Int J Stem Cells.  2023 May;16(2):234-243. 10.15283/ijsc22171.

Transition Substitution of Desired Bases in Human Pluripotent Stem Cells with Base Editors: A Step-by-Step Guide

Affiliations
  • 1College of Pharmacy, Seoul National University, Seoul, Korea
  • 2Division of Chemical Engineering and Bioengineering, College of Art Culture and Engineering, Kangwon National University, Chuncheon, Korea

Abstract

The recent advances in human pluripotent stem cells (hPSCs) enable to precisely edit the desired bases in hPSCs to be used for the establishment of isogenic disease models and autologous ex vivo cell therapy. The knock-in approach based on the homologous directed repair with Cas9 endonuclease, causing DNA double-strand breaks (DSBs), produces not only insertion and deletion (indel) mutations but also deleterious large deletions. On the contrary, due to the lack of Cas9 endonuclease activity, base editors (BEs) such as adenine base editor (ABE) and cytosine base editor (CBE) allow precise base substitution by conjugated deaminase activity, free from DSB formation. Despite the limitation of BEs in transition substitution, precise base editing by BEs with no massive off-targets is suggested to be a prospective alternative in hPSCs for clinical applications. Considering the unique cellular characteristics of hPSCs, a few points should be considered. Herein, we describe an updated and optimized protocol for base editing in hPSCs. We also describe an improved methodology for CBE-based C to T substitutions, which are generally lower than A to G substitutions in hPSCs.

Keyword

Genome editing; Base editors; Human pluripotent stem cells; Transition substitution; Cas9

Figure

  • Fig. 1 Composition and mechanisms of ABE8e and AncBE4max. Graphical scheme for composition and mechanisms of (A) ABE8e and (B) AncBE4max, Red box indicates editing window, bases, colored in blue indicates spacer sequence, PAM sequence is colored in red, and the target base for each base editor is colored in yellow. Number indicates the position in the spacer sequence. A for Adenine, I for Inosine, G for Guanine, C for Cytosine, U for Uracil land T for Thymine. Created with BioRender.com.

  • Fig. 2 Role of DNA replication, mismatch repair, base excision repair and UNG in C to T conversion. (i) Nickase activity of nCas9 in CBE induces nick on the editing strand and deaminase activity in CBE produces G:U mismatch. G:U mismatch is converted to A:T via DNA replication followed by mismatch repair. (ii) Alternatively, G:U mismatch, recognized by base excision repair (BER), is removed by UNG to produce AP site, forming G:C. (iii) UNG activity to impair the G-to-A substitution is the co-expression of UNG inhibitor (UGI). Created with BioRender.com.

  • Fig. 3 PAM requirement for base editing. (A) Graphical scheme for editing window of BEs, Red box indicates editing window. ‘x’ and ‘y’ indicates start and end position of editing window respectively. (B) Target base is colored in red and PAM sequence is colored in brown. Graphical scheme of PAM requirement for, (C) ABE8e, (D) YE1-BE4max, (E) NG-ABE8e, and (F) YE1-BE4max-NG. Target base is colored in red and PAM sequence is colored in brown. Created with BioRender.com.

  • Fig. 4 Bystander base editing of AncBE4max. (A) Graphical scheme for the bystander base in the editing window (colored in red) and possible outcomes. (B) Sequences of GNE encoding 329 isoleucine (329I) in WT hESCs (i), GNE mutants hESCs after ABE application (ii), isolated hESCs with I329I silence mutation due to bystander editing (blue arrow) and GNE mutant hESCs with I329T mutation from target base edit (red arrow) (C) Graphical scheme for GNE mutant hPSCs, WT (blue), I329I mutant (red), and I329T mutant hESCs (green). Created with BioRender.com.


Reference

References

1. Merkle FT, Eggan K. 2013; Modeling human disease with pluripotent stem cells: from genome association to function. Cell Stem Cell. 12:656–668. DOI: 10.1016/j.stem.2013.05.016. PMID: 23746975.
Article
2. Musunuru K. 2013; Genome editing of human pluripotent stem cells to generate human cellular disease models. Dis Model Mech. 6:896–904. DOI: 10.1242/dmm.012054. PMID: 23751357. PMCID: PMC3701209. PMID: 0597c183c52c4f5399dcbb9af1a35746.
Article
3. Yamanaka S. 2020; Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell. 27:523–531. DOI: 10.1016/j.stem.2020.09.014. PMID: 33007237.
Article
4. Rowe RG, Daley GQ. 2019; Induced pluripotent stem cells in disease modelling and drug discovery. Nat Rev Genet. 20:377–388. DOI: 10.1038/s41576-019-0100-z. PMID: 30737492. PMCID: PMC6584039.
Article
5. Anzalone AV, Koblan LW, Liu DR. 2020; Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 38:824–844. DOI: 10.1038/s41587-020-0561-9. PMID: 32572269.
Article
6. Jeong YK, Song B, Bae S. 2020; Current status and challenges of DNA base editing tools. Mol Ther. 28:1938–1952. DOI: 10.1016/j.ymthe.2020.07.021. PMID: 32763143. PMCID: PMC7474268.
Article
7. Park JC, Kim J, Jang HK, Lee SY, Kim KT, Kwon EJ, Park S, Lee HS, Choi H, Park SY, Choi HJ, Park SJ, Moon SH, Bae S, Cha HJ. 2022; Multiple isogenic GNE-myopathy modeling with mutation specific phenotypes from human pluripotent stem cells by base editors. Biomaterials. 282:121419. DOI: 10.1016/j.biomaterials.2022.121419. PMID: 35202935.
Article
8. Kim KT, Park JC, Jang HK, Lee H, Park S, Kim J, Kwon OS, Go YH, Jin Y, Kim W, Lee J, Bae S, Cha HJ. 2020; Safe scarless cassette-free selection of genome-edited human pluripotent stem cells using temporary drug resistance. Biomaterials. 262:120295. DOI: 10.1016/j.biomaterials.2020.120295. PMID: 32916603.
Article
9. Chemello F, Chai AC, Li H, Rodriguez-Caycedo C, Sanchez-Ortiz E, Atmanli A, Mireault AA, Liu N, Bassel-Duby R, Olson EN. 2021; Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci Adv. 7:eabg4910. DOI: 10.1126/sciadv.abg4910. PMID: 33931459. PMCID: PMC8087404.
Article
10. Martin RM, Ikeda K, Cromer MK, Uchida N, Nishimura T, Romano R, Tong AJ, Lemgart VT, Camarena J, Pavel-Dinu M, Sindhu C, Wiebking V, Vaidyanathan S, Dever DP, Bak RO, Laustsen A, Lesch BJ, Jakobsen MR, Sebastiano V, Nakauchi H, Porteus MH. 2019; Highly efficient and marker-free genome editing of human pluripotent stem cells by CRISPR-Cas9 RNP and AAV6 donor-mediated homologous recombination. Cell Stem Cell. 24:821–828.e5. DOI: 10.1016/j.stem.2019.04.001. PMID: 31051134.
Article
11. Yu C, Liu Y, Ma T, Liu K, Xu S, Zhang Y, Liu H, La Russa M, Xie M, Ding S, Qi LS. 2015; Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell. 16:142–147. DOI: 10.1016/j.stem.2015.01.003. PMID: 25658371. PMCID: PMC4461869.
Article
12. Li S, Akrap N, Cerboni S, Porritt MJ, Wimberger S, Lundin A, Möller C, Firth M, Gordon E, Lazovic B, Sieńska A, Pane LS, Coelho MA, Ciotta G, Pellegrini G, Sini M, Xu X, Mitra S, Bohlooly-Y M, Taylor BJM, Sienski G, Maresca M. 2021; Universal toxin-based selection for precise genome engineering in human cells. Nat Commun. 12:497. Erratum in: Nat Commun 2021;12:2832. DOI: 10.1038/s41467-020-20810-z. PMID: 33479216. PMCID: PMC7820243. PMID: 5902061ff2c8407598c33e5d4d157a46.
Article
13. Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, Kommineni S, Chen J, Sondey M, Ye C, Randhawa R, Kulkarni T, Yang Z, McAllister G, Russ C, Reece-Hoyes J, Forrester W, Hoffman GR, Dolmetsch R, Kaykas A. 2018; p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med. 24:939–946. DOI: 10.1038/s41591-018-0050-6. PMID: 29892062.
Article
14. Simkin D, Papakis V, Bustos BI, Ambrosi CM, Ryan SJ, Baru V, Williams LA, Dempsey GT, McManus OB, Landers JE, Lubbe SJ, George AL Jr, Kiskinis E. 2022; Homozygous might be hemizygous: CRISPR/Cas9 editing in iPSCs results in detrimental on-target defects that escape standard quality controls. Stem Cell Reports. 17:993–1008. DOI: 10.1016/j.stemcr.2022.02.008. PMID: 35276091. PMCID: PMC9023783.
Article
15. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. 2016; Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 533:420–424. DOI: 10.1038/nature17946. PMID: 27096365. PMCID: PMC4873371.
Article
16. Eid A, Alshareef S, Mahfouz MM. 2018; CRISPR base editors: genome editing without double-stranded breaks. Biochem J. 475:1955–1964. DOI: 10.1042/BCJ20170793. PMID: 29891532. PMCID: PMC5995079.
Article
17. Osborn MJ, Newby GA, McElroy AN, Knipping F, Nielsen SC, Riddle MJ, Xia L, Chen W, Eide CR, Webber BR, Wandall HH, Dabelsteen S, Blazar BR, Liu DR, Tolar J. 2020; Base editor correction of COL7A1 in recessive dystrophic epidermolysis bullosa patient-derived fibroblasts and iPSCs. J Invest Dermatol. 140:338–347.e5. DOI: 10.1016/j.jid.2019.07.701. PMID: 31437443. PMCID: PMC6983342.
18. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR. 2019; Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 576:149–157. DOI: 10.1038/s41586-019-1711-4. PMID: 31634902. PMCID: PMC6907074.
Article
19. Rees HA, Liu DR. 2018; Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. 19:770–788. Erratum in: Nat Rev Genet 2018;19:801. DOI: 10.1038/s41576-018-0059-1. PMID: 30323312. PMCID: PMC6535181.
Article
20. Richter MF, Zhao KT, Eton E, Lapinaite A, Newby GA, Thuronyi BW, Wilson C, Koblan LW, Zeng J, Bauer DE, Doudna JA, Liu DR. 2020; Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol. 38:883–891. Erratum in: Nat Biotechnol 2020;38:901. DOI: 10.1038/s41587-020-0453-z. PMID: 32433547. PMCID: PMC7357821.
Article
21. Koblan LW, Doman JL, Wilson C, Levy JM, Tay T, Newby GA, Maianti JP, Raguram A, Liu DR. 2018; Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol. 36:843–846. DOI: 10.1038/nbt.4172. PMID: 29813047. PMCID: PMC6126947.
Article
22. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR. 2017; Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 551:464–471. Erratum in: Nature 2018;559:E8. DOI: 10.1038/nature24644. PMID: 29160308. PMCID: PMC5726555.
Article
23. Duncan BK, Miller JH. 1980; Mutagenic deamination of cytosine residues in DNA. Nature. 287:560–561. DOI: 10.1038/287560a0. PMID: 6999365.
Article
24. Komor AC, Zhao KT, Packer MS, Gaudelli NM, Waterbury AL, Koblan LW, Kim YB, Badran AH, Liu DR. 2017; Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv. 3:eaao4774. DOI: 10.1126/sciadv.aao4774. PMID: 28875174. PMCID: PMC5576876.
Article
25. Park JC, Jang HK, Kim J, Han JH, Jung Y, Kim K, Bae S, Cha HJ. 2021; High expression of uracil DNA glycosylase determines C to T substitution in human pluripotent stem cells. Mol Ther Nucleic Acids. 27:175–183. DOI: 10.1016/j.omtn.2021.11.023. PMID: 34976436. PMCID: PMC8688811.
Article
26. Doman JL, Raguram A, Newby GA, Liu DR. 2020; Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat Biotechnol. 38:620–628. DOI: 10.1038/s41587-020-0414-6. PMID: 32042165. PMCID: PMC7335424.
Article
27. Huang TP, Zhao KT, Miller SM, Gaudelli NM, Oakes BL, Fellmann C, Savage DF, Liu DR. 2019; Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat Biotechnol. 37:626–631. Erratum in: Nat Biotechnol 2019;37:820. DOI: 10.1038/s41587-019-0134-y. PMID: 31110355. PMCID: PMC6551276.
Article
28. Thuronyi BW, Koblan LW, Levy JM, Yeh WH, Zheng C, Newby GA, Wilson C, Bhaumik M, Shubina-Oleinik O, Holt JR, Liu DR. 2019; Continuous evolution of base editors with expanded target compatibility and improved activity. Nat Biotechnol. 37:1070–1079. Erratum in: Nat Biotechnol 2019;37:1091. DOI: 10.1038/s41587-019-0193-0. PMID: 31332326. PMCID: PMC6728210.
Article
29. Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR. 2017; Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol. 35:371–376. DOI: 10.1038/nbt.3803. PMID: 28191901. PMCID: PMC5388574.
Article
30. Song M, Kim HK, Lee S, Kim Y, Seo SY, Park J, Choi JW, Jang H, Shin JH, Min S, Quan Z, Kim JH, Kang HC, Yoon S, Kim HH. 2020; Sequence-specific prediction of the efficiencies of adenine and cytosine base editors. Nat Biotechnol. 38:1037–1043. DOI: 10.1038/s41587-020-0573-5. PMID: 32632303.
Article
31. Habib O, Habib G, Hwang GH, Bae S. 2022; Comprehensive analysis of prime editing outcomes in human embryonic stem cells. Nucleic Acids Res. 50:1187–1197. DOI: 10.1093/nar/gkab1295. PMID: 35018468. PMCID: PMC8789035.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr