Int J Stem Cells.  2023 May;16(2):202-214. 10.15283/ijsc21170.

Exosomes from Tension Force-Applied Periodontal Ligament Cells Promote Mesenchymal Stem Cell Recruitment by Altering microRNA Profiles

Affiliations
  • 1State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
  • 2Orthodontic Department Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, China

Abstract

Background and Objectives
To investigate the role of exosomes from periodontal ligament cells (PDLCs) in bone marrow mesenchymal stem cell (BMSC) migration.
Methods and Results
Human PDLCs were applied cyclic tension stretching. Exosomes were extracted from cultured PDLCs by ultracentrifugation, then characterized for their size, morphology and protein markers by NTA, TEM and western blotting. The process that PKH26-labeled exosomes taken up by BMSCs was assessed by confocal microscope. BMSC migration was examined by Transwell assay. Exosomes derived from PDLCs were identified. Cyclic tension stretch application on PDLCs can enhance the migration ability of BMSCs through exosomes. The exosomal miRNA expression profiles of unstretched and stretched PDLCs were tested by miRNA microarray. Four miRNAs (miR-4633-5p, miR-30c-5p, miR-371a-3p and let-7b-3p) were upregulated and six (miR-4689, miR-8485, miR-4655-3p, miR-4672, miR-3180-5p and miR-4476) were downregulated in the exosomes after stretching. Sixteen hub proteins were found in the miRNA-mRNA network. Gene Ontology and KEGG pathway analyses demonstrated that the target genes of differentially expressed exosomal miRNAs closely related to the PI3K pathway and vesicle transmission.
Conclusions
The exosomes derived from cyclic tension-stretched PDLCs can promote the migration of BMSCs. Alternation of microRNA profiles provides a basis for further research on the regulatory function of the exosomal miRNAs of PDLCs during orthodontic tooth movement.

Keyword

Periodontal ligament; microRNA; Exosome; Stem cell; Tooth movement

Figure

  • Fig. 1 Characterization of exosomes derived from human periodontal ligament cells (PDLCs). (A) Transmission electron microscope images confirmed the presence of exosomes, seen as cup-shaped vesicles. Scale bar: 50 nm. The picture in the white square is an enlarged photo. (B, C) The particle size distribution and concentration of exosomes were measured by nanoparticle tracking analysis. (D) Western blot analysis of the exosome-specific markers (CD63, CD9, CD81, ALIX, and TSG101), endoplasmic reticulum protein (calnexin), and fibroblastic marker (vimentin). PDLCs, microvesicles, and supernatant were used as the control.

  • Fig. 2 Internalization of exosomes by bone marrow mesenchymal stem cells. PKH-26-labelled exosomes (red) were internalized in the cytoplasm of BMSCs after 1 h and accumulated after 2 and 6 h of coincubation. The nuclei of the BMSCs were stained with DAPI (blue). The cytoplasm of the BMSCs was stained with CFDA-SE (green). Scale bar: 25 and 5 μm.

  • Fig. 3 Exosomes were collected from CTS-applied PDLCs (Exos_CTS) and unstretched PDLCs (Exos_US). (A) Western blot analysis of CD63, CD81, ALIX, TSG101, calnexin and vimentin in Exos_CTS and Exos_US. PDLCs were used as the control. (B) Internalization of Exos_CTS and Exos_US by bone marrow mesenchymal stem cells. PKH-26-labelled exosomes (red) were internalized in the cytoplasm of BMSCs after 2 h of coincubation. The nuclei of the BMSCs were stained with DAPI (blue). The cytoplasm of the BMSCs was stained with CFDA-SE (green). Scale bar: 25 and 5 μm.

  • Fig. 4 Periodontal ligament cells (PDLCs) were applied 48 h after cyclic tension stretching. (A) Conditioned medium (CM_B) was collected from the cyclic tension stretch (CTS)-applied PDLCs and removed microvesicles (CM_C) and exosomes (CM_UC). BMSCs were stained with Crystal Violet solution. Representative images and the migration rate of BMSCs for different CMs. (B) Exosomes were collected from CTS-applied PDLCs (Exos_CTS) and unstretched PDLCs (Exos_US). Representative images and migration rate of migrated BMSCs treated with different exosomes. *p<0.05.

  • Fig. 5 (A) After siRNA-Drosha transfection for 48 hr, the knockdown efficiency of Drosha protein in PDLCs was evaluated by western blot analysis. Exosomes were collected from CTS-induced PDLCs after siRNA-mediated knockdown of Drosha and then cultured with BMSCs in Transwell plates. (B) Representative images of migrated BMSCs treated with Exos_CTSsiRNA-Drosha and Exos_CTSsiRNA-control.

  • Fig. 6 The exosomal miRNA differential expression profiles in unstretched and cyclic tension-stretched PDLCs. (A) The Volcano plot of differentially expressed exosomal miRNAs. (B) The heatmap of differentially expressed exosomal miRNAs.

  • Fig. 7 (A) Venn graph showing 1,060 target genes of differentially expressed miRNAs, predicted by miRWalk and miRDB databases. (B) Protein-protein network of target genes.

  • Fig. 8 (A) Top four modules from the protein-protein interaction network. (B) Protein-protein network of genes from the top four modules. (C) Protein-protein network of 16 hub genes.

  • Fig. 9 Enrichment map of Gene Ontology and the Kyoto Encyclo-paedia of Genes and Genomes pathway analyses.


Reference

References

1. Huang L, Liu B, Cha JY, Yuan G, Kelly M, Singh G, Hyman S, Brunski JB, Li J, Helms JA. 2016; Mechanoresponsive properties of the periodontal ligament. J Dent Res. 95:467–475. DOI: 10.1177/0022034515626102. PMID: 26767771.
Article
2. Li Y, Zhan Q, Bao M, Yi J, Li Y. 2021; Biomechanical and biological responses of periodontium in orthodontic tooth movement: up-date in a new decade. Int J Oral Sci. 13:20. DOI: 10.1038/s41368-021-00125-5. PMID: 34183652. PMCID: PMC8239047. PMID: 9fab63387c3f4c33932a347fd00392c6.
Article
3. Pavlin D, Gluhak-Heinrich J. 2001; Effect of mechanical loading on periodontal cells. Crit Rev Oral Biol Med. 12:414–424. DOI: 10.1177/10454411010120050401. PMID: 12002823.
Article
4. Dutra EH, Nanda R, Yadav S. 2016; Bone response of loaded periodontal ligament. Curr Osteoporos Rep. 14:280–283. DOI: 10.1007/s11914-016-0328-x. PMID: 27681936.
Article
5. Wescott DC, Pinkerton MN, Gaffey BJ, Beggs KT, Milne TJ, Meikle MC. 2007; Osteogenic gene expression by human periodontal ligament cells under cyclic tension. J Dent Res. 86:1212–1216. DOI: 10.1177/154405910708601214. PMID: 18037658.
Article
6. Garlet TP, Coelho U, Repeke CE, Silva JS, Cunha Fde Q, Garlet GP. 2008; Differential expression of osteoblast and osteoclast chemmoatractants in compression and tension sides during orthodontic movement. Cytokine. 42:330–335. DOI: 10.1016/j.cyto.2008.03.003. PMID: 18406624.
Article
7. Tomida M, Tsujigiwa H, Nakano K, Muraoka R, Naka-mura T, Okafuji N, Nagatsuka H, Kawakami T. 2013; Promotion of transplanted bone marrow-derived cell migration into the periodontal tissues due to orthodontic mechanical stress. Int J Med Sci. 10:1321–1326. DOI: 10.7150/ijms.6631. PMID: 23983592. PMCID: PMC3753415.
Article
8. Takimoto A, Kawatsu M, Yoshimoto Y, Kawamoto T, Seiryu M, Takano-Yamamoto T, Hiraki Y, Shukunami C. 2015; Scleraxis and osterix antagonistically regulate tensile force-responsive remodeling of the periodontal ligament and alveolar bone. Development. 142:787–796. DOI: 10.1242/dev.116228. PMID: 25670797.
Article
9. Chang M, Lin H, Fu H, Wang J, Yang Y, Wan Z, Han G. 2020; CREB activation affects mesenchymal stem cell migration and differentiation in periodontal tissues due to orthodontic force. Int J Biochem Cell Biol. 129:105862. DOI: 10.1016/j.biocel.2020.105862. PMID: 33045372.
Article
10. Marquez-Curtis LA, Janowska-Wieczorek A. 2013; Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. Biomed Res Int. 2013:561098. DOI: 10.1155/2013/561098. PMID: 24381939. PMCID: PMC3870125.
Article
11. Sun C, Janjic Rankovic M, Folwaczny M, Otto S, Wichelhaus A, Baumert U. 2021; Effect of tension on human periodontal ligament cells: systematic review and network analysis. Front Bioeng Biotechnol. 9:695053. DOI: 10.3389/fbioe.2021.695053. PMID: 34513810. PMCID: PMC8429507. PMID: fa061b5ea13e4d56819009dd232c6399.
Article
12. Wang Q, Lu Q. 2017; Plasma membrane-derived extracellular microvesicles mediate non-canonical intercellular NOTCH signaling. Nat Commun. 8:709. DOI: 10.1038/s41467-017-00767-2. PMID: 28955033. PMCID: PMC5617834. PMID: 6cd303323cdc4b21a1380570c3dfea21.
Article
13. Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. 2018; New technologies for analysis of extracellular vesicles. Chem Rev. 118:1917–1950. DOI: 10.1021/acs.chemrev.7b00534. PMID: 29384376. PMCID: PMC6029891.
Article
14. Liu T, Hu W, Zou X, Xu J, He S, Chang L, Li X, Yin Y, Tian M, Li Z, Zhou J, Jiang X, Chen S. 2020; Human periodontal ligament stem cell-derived exosomes promote bone regeneration by altering microRNA profiles. Stem Cells Int. 2020:8852307. DOI: 10.1155/2020/8852307. PMID: 33293963. PMCID: PMC7691010. PMID: f312b2e7a21d4b62aad0a12a893d9c88.
Article
15. Zhang Z, Shuai Y, Zhou F, Yin J, Hu J, Guo S, Wang Y, Liu W. 2020; PDLSCs regulate angiogenesis of periodontal ligaments via VEGF transferred by exosomes in periodontitis. Int J Med Sci. 17:558–567. Erratum in: Int J Med Sci 2022;19:833. DOI: 10.7150/ijms.74583. PMID: 35693750. PMCID: PMC9149635.
Article
16. Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D. 2012; Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 18:883–891. Erratum in: Nat Med 2016;22:1502. DOI: 10.1038/nm1216-1502b. PMID: 27923027. PMCID: PMC3645291.
Article
17. Klopp AH, Spaeth EL, Dembinski JL, Woodward WA, Munshi A, Meyn RE, Cox JD, Andreeff M, Marini FC. 2007; Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res. 67:11687–11695. DOI: 10.1158/0008-5472.CAN-07-1406. PMID: 18089798. PMCID: PMC4329784.
Article
18. Wu Z, Pu P, Su Z, Zhang X, Nie L, Chang Y. 2020; Schwann Cell-derived exosomes promote bone regeneration and repair by enhancing the biological activity of porous Ti6Al4V scaffolds. Biochem Biophys Res Commun. 531:559–565. DOI: 10.1016/j.bbrc.2020.07.094. PMID: 32811642.
Article
19. Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S. 2015; Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 13:17–24. DOI: 10.1016/j.gpb.2015.02.001. PMID: 25724326. PMCID: PMC4411500. PMID: 60da3829c96448bbb997458b58c289be.
Article
20. Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, Frank W. 2010; Transcriptional control of gene expression by microRNAs. Cell. 140:111–122. DOI: 10.1016/j.cell.2009.12.023. PMID: 20085706.
Article
21. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. 2007; Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. DOI: 10.1038/ncb1596. PMID: 17486113.
Article
22. Vyas N, Dhawan J. 2017; Exosomes: mobile platforms for targeted and synergistic signaling across cell boundaries. Cell Mol Life Sci. 74:1567–1576. DOI: 10.1007/s00018-016-2413-9. PMID: 27826642.
Article
23. Tkach M, Théry C. 2016; Communication by extracellular vesicles: where we are and where we need to go. Cell. 164:1226–1232. DOI: 10.1016/j.cell.2016.01.043. PMID: 26967288.
Article
24. Alexander M, Hu R, Runtsch MC, Kagele DA, Mosbruger TL, Tolmachova T, Seabra MC, Round JL, Ward DM, O'Connell RM. 2015; Exosome-delivered microRNAs modulate the inflam-matory response to endotoxin. Nat Commun. 6:7321. DOI: 10.1038/ncomms8321. PMID: 26084661. PMCID: PMC4557301.
Article
25. Li X, Chen C, Wei L, Li Q, Niu X, Xu Y, Wang Y, Zhao J. 2016; Exosomes derived from endothelial progenitor cells attenuate vascular repair and accelerate reendothelialization by enhancing endothelial function. Cytotherapy. 18:253–262. DOI: 10.1016/j.jcyt.2015.11.009. PMID: 26794715.
Article
26. Chang M, Lin H, Luo M, Wang J, Han G. 2015; Integrated miRNA and mRNA expression profiling of tension force-induced bone formation in periodontal ligament cells. In Vitro Cell Dev Biol Anim. 51:797–807. DOI: 10.1007/s11626-015-9892-0. PMID: 26091625.
Article
27. Li M, Zhang C, Yang Y. 2019; Effects of mechanical forces on osteogenesis and osteoclastogenesis in human periodontal ligament fibroblasts: a systematic review of in vitro studies. Bone Joint Res. 8:19–31. DOI: 10.1302/2046-3758.81.BJR-2018-0060.R1. PMID: 30800296. PMCID: PMC6359886.
Article
28. Chang M, Lin H, Fu H, Wang B, Han G, Fan M. 2017; Micro-RNA-195-5p regulates osteogenic differentiation of periodontal ligament cells under mechanical loading. J Cell Phy-siol. 232:3762–3774. DOI: 10.1002/jcp.25856. PMID: 28181691.
Article
29. Gardiner C, Di Vizio D, Sahoo S, Théry C, Witwer KW, Wauben M, Hill AF. 2016; Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles. 5:32945. DOI: 10.3402/jev.v5.32945. PMID: 27802845. PMCID: PMC5090131. PMID: f2a857be7d0a41bab6642985c7f9568a.
Article
30. Saludas L, Garbayo E, Ruiz-Villalba A, Hernández S, Vader P, Prósper F, Blanco-Prieto MJ. 2022; Isolation methods of large and small extracellular vesicles derived from cardiovascular progenitors: a comparative study. Eur J Pharm Biopharm. 170:187–196. DOI: 10.1016/j.ejpb.2021.12.012. PMID: 34968647.
Article
31. Duan DY, Tang J, Tian HT, Shi YY, Jia J. 2021; Adipocyte-secreted microvesicle-derived miR-148a regulates adipogenic and osteogenic differentiation by targeting Wnt5a/Ror2 pathway. Life Sci. 278:119548. DOI: 10.1016/j.lfs.2021.119548. PMID: 33930365.
Article
32. Morel O, Toti F, Hugel B, Freyssinet JM. 2004; Cellular microparticles: a disseminated storage pool of bioactive vascular effectors. Curr Opin Hematol. 11:156–164. DOI: 10.1097/01.moh.0000131441.10020.87. PMID: 15257014.
Article
33. Yan S, Han B, Gao S, Wang X, Wang Z, Wang F, Zhang J, Xu D, Sun B. 2017; Exosome-encapsulated microRNAs as circulating biomarkers for colorectal cancer. Oncotarget. 8:60149–60158. DOI: 10.18632/oncotarget.18557. PMID: 28947960. PMCID: PMC5601128.
Article
34. Jiang H, Toscano JF, Song SS, Schlick KH, Dumitrascu OM, Pan J, Lyden PD, Saver JL, Gonzalez NR. 2019; Differential expression of circulating exosomal microRNAs in refractory intracranial atherosclerosis associated with antian-giogenesis. Sci Rep. 9:19429. Erratum in: Sci Rep 2021; 11:15266. DOI: 10.1038/s41598-021-94233-1. PMID: 34290283. PMCID: PMC8295272. PMID: 6e9ef5985866448fb8d794fd866b60cd.
Article
35. Li Z, Wang Y, Xiang S, Zheng Z, Bian Y, Feng B, Weng X. 2020; Chondrocytes-derived exosomal miR-8485 regulated the Wnt/β-catenin pathways to promote chondrogenic differentiation of BMSCs. Biochem Biophys Res Commun. 523:506–513. DOI: 10.1016/j.bbrc.2019.12.065. PMID: 31898972.
Article
36. Li W, Han Y, Zhao Z, Ji X, Wang X, Jin J, Wang Q, Guo X, Cheng Z, Lu M, Wang G, Wang Y, Liu H. 2019; Oral mucosal mesenchymal stem cell-derived exosomes: a potential therapeutic target in oral premalignant lesions. Int J Oncol. 54:1567–1578. DOI: 10.3892/ijo.2019.4756. PMID: 30896790. PMCID: PMC6438436.
Article
37. Pei B, Li T, Qian Q, Fan W, He X, Zhu Y, Xu L. 2020; Downregulation of microRNA-30c-5p was responsible for cell migration and tumor metastasis via COTL1-mediated microfilament arrangement in breast cancer. Gland Surg. 9:747–758. DOI: 10.21037/gs-20-472. PMID: 32775265. PMCID: PMC7347814.
Article
38. Zhou Y, Shi H, Du Y, Zhao G, Wang X, Li Q, Liu J, Ye L, Shen Z, Guo Y, Huang Y. 2019; lncRNA DLEU2 modulates cell proliferation and invasion of non-small cell lung cancer by regulating miR-30c-5p/SOX9 axis. Aging (Albany NY). 11:7386–7401. DOI: 10.18632/aging.102226. PMID: 31541993. PMCID: PMC6781974.
Article
39. Zhang J, Liu X, Li H, Chen C, Hu B, Niu X, Li Q, Zhao B, Xie Z, Wang Y. 2016; Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Res Ther. 7:136. DOI: 10.1186/s13287-016-0391-3. PMID: 27650895. PMCID: PMC5028974.
Article
40. Zhu M, Guo J, Xia H, Li W, Lu Y, Dong X, Chen Y, Xie X, Fu S, Li M. 2015; Alpha-fetoprotein activates AKT/mTOR signaling to promote CXCR4 expression and migration of hepatoma cells. Oncoscience. 2:59–70. DOI: 10.18632/oncoscience.115. PMID: 25815363. PMCID: PMC4341465.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr