Korean J Pain.  2023 Jul;36(3):299-315. 10.3344/kjp.23130.

Antimicrobial therapies for chronic pain (part 2): the prevention and treatment of chronic pain

Affiliations
  • 1Department of Anesthesiology and Critical Care Medicine, Division of Pain Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
  • 2Department of Physical Medicine and Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA
  • 3Uniformed Services University of the Health Sciences, Bethesda, MD, USA
  • 4Departments of Orthopedic Surgery and Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
  • 5Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
  • 6Departments of Physical Medicine & Rehabilitation, Neurology, and Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
  • 7Departments of Physical Medicine & Rehabilitation and Anesthesiology, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA

Abstract

The discovery and development of antimicrobial therapies represents one of the most significant advancements in modern medicine. Although the primary therapeutic intent of antimicrobials is to eliminate their target pathogens, several antimicrobials have been shown to provide analgesia as a secondary benefit. Antimicrobials have demonstrated analgesic effects in conditions that involve dysbiosis or potential subclinical infection (e.g., chronic low back pain with Modic type 1 changes; chronic prostatitis/chronic pelvic pain; irritable bowel syndrome; inflammatory bowel disease; functional gastrointestinal disorders/dyspepsia; myalgic encephalomyelitis/chronic fatigue syndrome), and might even prevent the chronification of pain after acute infections that are associated with excessive systemic inflammation (e.g., post COVID-19 condition/long Covid, rheumatic fever). Clinical studies often assess the analgesic effects of antimicrobial therapies in an observational manner, without the ability to identify causative relationships, and significant gaps in the understanding remain regarding the analgesic potential of antimicrobials. Numerous interrelated patient-specific, antimicrobial-specific, and disease-specific factors altogether contribute to the perception and experience of pain, and each of these requires further study. Given worldwide concerns regarding antimicrobial resistance, antimicrobials must continue to be used judiciously and are unlikely to be repurposed as primary analgesic medications. However, when equipoise exists among several antimicrobial treatment options, the potential analgesic benefits of certain antimicrobial agents might be a valuable aspect to consider in clinical decision-making. This article (the second in a two-part series) aims to comprehensively review the evidence on the prevention and treatment of chronic pain using antimicrobial therapies and suggest a framework for future studies on this topic.

Keyword

Analgesia; Anti-Bacterial Agents; Anti-Infective Agents; Antiviral Agents; Central Nervous System Sensitization; Chronic Pain; Infections; Neuralgia; Nociceptive Pain; Pain Management

Figure

  • Fig. 1 Venn diagram illustrating the overlap of patient-specific, antimicrobial-specific, and disease-specific contributors to pain from infection.


Reference

1. Hyson JM Jr. 2007; A history of arsenic in dentistry. J Calif Dent Assoc. 35:135–9. DOI: 10.1080/19424396.2007.12221210. PMID: 17494382.
2. Zhao M, Li Y, Wang Z. 2022; Mercury and mercury-containing preparations: history of use, clinical applications, pharmacology, toxicology, and pharmacokinetics in traditional Chinese medicine. Front Pharmacol. 13:807807. DOI: 10.3389/fphar.2022.807807. PMID: 35308204. PMCID: PMC8924441. PMID: b5d73bd0444543d3b1657c57ccffd9e5.
Article
3. Parapia LA. 2008; History of bloodletting by phlebotomy. Br J Haematol. 143:490–5. DOI: 10.1111/j.1365-2141.2008.07361.x. PMID: 18783398.
Article
4. Sun L, Lutz BM, Tao YX. Preedy VR, editor. 2016. Chapter 48 - contribution of spinal cord mTORC1 to chronic opioid tolerance and hyperalgesia. Neuropathology of drug addictions and substance misuse. Academic Press;p. 482–9. DOI: 10.1016/B978-0-12-800634-4.00048-2.
5. Yeo JH, Kim SJ, Roh DH. 2021; Rapamycin reduces orofacial nociceptive responses and microglial p38 mitogen-activated protein kinase phosphorylation in trigeminal nucleus caudalis in mouse orofacial formalin model. Korean J Physiol Pharmacol. 25:365–74. DOI: 10.4196/kjpp.2021.25.4.365. PMID: 34187953. PMCID: PMC8255123.
Article
6. Feng T, Yin Q, Weng ZL, Zhang JC, Wang KF, Yuan SY, et al. 2014; Rapamycin ameliorates neuropathic pain by activating autophagy and inhibiting interleukin-1β in the rat spinal cord. J Huazhong Univ Sci Technolog Med Sci. 34:830–7. DOI: 10.1007/s11596-014-1361-6. PMID: 25480578.
Article
7. Ahmed MS, Wang P, Nguyen NUN, Nakada Y, Menendez-Montes I, Ismail M, et al. 2021; Identification of tetracycline combinations as EphB1 tyrosine kinase inhibitors for treatment of neuropathic pain. Proc Natl Acad Sci U S A. 118:e2016265118. DOI: 10.1073/pnas.2016265118. PMID: 33627480. PMCID: PMC7958374.
Article
8. Chen WF, Huang SY, Liao CY, Sung CS, Chen JY, Wen ZH. 2015; The use of the antimicrobial peptide piscidin (PCD)-1 as a novel anti-nociceptive agent. Biomaterials. 53:1–11. DOI: 10.1016/j.biomaterials.2015.02.069. PMID: 25890701.
Article
9. Chang DJ, Lamothe M, Stevens RM, Sigal LH. 1996; Dapsone in rheumatoid arthritis. Semin Arthritis Rheum. 25:390–403. DOI: 10.1016/S0049-0172(96)80004-7. PMID: 8792511.
Article
10. Hajhashemi V, Hosseinzadeh H, Amin B. 2013; Antiallodynia and antihyperalgesia effects of ceftriaxone in treatment of chronic neuropathic pain in rats. Acta Neuropsychiatr. 25:27–32. DOI: 10.1111/j.1601-5215.2012.00656.x. PMID: 26953071.
Article
11. Abdelaziz DM, Stone LS, Komarova SV. 2014; Osteolysis and pain due to experimental bone metastases are improved by treatment with rapamycin. Breast Cancer Res Treat. 143:227–37. DOI: 10.1007/s10549-013-2799-0. PMID: 24327332.
Article
12. Albert HB, Sorensen JS, Christensen BS, Manniche C. 2013; Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double-blind randomized clinical controlled trial of efficacy. Eur Spine J. 22:697–707. DOI: 10.1007/s00586-013-2675-y. PMID: 23404353. PMCID: PMC3631045.
Article
13. Bråten LCH, Rolfsen MP, Espeland A, Wigemyr M, Aßmus J, Froholdt A, et al. AIM study group. 2019; Efficacy of antibiotic treatment in patients with chronic low back pain and Modic changes (the AIM study): double blind, randomised, placebo controlled, multicentre trial. BMJ. 367:l5654. DOI: 10.1136/bmj.l5654. PMID: 31619437. PMCID: PMC6812614.
Article
14. Haight ES, Johnson EM, Carroll IR, Tawfik VL. 2020; Of mice, microglia, and (wo)men: a case series and mechanistic investigation of hydroxychloroquine for complex regional pain syndrome. Pain Rep. 5:e841. DOI: 10.1097/PR9.0000000000000841. PMID: 33490839. PMCID: PMC7808678. PMID: ed8454a3c3f045f58bf6a1e1ac2d8feb.
Article
15. Zhou YQ, Liu DQ, Chen SP, Sun J, Wang XM, Tian YK, et al. 2018; Minocycline as a promising therapeutic strategy for chronic pain. Pharmacol Res. 134:305–10. DOI: 10.1016/j.phrs.2018.07.002. PMID: 30042091.
Article
16. Cohen JI. 2013; Clinical practice: herpes zoster. N Engl J Med. 369:255–63. DOI: 10.1056/NEJMcp1302674. PMID: 23863052. PMCID: PMC4789101.
17. Devor M. 2018; Rethinking the causes of pain in herpes zoster and postherpetic neuralgia: the ectopic pacemaker hypothesis. Pain Rep. 3:e702. DOI: 10.1097/PR9.0000000000000702. PMID: 30706041. PMCID: PMC6344138. PMID: aff9ce7f303c46a4bc303e6f89988266.
Article
18. Sauerbrei A. 2016; Diagnosis, antiviral therapy, and prophylaxis of varicella-zoster virus infections. Eur J Clin Microbiol Infect Dis. 35:723–34. DOI: 10.1007/s10096-016-2605-0. PMID: 26873382.
Article
19. Chen N, Li Q, Yang J, Zhou M, Zhou D, He L. 2014; Antiviral treatment for preventing postherpetic neuralgia. Cochrane Database Syst Rev. 2:CD006866. DOI: 10.1002/14651858.CD006866.pub3.
Article
20. Huff JC, Bean B, Balfour HH Jr, Laskin OL, Connor JD, Corey L, et al. 1988; Therapy of herpes zoster with oral acyclovir. Am J Med. 85:84–9. PMID: 3044099.
21. Harding SP, Porter SM. 1991; Oral acyclovir in herpes zoster ophthalmicus. Curr Eye Res. 10 Suppl:177–82. DOI: 10.3109/02713689109020376. PMID: 1864092.
Article
22. Wood MJ, Johnson RW, McKendrick MW, Taylor J, Mandal BK, Crooks J. 1994; A randomized trial of acyclovir for 7 days or 21 days with and without prednisolone for treatment of acute herpes zoster. N Engl J Med. 330:896–900. DOI: 10.1056/NEJM199403313301304. PMID: 8114860.
Article
23. Whitley RJ, Weiss H, Gnann JW Jr, Tyring S, Mertz GJ, Pappas PG, et al. 1996; Acyclovir with and without prednisone for the treatment of herpes zoster. A randomized, placebo-controlled trial. The National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. Ann Intern Med. 125:376–83. DOI: 10.7326/0003-4819-125-5-199609010-00004. PMID: 8702088.
Article
24. Wood MJ, Ogan PH, McKendrick MW, Care CD, McGill JI, Webb EM. 1988; Efficacy of oral acyclovir treatment of acute herpes zoster. Am J Med. 85:79–83. PMID: 3044098.
25. Morton P, Thomson AN. 1989; Oral acyclovir in the treatment of herpes zoster in general practice. N Z Med J. 102:93–5. PMID: 2648213.
26. Li Q, Chen N, Yang J, Zhou M, Zhou D, Zhang Q, et al. 2009; Antiviral treatment for preventing postherpetic neuralgia. Cochrane Database Syst Rev. 2:CD006866. DOI: 10.1002/14651858.CD006866.pub2.
Article
27. O'Mahoney LL, Routen A, Gillies C, Ekezie W, Welford A, Zhang A, et al. 2022; The prevalence and long-term health effects of Long Covid among hospitalised and non-hospitalised populations: a systematic review and meta-analysis. EClinicalMedicine. 55:101762. Erratum in: EClinicalMedicine 2023; 59: 101959. DOI: 10.1016/j.eclinm.2023.101959. PMID: 37096187. PMCID: PMC10115131.
28. World Health Organization. 2022. Post COVID-19 condition (Long COVID) [Internet]. World Health Organization;Geneva: https://www.who.int/europe/news-room/fact-sheets/item/post-covid-19-condition.
30. COVID.gov. 2023. COVID.gov/longcovid - Virus that causes COVID-19 can experience long-term effects from their infection [Internet]. U.S. Department of Health and Human Services;Washington, D.C.: https://www.covid.gov/longcovid.
31. Perlis RH, Santillana M, Ognyanova K, Safarpour A, Lunz Trujillo K, Simonson MD, et al. 2022; Prevalence and correlates of long COVID symptoms among US adults. JAMA Netw Open. 5:e2238804. DOI: 10.1001/jamanetworkopen.2022.38804. PMID: 36301542. PMCID: PMC9614581.
Article
32. Soares FHC, Kubota GT, Fernandes AM, Hojo B, Couras C, Costa BV, et al. "Pain in the Pandemic Initiative Collaborators". 2021; Prevalence and characteristics of new-onset pain in COVID-19 survivours, a controlled study. Eur J Pain. 25:1342–54. DOI: 10.1002/ejp.1755. PMID: 33619793. PMCID: PMC8013219.
Article
33. Xie Y, Choi T, Al-Aly Z. 2022; Nirmatrelvir and the risk of post-acute sequelae of COVID-19. medRxiv [Preprint]. Available at: https://www.medrxiv.org/content/10.1101/2022.11.03.22281783v1.abstract. cited 2023 Feb 11. DOI: 10.1101/2022.11.03.22281783.
Article
34. Peluso MJ, Anglin K, Durstenfeld MS, Martin JN, Kelly JD, Hsue PY, et al. 2022; Effect of oral nirmatrelvir on long COVID symptoms: 4 cases and rationale for systematic studies. Pathog Immun. 7:95–103. DOI: 10.20411/pai.v7i1.518. PMID: 35800257. PMCID: PMC9254867. PMID: 7168969bc6034d9cb6df09a3d96f3fc5.
35. Davis HE, McCorkell L, Vogel JM, Topol EJ. 2023; Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 21:133–46. Erratum in: Nat Rev Microbiol 2023; 21: 408. DOI: 10.1038/s41579-022-00846-2. PMID: 36639608. PMCID: PMC9839201.
Article
36. Abu Hamdh B, Nazzal Z. 2023; A prospective cohort study assessing the relationship between long-COVID symptom incidence in COVID-19 patients and COVID-19 vaccination. Sci Rep. 13:4896. DOI: 10.1038/s41598-023-30583-2. PMID: 36966161. PMCID: PMC10039348. PMID: 6cda5ddc6be044819cfd25c682fb9f77.
Article
37. Taquet M, Dercon Q, Harrison PJ. 2022; Six-month sequelae of post-vaccination SARS-CoV-2 infection: a retrospective cohort study of 10,024 breakthrough infections. Brain Behav Immun. 103:154–62. DOI: 10.1016/j.bbi.2022.04.013. PMID: 35447302. PMCID: PMC9013695.
Article
38. Byambasuren O, Stehlik P, Clark J, Alcorn K, Glasziou P. 2023; Effect of covid-19 vaccination on long covid: systematic review. BMJ Med. 2:e000385. DOI: 10.1136/bmjmed-2022-000385. PMID: 36936268. PMCID: PMC9978692.
Article
39. Azzolini E, Levi R, Sarti R, Pozzi C, Mollura M, Mantovani A, et al. 2022; Association between BNT162b2 vaccination and long COVID after infections not requiring hospitalization in health care workers. JAMA. 328:676–8. DOI: 10.1001/jama.2022.11691. PMID: 35796131. PMCID: PMC9250078.
Article
40. Tsuchida T, Hirose M, Inoue Y, Kunishima H, Otsubo T, Matsuda T. 2022; Relationship between changes in symptoms and antibody titers after a single vaccination in patients with Long COVID. J Med Virol. 94:3416–20. DOI: 10.1002/jmv.27689. PMID: 35238053. PMCID: PMC9088489.
Article
41. Karthikeyan G, Guilherme L. 2018; Acute rheumatic fever. Lancet. 392:161–74. Erratum in: Lancet 2018; 392: 820. DOI: 10.1016/S0140-6736(18)30999-1. PMID: 30025809.
Article
42. Gewitz MH, Baltimore RS, Tani LY, Sable CA, Shulman ST, et al. Carapetis J; American Heart Association Committee on Rheumatic Fever. Endocarditis. and Kawasaki Disease of the Council on Cardiovascular Disease in the Young. 2015; Revision of the Jones Criteria for the diagnosis of acute rheumatic fever in the era of Doppler echocardiography: a scientific statement from the American Heart Association. Circulation. 131:1806–18. Erratum in: Circulation 2020; 142: e65. DOI: 10.1161/CIR.0000000000000205. PMID: 25908771.
Article
43. Gerber MA, Baltimore RS, Eaton CB, Gewitz M, Rowley AH, Shulman ST, et al. 2009; Prevention of rheumatic fever and diagnosis and treatment of acute Streptococcal pharyngitis: a scientific statement from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee of the Council on Cardiovascular Disease in the Young, the Interdisciplinary Council on Functional Genomics and Translational Biology, and the Interdisciplinary Council on Quality of Care and Outcomes Research: endorsed by the American Academy of Pediatrics. Circulation. 119:1541–51. DOI: 10.1161/CIRCULATIONAHA.109.191959. PMID: 19246689.
Article
44. Robertson KA, Volmink JA, Mayosi BM. 2005; Antibiotics for the primary prevention of acute rheumatic fever: a meta-analysis. BMC Cardiovasc Disord. 5:11. DOI: 10.1186/1471-2261-5-11. PMID: 15927077. PMCID: PMC1164408. PMID: cbce5f75b5e84f1dba5b138fd3f5e1ca.
Article
45. Kumar RK, Antunes MJ, Beaton A, Mirabel M, Nkomo VT, et al. Okello E; American Heart Association Council on Lifelong Congenital Heart Disease and Heart Health in the Young; Council on Cardiovascular and Stroke Nursing; and Council on Clinical Cardiology. 2020; Contemporary diagnosis and management of rheumatic heart disease: implications for closing the gap: a scientific statement from the American Heart Association. Circulation. 142:e337–57. Erratum in: Circulation 2021; 143: e1025-6. DOI: 10.1161/CIR.0000000000000921. PMCID: PMC7578108.
Article
46. Lennon D, Kerdemelidis M, Arroll B. 2009; Meta-analysis of trials of streptococcal throat treatment programs to prevent rheumatic fever. Pediatr Infect Dis J. 28:e259–64. DOI: 10.1097/INF.0b013e3181a8e12a. PMID: 19561421.
Article
47. Lennon D, Stewart J, Farrell E, Palmer A, Mason H. 2009; School-based prevention of acute rheumatic fever: a group randomized trial in New Zealand. Pediatr Infect Dis J. 28:787–94. DOI: 10.1097/INF.0b013e3181a282be. PMID: 19710585.
48. Lennon D, Anderson P, Kerdemilidis M, Farrell E, Crengle Mahi S, Percival T, et al. 2017; First presentation acute rheumatic fever is preventable in a community setting: a school-based intervention. Pediatr Infect Dis J. 36:1113–8. DOI: 10.1097/INF.0000000000001581. PMID: 28230706.
49. Cohen SP, Wang EJ, Doshi TL, Vase L, Cawcutt KA, Tontisirin N. 2022; Chronic pain and infection: mechanisms, causes, conditions, treatments, and controversies. BMJ Med. 1:e000108. DOI: 10.1136/bmjmed-2021-000108. PMID: 36936554. PMCID: PMC10012866.
Article
50. Gilligan CJ, Cohen SP, Fischetti VA, Hirsch JA, Czaplewski LG. 2021; Chronic low back pain, bacterial infection and treatment with antibiotics. Spine J. 21:903–14. DOI: 10.1016/j.spinee.2021.02.013. PMID: 33610802.
Article
51. Anothaisintawee T, Attia J, Nickel JC, Thammakraisorn S, Numthavaj P, McEvoy M, et al. 2011; Management of chronic prostatitis/chronic pelvic pain syndrome: a systematic review and network meta-analysis. JAMA. 305:78–86. DOI: 10.1001/jama.2010.1913. PMID: 21205969.
Article
52. Franco JV, Turk T, Jung JH, Xiao YT, Iakhno S, Tirapegui FI, et al. 2019; Pharmacological interventions for treating chronic prostatitis/chronic pelvic pain syndrome. Cochrane Database Syst Rev. 10:CD012552. DOI: 10.1002/14651858.CD012552.pub2. PMID: 31587256.
Article
53. Drossman DA, Hasler WL. 2016; Rome IV-functional GI disorders: disorders of gut-brain interaction. Gastroenterology. 150:1257–61. DOI: 10.1053/j.gastro.2016.03.035. PMID: 27147121.
Article
54. Palsson OS, Whitehead WE, van Tilburg MA, Chang L, Chey W, Crowell MD, et al. 2016; Rome IV diagnostic questionnaires and tables for investigators and clinicians. Gastroenterology. S0016-5085(16)00180-3. DOI: 10.1053/j.gastro.2016.02.014. PMID: 27144634.
55. Barbara G, Feinle-Bisset C, Ghoshal UC, Quigley EM, Santos J, Vanner S, et al. 2016; The intestinal microenvironment and functional gastrointestinal disorders. Gastroenterology. S0016-5085(16)00219-5. DOI: 10.1053/j.gastro.2016.02.028. PMID: 27144620.
Article
56. Ford AC, Harris LA, Lacy BE, Quigley EMM, Moayyedi P. 2018; Systematic review with meta-analysis: the efficacy of prebiotics, probiotics, synbiotics and antibiotics in irritable bowel syndrome. Aliment Pharmacol Ther. 48:1044–60. DOI: 10.1111/apt.15001. PMID: 30294792.
Article
57. Black CJ, Burr NE, Camilleri M, Earnest DL, Quigley EM, Moayyedi P, et al. 2020; Efficacy of pharmacological therapies in patients with IBS with diarrhoea or mixed stool pattern: systematic review and network meta-analysis. Gut. 69:74–82. DOI: 10.1136/gutjnl-2018-318160. PMID: 30996042.
Article
58. Lacy BE, Pimentel M, Brenner DM, Chey WD, Keefer LA, Long MD, et al. 2021; ACG clinical guideline: management of irritable bowel syndrome. Am J Gastroenterol. 116:17–44. DOI: 10.14309/ajg.0000000000001036. PMID: 33315591.
Article
59. Lembo A, Sultan S, Chang L, Heidelbaugh JJ, Smalley W, Verne GN. 2022; AGA clinical practice guideline on the pharmacological management of irritable bowel syndrome with diarrhea. Gastroenterology. 163:137–51. DOI: 10.1053/j.gastro.2022.04.017. PMID: 35738725.
Article
60. Rosen MJ, Dhawan A, Saeed SA. 2015; Inflammatory bowel disease in children and adolescents. JAMA Pediatr. 169:1053–60. DOI: 10.1001/jamapediatrics.2015.1982. PMID: 26414706. PMCID: PMC4702263.
Article
61. Shaw SY, Blanchard JF, Bernstein CN. 2010; Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am J Gastroenterol. 105:2687–92. DOI: 10.1038/ajg.2010.398. PMID: 20940708.
Article
62. Gomollón F, Dignass A, Annese V, Tilg H, Van Assche G, et al. Lindsay JO; ECCO. 3rd European evidence-based consensus on the diagnosis and management of Crohn'. s disease 2016:. Part. DOI: 10.1093/ecco-jcc/jjw168. PMID: 27660341.
63. Singh S, Allegretti JR, Siddique SM, Terdiman JP. 2020; AGA technical review on the management of moderate to severe ulcerative colitis. Gastroenterology. 158:1465–96.e17. DOI: 10.1053/j.gastro.2020.01.007. PMID: 31945351. PMCID: PMC7117094.
Article
64. Townsend CM, Parker CE, MacDonald JK, Nguyen TM, Jairath V, Feagan BG, et al. 2019; Antibiotics for induction and maintenance of remission in Crohn's disease. Cochrane Database Syst Rev. 2:CD012730. DOI: 10.1002/14651858.CD012730.pub2. PMID: 30731030. PMCID: PMC6366891.
Article
65. Norton C, Czuber-Dochan W, Artom M, Sweeney L, Hart A. 2017; Systematic review: interventions for abdominal pain management in inflammatory bowel disease. Aliment Pharmacol Ther. 46:115–25. DOI: 10.1111/apt.14108. PMID: 28470846.
Article
66. Castiglione F, Rispo A, Di Girolamo E, Cozzolino A, Manguso F, Grassia R, et al. 2003; Antibiotic treatment of small bowel bacterial overgrowth in patients with Crohn's disease. Aliment Pharmacol Ther. 18:1107–12. DOI: 10.1046/j.1365-2036.2003.01800.x. PMID: 14653830.
Article
67. Oustamanolakis P, Tack J. 2012; Dyspepsia: organic versus functional. J Clin Gastroenterol. 46:175–90. DOI: 10.1097/MCG.0b013e318241b335. PMID: 22327302.
68. Ford AC, Mahadeva S, Carbone MF, Lacy BE, Talley NJ. 2020; Functional dyspepsia. Lancet. 396:1689–702. DOI: 10.1016/S0140-6736(20)30469-4. PMID: 33049222.
Article
69. Du LJ, Chen BR, Kim JJ, Kim S, Shen JH, Dai N. 2016; Helicobacter pylori eradication therapy for functional dyspepsia: systematic review and meta-analysis. World J Gastroenterol. 22:3486–95. DOI: 10.3748/wjg.v22.i12.3486. PMID: 27022230. PMCID: PMC4806206.
70. Kang SJ, Park B, Shin CM. 2019; Helicobacter pylori eradication therapy for functional dyspepsia: a meta-analysis by region and H. pylori prevalence. J Clin Med. 8:1324. DOI: 10.3390/jcm8091324. PMID: 31466299. PMCID: PMC6780123. PMID: 72226e181a0c4134944ac766010870fe.
Article
71. Ford AC, Tsipotis E, Yuan Y, Leontiadis GI, Moayyedi P. 2022; Efficacy of Helicobacter pylori eradication therapy for functional dyspepsia: updated systematic review and meta-analysis. Gut. gutjnl-2021-326583. DOI: 10.1136/gutjnl-2021-326583. PMID: 35022266.
72. Malfertheiner P, Megraud F, O'Morain CA, Gisbert JP, Kuipers EJ, Axon AT, et al. European Helicobacter and Microbiota Study Group and Consensus panel. 2017; Management of Helicobacter pylori infection-the Maastricht V/Florence Consensus Report. Gut. 66:6–30. DOI: 10.1136/gutjnl-2016-312288. PMID: 27707777.
Article
73. Suzuki H, Nishizawa T, Hibi T. 2011; Can Helicobacter pylori-associated dyspepsia be categorized as functional dyspepsia? J Gastroenterol Hepatol. 26 Suppl 3:42–5. DOI: 10.1111/j.1440-1746.2011.06629.x. PMID: 21443708.
Article
74. Sugano K, Tack J, Kuipers EJ, Graham DY, El-Omar EM, Miura S, et al. faculty members of Kyoto Global Consensus Conference. 2015; Kyoto global consensus report on Helicobacter pylori gastritis. Gut. 64:1353–67. DOI: 10.1136/gutjnl-2015-309252. PMID: 26187502. PMCID: PMC4552923.
Article
75. Carruthers BM, van de Sande MI, De Meirleir KL, Klimas NG, Broderick G, Mitchell T, et al. 2011; Myalgic encephalomyelitis: International Consensus Criteria. J Intern Med. 270:327–38. Erratum in: J Intern Med 2017; 282: 353. DOI: 10.1111/joim.12658. PMID: 28929634. PMCID: PMC6885980.
Article
76. Bateman L, Bested AC, Bonilla HF, Chheda BV, Chu L, Curtin JM, et al. 2021; Myalgic encephalomyelitis/chronic fatigue syndrome: essentials of diagnosis and management. Mayo Clin Proc. 96:2861–78. DOI: 10.1016/j.mayocp.2021.07.004. PMID: 34454716.
Article
77. Rasa S, Nora-Krukle Z, Henning N, Eliassen E, Shikova E, Harrer T, et al. European Network on ME/CFS (EUROMENE). 2018; Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J Transl Med. 16:268. DOI: 10.1186/s12967-018-1644-y. PMID: 30285773. PMCID: PMC6167797. PMID: 0101f485cef745a7a69cfca3a3b3013e.
Article
78. Wong TL, Weitzer DJ. 2021; Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)-A systemic review and comparison of clinical presentation and symptomatology. Medicina (Kaunas). 57:418. DOI: 10.3390/medicina57050418. PMID: 33925784. PMCID: PMC8145228. PMID: 82ebe8ecc2d24e7792819b2a712e679c.
Article
79. Komaroff AL, Lipkin WI. 2021; Insights from myalgic encephalomyelitis/chronic fatigue syndrome may help unravel the pathogenesis of postacute COVID-19 syndrome. Trends Mol Med. 27:895–906. DOI: 10.1016/j.molmed.2021.06.002. PMID: 34175230. PMCID: PMC8180841.
Article
80. Komaroff AL, Bateman L. 2021; Will COVID-19 lead to myalgic encephalomyelitis/chronic fatigue syndrome? Front Med (Lausanne). 7:606824. DOI: 10.3389/fmed.2020.606824. PMID: 33537329. PMCID: PMC7848220. PMID: eb40d4b0e1e942b9b4c07c1cbe42bf32.
Article
81. König RS, Albrich WC, Kahlert CR, Bahr LS, Löber U, Vernazza P, et al. 2022; The gut microbiome in myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS). Front Immunol. 12:628741. Erratum in: Front Immunol 2022; 13: 878196. DOI: 10.3389/fimmu.2021.628741. PMID: 35046929. PMCID: PMC8761622. PMID: ddf59507dd584643ae1adee542c0aa80.
Article
82. Ianiro G, Tilg H, Gasbarrini A. 2016; Antibiotics as deep modulators of gut microbiota: between good and evil. Gut. 65:1906–15. DOI: 10.1136/gutjnl-2016-312297. PMID: 27531828.
Article
83. Smith ME, Haney E, McDonagh M, Pappas M, Daeges M, Wasson N, et al. 2015; Treatment of myalgic encephalomyelitis/chronic fatigue syndrome: a systematic review for a national institutes of health pathways to prevention workshop. Ann Intern Med. 162:841–50. DOI: 10.7326/M15-0114. PMID: 26075755.
Article
84. Strayer DR, Carter WA, Brodsky I, Cheney P, Peterson D, Salvato P, et al. 1994; A controlled clinical trial with a specifically configured RNA drug, poly(I).poly(C12U), in chronic fatigue syndrome. Clin Infect Dis. 18 Suppl 1:S88–95. DOI: 10.1093/clinids/18.Supplement_1.S88. PMID: 8148460.
85. Strayer DR, Carter WA, Stouch BC, Stevens SR, Bateman L, Cimoch PJ, Mitchell WM, et al. Chronic Fatigue Syndrome AMP-516 Study Group. 2012; A double-blind, placebo-controlled, randomized, clinical trial of the TLR-3 agonist rintatolimod in severe cases of chronic fatigue syndrome. PLoS One. 7:e31334. DOI: 10.1371/journal.pone.0031334. PMID: 22431963. PMCID: PMC3303772. PMID: f22a0d4d54c84b618175fd9f35ada78a.
Article
86. Montoya JG, Kogelnik AM, Bhangoo M, Lunn MR, Flamand L, Merrihew LE, et al. 2013; Randomized clinical trial to evaluate the efficacy and safety of valganciclovir in a subset of patients with chronic fatigue syndrome. J Med Virol. 85:2101–9. DOI: 10.1002/jmv.23713. PMID: 23959519.
Article
87. Peterson PK, Shepard J, Macres M, Schenck C, Crosson J, Rechtman D, et al. 1990; A controlled trial of intravenous immunoglobulin G in chronic fatigue syndrome. Am J Med. 89:554–60. DOI: 10.1016/0002-9343(90)90172-A. PMID: 2239975.
Article
88. Straus SE, Dale JK, Tobi M, Lawley T, Preble O, Blaese RM, et al. 1988; Acyclovir treatment of the chronic fatigue syndrome. Lack of efficacy in a placebo-controlled trial. N Engl J Med. 319:1692–8. DOI: 10.1056/NEJM198812293192602. PMID: 2849717.
Article
89. Watt T, Oberfoell S, Balise R, Lunn MR, Kar AK, Merrihew L, et al. 2012; Response to valganciclovir in chronic fatigue syndrome patients with human herpesvirus 6 and Epstein-Barr virus IgG antibody titers. J Med Virol. 84:1967–74. DOI: 10.1002/jmv.23411. PMID: 23080504.
Article
90. Theuretzbacher U, Outterson K, Engel A, Karlén A. 2020; The global preclinical antibacterial pipeline. Nat Rev Microbiol. 18:275–85. DOI: 10.1038/s41579-019-0288-0. PMID: 31745331. PMCID: PMC7223541.
Article
Full Text Links
  • KJP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr