3:S3–17. DOI:
10.1053/j.seminoncol.2009.10.011. PMID:
19963098.
Article
70. Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, et al. RAD001 in Advanced Neuroendocrine Tumors. Third Trial (RADIANT-3) Study Group. 2011; Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 364:514–23. DOI:
10.1056/NEJMoa1009290. PMID:
21306238. PMCID:
PMC4208619.
Article
71. Yangyun W, Guowei S, Shufen S, Jie Y, Rui Y, Yu R. 2022; Everolimus accelerates Erastin and RSL3-induced ferroptosis in renal cell carcinoma. Gene. 809:145992. DOI:
10.1016/j.gene.2021.145992. PMID:
34648917.
Article
72. Khan NA, Nikkanen J, Yatsuga S, Jackson C, Wang L, Pradhan S, et al. 2017; mTORC1 regulates mitochondrial integrated stress response and mitochondrial myopathy progression. Cell Metab. 26:419–28.e5. DOI:
10.1016/j.cmet.2017.07.007. PMID:
28768179.
Article
73. Kang J, Feng D, Yang F, Tian X, Han W, Jia H. 2020; Comparison of rapamycin and methylprednisolone for treating inflammatory muscle disease in a murine model of experimental autoimmune myositis. Exp Ther Med. 20:219–26. DOI:
10.3892/etm.2020.8716. PMID:
32536994. PMCID:
PMC7291653.
Article
74. Lilleker JB, Bukhari M, Chinoy H. 2019; Rapamycin for inclusion body myositis: targeting non-inflammatory mechanisms. Rheumatology (Oxford). 58:375–6. DOI:
10.1093/rheumatology/key043. PMID:
29529264.
Article
75. Khaibullina A, Almeida LE, Wang L, Kamimura S, Wong EC, Nouraie M, et al. 2015; Rapamycin increases fetal hemoglobin and ameliorates the nociception phenotype in sickle cell mice. Blood Cells Mol Dis. 55:363–72. DOI:
10.1016/j.bcmd.2015.08.001. PMID:
26460261.
Article
76. Busquets-Garcia A, Gomis-González M, Guegan T, Agustín-Pavón C, Pastor A, Mato S, et al. 2013; Targeting the endocannabinoid system in the treatment of fragile X syndrome. Nat Med. 19:603–7. DOI:
10.1038/nm.3127. PMID:
23542787.
Article
77. Waldner M, Fantus D, Solari M, Thomson AW. 2016; New perspectives on mTOR inhibitors (rapamycin, rapalogs and TORKinibs) in transplantation. Br J Clin Pharmacol. 82:1158–70. DOI:
10.1111/bcp.12893. PMID:
26810941. PMCID:
PMC5061789.
Article
80. Lv J, Li Z, She S, Xu L, Ying Y. 2015; Effects of intrathecal injection of rapamycin on pain threshold and spinal cord glial activation in rats with neuropathic pain. Neurol Res. 37:739–43. DOI:
10.1179/1743132815Y.0000000052. PMID:
26004146.
Article
81. Feng T, Yin Q, Weng ZL, Zhang JC, Wang KF, Yuan SY, et al. 2014; Rapamycin ameliorates neuropathic pain by activating autophagy and inhibiting interleukin-1β in the rat spinal cord. J Huazhong Univ Sci Technolog Med Sci. 34:830–7. DOI:
10.1007/s11596-014-1361-6. PMID:
25480578.
Article
82. Tateda S, Kanno H, Ozawa H, Sekiguchi A, Yahata K, Yamaya S, et al. 2017; Rapamycin suppresses microglial activation and reduces the development of neuropathic pain after spinal cord injury. J Orthop Res. 35:93–103. DOI:
10.1002/jor.23328. PMID:
27279283.
Article
83. Zhang X, Jiang N, Li J, Zhang D, Lv X. 2019; Rapamycin alleviates proinflammatory cytokines and nociceptive behavior induced by chemotherapeutic paclitaxel. Neurol Res. 41:52–9. DOI:
10.1080/01616412.2018.1531199. PMID:
30325723.
Article
84. Kwon M, Han J, Kim UJ, Cha M, Um SW, Bai SJ, et al. 2017; Inhibition of mammalian target of rapamycin (mTOR) signaling in the insular cortex alleviates neuropathic pain after peripheral nerve injury. Front Mol Neurosci. 10:79. DOI:
10.3389/fnmol.2017.00079. PMID:
28377693. PMCID:
PMC5359287.
Article
85. Asante CO, Wallace VC, Dickenson AH. 2010; Mammalian target of rapamycin signaling in the spinal cord is required for neuronal plasticity and behavioral hypersensitivity associated with neuropathy in the rat. J Pain. 11:1356–67. DOI:
10.1016/j.jpain.2010.03.013. PMID:
20452291. PMCID:
PMC3000494.
Article
86. Géranton SM, Jiménez-Díaz L, Torsney C, Tochiki KK, Stuart SA, Leith JL, et al. 2009; A rapamycin-sensitive signaling pathway is essential for the full expression of persistent pain states. J Neurosci. 29:15017–27. DOI:
10.1523/JNEUROSCI.3451-09.2009. PMID:
19940197. PMCID:
PMC2830115.
Article
87. Chen WH, Chang YT, Chen YC, Cheng SJ, Chen CC. 2018; Spinal protein kinase C/extracellular signal-regulated kinase signal pathway mediates hyperalgesia priming. Pain. 159:907–18. DOI:
10.1097/j.pain.0000000000001162. PMID:
29672451.
Article
88. Lyu D, Yu W, Tang N, Wang R, Zhao Z, Xie F, et al. 2013; The mTOR signaling pathway regulates pain-related synaptic plasticity in rat entorhinal-hippocampal pathways. Mol Pain. 9:64. DOI:
10.1186/1744-8069-9-64. PMID:
24313960. PMCID:
PMC3892125.
Article
89. Abdelaziz DM, Stone LS, Komarova SV. 2014; Osteolysis and pain due to experimental bone metastases are improved by treatment with rapamycin. Breast Cancer Res Treat. 143:227–37. DOI:
10.1007/s10549-013-2799-0. PMID:
24327332.
Article
90. Xu JT, Zhao JY, Zhao X, Ligons D, Tiwari V, Atianjoh FE, et al. 2014; Opioid receptor-triggered spinal mTORC1 activation contributes to morphine tolerance and hyperalgesia. J Clin Invest. 124:592–603. DOI:
10.1172/JCI70236. PMID:
24382350. PMCID:
PMC3904613.
Article
92. Zhang J, Wang Y, Qi X. 2019; Systemic rapamycin attenuates morphine-induced analgesic tolerance and hyperalgesia in mice. Neurochem Res. 44:465–71. DOI:
10.1007/s11064-018-2699-0. PMID:
30547365.
Article
93. Shirooie S, Sahebgharani M, Esmaeili J, Dehpour AR. 2019; In vitro evaluation of effects of metformin on morphine and methadone tolerance through mammalian target of rapamycin signaling pathway. J Cell Physiol. 234:3058–66. DOI:
10.1002/jcp.27125. PMID:
30146703.
Article
94. Nguyen LS, Vautier M, Allenbach Y, Zahr N, Benveniste O, Funck-Brentano C, et al. 2019; Sirolimus and mTOR inhibitors: a review of side effects and specific management in solid organ transplantation. Drug Saf. 42:813–25. DOI:
10.1007/s40264-019-00810-9. PMID:
30868436.
Article
95. Zhou YQ, Liu DQ, Chen SP, Sun J, Wang XM, Tian YK, et al. 2018; Minocycline as a promising therapeutic strategy for chronic pain. Pharmacol Res. 134:305–10. DOI:
10.1016/j.phrs.2018.07.002. PMID:
30042091.
Article
96. Bastos LF, Merlo LA, Rocha LT, Coelho MM. 2007; Characterization of the antinociceptive and anti-inflammatory activities of doxycycline and minocycline in different experimental models. Eur J Pharmacol. 576:171–9. DOI:
10.1016/j.ejphar.2007.07.049. PMID:
17719028.
Article
97. Bastos LF, Angusti A, Vilaça MC, Merlo LA, Nascimento EB Jr, Rocha LT, et al. 2008; A novel non-antibacterial, non-chelating hydroxypyrazoline derivative of minocycline inhibits nociception and oedema in mice. Br J Pharmacol. 155:714–21. DOI:
10.1038/bjp.2008.303. PMID:
18660827. PMCID:
PMC2584916.
Article
100. Tabassum S, Misrani A, Huo Q, Ahmed A, Long C, Yang L. 2022; Minocycline ameliorates chronic unpredictable mild stress-induced neuroinflammation and abnormal mPFC-HIPP oscillations in mice. Mol Neurobiol. 59:6874–95. DOI:
10.1007/s12035-022-03018-8. PMID:
36048340.
Article
101. Padi SS, Kulkarni SK. 2008; Minocycline prevents the development of neuropathic pain, but not acute pain: possible anti-inflammatory and antioxidant mechanisms. Eur J Pharmacol. 601:79–87. DOI:
10.1016/j.ejphar.2008.10.018. PMID:
18952075.
Article
102. Mika J, Rojewska E, Makuch W, Przewlocka B. 2010; Minocycline reduces the injury-induced expression of prodynorphin and pronociceptin in the dorsal root ganglion in a rat model of neuropathic pain. Neuroscience. 165:1420–8. DOI:
10.1016/j.neuroscience.2009.11.064. PMID:
19961904.
Article
104. Sung CS, Cherng CH, Wen ZH, Chang WK, Huang SY, Lin SL, et al. 2012; Minocycline and fluorocitrate suppress spinal nociceptive signaling in intrathecal IL-1β-induced thermal hyperalgesic rats. Glia. 60:2004–17. DOI:
10.1002/glia.22415. PMID:
22972308.
Article
105. Mei XP, Sakuma Y, Xie C, Wu D, Ho I, Kotani J, et al. 2014; Depressing interleukin-1β contributed to the synergistic effects of tramadol and minocycline on spinal nerve ligation-induced neuropathic pain. Neurosignals. 22:30–42. DOI:
10.1159/000355071. PMID:
24157594. PMID:
6e88a4f509b34c288b42bc8ef2699ec4.
Article
106. Saito O, Svensson CI, Buczynski MW, Wegner K, Hua XY, Codeluppi S, et al. 2010; Spinal glial TLR4-mediated nociception and production of prostaglandin E(2) and TNF. Br J Pharmacol. 160:1754–64. DOI:
10.1111/j.1476-5381.2010.00811.x. PMID:
20649577. PMCID:
PMC2936846.
107. Ismail CAN, Ghazali AK, Suppian R, Abd Aziz CB, Long I. 2021; Minocycline alleviates nociceptive response through modulating the expression of NR2B subunit of NMDA receptor in spinal cord of rat model of painful diabetic neuropathy. J Diabetes Metab Disord. 20:793–803. DOI:
10.1007/s40200-021-00820-4. PMID:
34178864. PMCID:
PMC8212342.
Article
108. Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, et al. 2010; Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol. 68:360–8. DOI:
10.1002/ana.22082. PMID:
20818791. PMCID:
PMC4836445.
109. Wang HL, Liu H, Xue ZG, Liao QW, Fang H. 2016; Minocycline attenuates post-operative cognitive impairment in aged mice by inhibiting microglia activation. J Cell Mol Med. 20:1632–9. DOI:
10.1111/jcmm.12854. PMID:
27061744. PMCID:
PMC4988280.
Article
110. Takazawa T, Horiuchi T, Orihara M, Nagumo K, Tomioka A, Ideno Y, et al. 2023; Prevention of postoperative cognitive dysfunction by minocycline in elderly patients after total knee arthroplasty: a randomized, double-blind, placebo-controlled clinical trial. Anesthesiology. 138:172–83. DOI:
10.1097/ALN.0000000000004439. PMID:
36538374.
Article
111. Lin CS, Tsaur ML, Chen CC, Wang TY, Lin CF, Lai YL, et al. 2007; Chronic intrathecal infusion of minocycline prevents the development of spinal-nerve ligation-induced pain in rats. Reg Anesth Pain Med. 32:209–16. DOI:
10.1016/j.rapm.2007.01.005. PMID:
17543815.
Article
112. Taguchi T, Katanosaka K, Yasui M, Hayashi K, Yamashita M, Wakatsuki K, et al. 2015; Peripheral and spinal mechanisms of nociception in a rat reserpine-induced pain model. Pain. 156:415–27. DOI:
10.1097/01.j.pain.0000460334.49525.5e. PMID:
25599239.
Article
114. Masocha W. 2014; Paclitaxel-induced hyposensitivity to nociceptive chemical stimulation in mice can be prevented by treatment with minocycline. Sci Rep. 4:6719. DOI:
10.1038/srep06719. PMID:
25335491. PMCID:
PMC4205835.
Article
115. Ismail CAN, Suppian R, Aziz CBA, Long I. 2019; Minocycline attenuates the development of diabetic neuropathy by modulating DREAM and BDNF protein expression in rat spinal cord. J Diabetes Metab Disord. 18:181–90. DOI:
10.1007/s40200-019-00411-4. PMID:
31275889. PMCID:
PMC6582076.
Article
116. Amorim D, Puga S, Bragança R, Braga A, Pertovaara A, Almeida A, et al. 2017; Minocycline reduces mechanical allodynia and depressive-like behaviour in type-1 diabetes mellitus in the rat. Behav Brain Res. 327:1–10. DOI:
10.1016/j.bbr.2017.03.003. PMID:
28286285.
Article
117. Miranda HF, Sierralta F, Jorquera V, Poblete P, Prieto JC, Noriega V. 2017; Antinociceptive interaction of gabapentin with minocycline in murine diabetic neuropathy. Inflammopharmacology. 25:91–7. Erratum in: Inflammopharmacology 2017; 25: 485. DOI:
10.1007/s10787-017-0308-5. PMID:
28155118.
Article
118. Bastos LF, Prazeres JD, Godin AM, Menezes RR, Soares DG, Ferreira WC, et al. 2013; Sex-independent suppression of experimental inflammatory pain by minocycline in two mouse strains. Neurosci Lett. 553:110–4. DOI:
10.1016/j.neulet.2013.08.026. PMID:
23973305.
Article
119. Cho IH, Chung YM, Park CK, Park SH, Lee H, Kim D, et al. 2006; Systemic administration of minocycline inhibits formalin-induced inflammatory pain in rat. Brain Res. 1072:208–14. Erratum in: Brain Res 2012; 1464: 89. DOI:
10.1016/j.brainres.2012.05.003. PMID:
16427032.
Article
121. Kannampalli P, Pochiraju S, Bruckert M, Shaker R, Banerjee B, Sengupta JN. 2014; Analgesic effect of minocycline in rat model of inflammation-induced visceral pain. Eur J Pharmacol. 727:87–98. DOI:
10.1016/j.ejphar.2014.01.026. PMID:
24485889. PMCID:
PMC3984928.
Article
122. Zhang G, Zhao BX, Hua R, Kang J, Shao BM, Carbonaro TM, et al. 2016; Hippocampal microglial activation and glucocorticoid receptor down-regulation precipitate visceral hypersensitivity induced by colorectal distension in rats. Neuropharmacology. 102:295–303. DOI:
10.1016/j.neuropharm.2015.11.028. PMID:
26656865.
Article
123. Abu-Ghefreh AA, Masocha W. 2010; Enhancement of antinociception by coadministration of minocycline and a non-steroidal anti-inflammatory drug indomethacin in naïve mice and murine models of LPS-induced thermal hyperalgesia and monoarthritis. BMC Musculoskelet Disord. 11:276. DOI:
10.1186/1471-2474-11-276. PMID:
21122103. PMCID:
PMC3009629. PMID:
0eaf074ee3de4e28842786b628110246.
124. Song ZP, Xiong BR, Guan XH, Cao F, Manyande A, Zhou YQ, et al. 2016; Minocycline attenuates bone cancer pain in rats by inhibiting NF-κB in spinal astrocytes. Acta Pharmacol Sin. 37:753–62. DOI:
10.1038/aps.2016.1. PMID:
27157092. PMCID:
PMC4954763.
Article
125. Bu H, Shu B, Gao F, Liu C, Guan X, Ke C, et al. 2014; Spinal IFN-γ-induced protein-10 (CXCL10) mediates metastatic breast cancer-induced bone pain by activation of microglia in rat models. Breast Cancer Res Treat. 143:255–63. DOI:
10.1007/s10549-013-2807-4. PMID:
24337539.
Article
126. Burke NN, Kerr DM, Moriarty O, Finn DP, Roche M. 2014; Minocycline modulates neuropathic pain behaviour and cortical M1-M2 microglial gene expression in a rat model of depression. Brain Behav Immun. 42:147–56. DOI:
10.1016/j.bbi.2014.06.015. PMID:
24994592.
Article
127. Gajbhiye S, Bhangre A, Tripathi RK, Jalgaonkar S, Shankar A, Koli PG. 2022; Evaluation of antidepressant effect of minocycline in alcohol abstinence-induced depression model in mice. Cureus. 14:e28711. DOI:
10.7759/cureus.28711. PMID:
36211101. PMCID:
PMC9529019.
Article
128. Sumitani M, Ueda H, Hozumi J, Inoue R, Kogure T, Yamada Y, et al. 2016; Minocycline does not decrease intensity of neuropathic pain intensity, but does improve its affective dimension. J Pain Palliat Care Pharmacother. 30:31–5. DOI:
10.3109/15360288.2014.1003674. PMID:
25700217.
129. Habibi-Asl B, Hassanzadeh K, Charkhpour M. 2009; Central administration of minocycline and riluzole prevents morphine-induced tolerance in rats. Anesth Analg. 109:936–42. DOI:
10.1213/ane.0b013e3181ae5f13. PMID:
19690270.
Article
130. Mika J, Wawrzczak-Bargiela A, Osikowicz M, Makuch W, Przewlocka B. 2009; Attenuation of morphine tolerance by minocycline and pentoxifylline in naive and neuropathic mice. Brain Behav Immun. 23:75–84. DOI:
10.1016/j.bbi.2008.07.005. PMID:
18684397.
Article
131. Shin DA, Kim TU, Chang MC. 2021; Minocycline for controlling neuropathic pain: a systematic narrative review of studies in humans. J Pain Res. 14:139–45. DOI:
10.2147/JPR.S292824. PMID:
33536779. PMCID:
PMC7849188.
Article
132. Pachman DR, Dockter T, Zekan PJ, Fruth B, Ruddy KJ, Ta LE, et al. 2017; A pilot study of minocycline for the prevention of paclitaxel-associated neuropathy:. ACCRU study RU221408I. Support Care Cancer. 25:3407–16. DOI:
10.1007/s00520-017-3760-2. PMID:
28551844.
133. Wang XS, Shi Q, Bhadkamkar NA, Cleeland CS, Garcia-Gonzalez A, Aguilar JR, et al. 2019; Minocycline for symptom reduction during oxaliplatin-based chemotherapy for colorectal cancer: a phase II randomized clinical trial. J Pain Symptom Manage. 58:662–71. DOI:
10.1016/j.jpainsymman.2019.06.018. PMID:
31254639. PMCID:
PMC6754803.
Article
134. Wang XS, Shi Q, Mendoza T, Lin S, Chang JY, Bokhari RH, et al. 2020; Minocycline reduces chemoradiation-related symptom burden in patients with non-small cell lung cancer: a phase 2 randomized trial. Int J Radiat Oncol Biol Phys. 106:100–7. DOI:
10.1016/j.ijrobp.2019.10.010. PMID:
31627177. PMCID:
PMC7043289.
Article
135. Martinez V, Szekely B, Lemarié J, Martin F, Gentili M, Ben Ammar S, et al. 2013; The efficacy of a glial inhibitor, minocycline, for preventing persistent pain after lumbar discectomy: a randomized, double-blind, controlled study. Pain. 154:1197–203. DOI:
10.1016/j.pain.2013.03.028. PMID:
23706627.
Article
136. Vanelderen P, Van Zundert J, Kozicz T, Puylaert M, De Vooght P, Mestrum R, et al. 2015; Effect of minocycline on lumbar radicular neuropathic pain: a randomized, placebo-controlled, double-blind clinical trial with amitriptyline as a comparator. Anesthesiology. 122:399–406. DOI:
10.1097/ALN.0000000000000508. PMID:
25373391.
137. Syngle A, Verma I, Krishan P, Garg N, Syngle V. 2014; Minocycline improves peripheral and autonomic neuropathy in type 2 diabetes: MIND study. Neurol Sci. 35:1067–73. DOI:
10.1007/s10072-014-1647-2. PMID:
24497205.
Article
138. Narang T, Dogra S. Arshdeep. 2017; Minocycline in leprosy patients with recent onset clinical nerve function impairment. Dermatol Ther. doi: 10.1111/dth.12404. DOI:
10.1111/dth.12404. PMID:
27550711.
Article
139. Curtin CM, Kenney D, Suarez P, Hentz VR, Hernandez-Boussard T, Mackey S, et al. 2017; A double-blind placebo randomized controlled trial of minocycline to reduce pain after carpal tunnel and trigger finger release. J Hand Surg Am. 42:166–74. DOI:
10.1016/j.jhsa.2016.12.011. PMID:
28259273.
Article
143. Khalilzadeh M, Shayan M, Jourian S, Rahimi M, Sheibani M, Dehpour AR. 2022; A comprehensive insight into the anti-inflammatory properties of dapsone. Naunyn Schmiedebergs Arch Pharmacol. 395:1509–23. DOI:
10.1007/s00210-022-02297-1. PMID:
36125533.
Article
144. Suda T, Suzuki Y, Matsui T, Inoue T, Niide O, Yoshimaru T, et al. 2005; Dapsone suppresses human neutrophil superoxide production and elastase release in a calcium-dependent manner. Br J Dermatol. 152:887–95. DOI:
10.1111/j.1365-2133.2005.06559.x. PMID:
15888142.
Article
145. Ruzicka T, Wasserman SI, Soter NA, Printz MP. 1983; Inhibition of rat mast cell arachidonic acid cyclooxygenase by dapsone. J Allergy Clin Immunol. 72:365–70. DOI:
10.1016/0091-6749(83)90501-8. PMID:
6413566.
Article
146. Kanoh S, Tanabe T, Rubin BK. 2011; Dapsone inhibits IL-8 secretion from human bronchial epithelial cells stimulated with lipopolysaccharide and resolves airway inflammation in the ferret. Chest. 140:980–90. DOI:
10.1378/chest.10-2908. PMID:
21436242.
Article
147. Abe M, Shimizu A, Yokoyama Y, Takeuchi Y, Ishikawa O. 2008; A possible inhibitory action of diaminodiphenyl sulfone on tumour necrosis factor-alpha production from activated mononuclear cells on cutaneous lupus erythematosus. Clin Exp Dermatol. 33:759–63. DOI:
10.1111/j.1365-2230.2008.02864.x. PMID:
18713254.
148. Rodríguez E, Méndez-Armenta M, Villeda-Hernández J, Galván-Arzate S, Barroso-Moguel R, Rodríguez F, et al. 1999; Dapsone prevents morphological lesions and lipid peroxidation induced by quinolinic acid in rat corpus striatum. Toxicology. 139:111–8. DOI:
10.1016/S0300-483X(99)00116-X. PMID:
10614692.
Article
149. Santamaría A, Ordaz-Moreno J, Rubio-Osornio M, Solís-Hernández F, Ríos C. 1997; Neuroprotective effect of dapsone against quinolinate- and kainate-induced striatal neurotoxicities in rats. Pharmacol Toxicol. 81:271–5. PMID:
9444668.
150. Mata-Bermudez A, Diaz-Ruiz A, Burelo M, García-Martínez BA, Jardon-Guadarrama G, Calderón-Estrella F, et al. 2021; Dapsone prevents allodynia and hyperalgesia and decreased oxidative stress after spinal cord injury in rats. Spine (Phila Pa 1976). 46:1287–94. DOI:
10.1097/BRS.0000000000004015. PMID:
34517396.
Article
151. Ríos C, Orozco-Suarez S, Salgado-Ceballos H, Mendez-Armenta M, Nava-Ruiz C, Santander I, et al. 2015; Anti-apoptotic effects of dapsone after spinal cord injury in rats. Neurochem Res. 40:1243–51. DOI:
10.1007/s11064-015-1588-z. PMID:
25931161.
Article
152. Diaz-Ruiz A, Salgado-Ceballos H, Montes S, Guizar-Sahagún G, Gelista-Herrera N, Mendez-Armenta M, et al. 2011; Delayed administration of dapsone protects from tissue damage and improves recovery after spinal cord injury. J Neurosci Res. 89:373–80. DOI:
10.1002/jnr.22555. PMID:
21259324.
Article
153. Shayesteh S, Khalilzadeh M, Takzaree N, Dehpour AR. 2022; Dapsone improves the vincristine-induced neuropathic nociception by modulating neuroinflammation and oxidative stress. Daru. 30:303–10. DOI:
10.1007/s40199-022-00448-6. PMID:
36104653.
Article
154. Swinson DR, Zlosnick J, Jackson L. 1981; Double-blind trial of dapsone against placebo in the treatment of rheumatoid arthritis. Ann Rheum Dis. 40:235–9. DOI:
10.1136/ard.40.3.235. PMID:
7018409. PMCID:
PMC1000754.
Article
155. Fowler PD, Shadforth MF, Crook PR, Lawton A. 1984; Report on chloroquine and dapsone in the treatment of rheumatoid arthritis: a 6-month comparative study. Ann Rheum Dis. 43:200–4. DOI:
10.1136/ard.43.2.200. PMID:
6370150. PMCID:
PMC1001465.
Article
156. Haar D, Sølvkjaer M, Unger B, Rasmussen KJ, Christensen L, Hansen TM. 1993; A double-blind comparative study of hydroxychloroquine and dapsone, alone and in combination, in rheumatoid arthritis. Scand J Rheumatol. 22:113–8. DOI:
10.3109/03009749309099254. PMID:
8316771.
Article
160. Ujiie H, Shimizu T, Ito M, Arita K, Shimizu H. 2006; Lupus erythematosus profundus successfully treated with dapsone: review of the literature. Arch Dermatol. 142:399–401. DOI:
10.1001/archderm.142.3.399. PMID:
16549729.
Article
161. de Risi-Pugliese T, Cohen Aubart F, Haroche J, Moguelet P, Grootenboer-Mignot S, Mathian A, et al. 2018; Clinical, histological, immunological presentations and outcomes of bullous systemic lupus erythematosus: 10 new cases and a literature review of 118 cases. Semin Arthritis Rheum. 48:83–9. DOI:
10.1016/j.semarthrit.2017.11.003. PMID:
29191376.
Article
162. Lu Q, Long H, Chow S, Hidayat S, Danarti R, Listiawan Y, et al. 2021; Guideline for the diagnosis, treatment and long-term management of cutaneous lupus erythematosus. J Autoimmun. 123:102707. DOI:
10.1016/j.jaut.2021.102707. PMID:
34364171.
Article
164. Nader-Kawachi J, Góngora-Rivera F, Santos-Zambrano J, Calzada P, Ríos C. 2007; Neuroprotective effect of dapsone in patients with acute ischemic stroke: a pilot study. Neurol Res. 29:331–4. DOI:
10.1179/016164107X159234. PMID:
17509235.
Article
168. Gutmann L, Martin JD, Welton W. 1976; Dapsone motor neuropathy--an axonal disease. Neurology. 26(6 PT 1):514–6. DOI:
10.1212/WNL.26.6.514. PMID:
945490.
Article
171. Lauriano ER, Capillo G, Icardo JM, Fernandes JMO, Kiron V, Kuciel M, et al. 2021; Neuroepithelial cells (NECs) and mucous cells express a variety of neurotransmitters and neurotransmitter receptors in the gill and respiratory air-sac of the catfish Heteropneustes fossilis (Siluriformes, Heteropneustidae): a possible role in local immune defence. Zoology (Jena). 148:125958. DOI:
10.1016/j.zool.2021.125958. PMID:
34399394.
Article
174. Cheng MH, Pan CY, Chen NF, Yang SN, Hsieh S, Wen ZH, et al. 2020; Piscidin-1 induces apoptosis via mitochondrial reactive oxygen species-regulated mitochondrial dysfunction in human osteosarcoma cells. Sci Rep. 10:5045. DOI:
10.1038/s41598-020-61876-5. PMID:
32193508. PMCID:
PMC7081333.
Article
175. Ting CH, Chen YC, Wu CJ, Chen JY. 2016; Targeting FOSB with a cationic antimicrobial peptide, TP4, for treatment of triple-negative breast cancer. Oncotarget. 7:40329–47. DOI:
10.18632/oncotarget.9612. PMID:
27248170. PMCID:
PMC5130011.
178. Mouraux A, Bannister K, Becker S, Finn DP, Pickering G, Pogatzki-Zahn E, et al. 2021; Challenges and opportunities in translational pain research - An opinion paper of the working group on translational pain research of the European pain federation (EFIC). Eur J Pain. 25:731–56. DOI:
10.1002/ejp.1730. PMID:
33625769. PMCID:
PMC9290702.
Article
179. Lapolla W, Digiorgio C, Haitz K, Magel G, Mendoza N, Grady J, et al. 2011; Incidence of postherpetic neuralgia after combination treatment with gabapentin and valacyclovir in patients with acute herpes zoster: open-label study. Arch Dermatol. 147:901–7. DOI:
10.1001/archdermatol.2011.81. PMID:
21482862.
Article