Int J Stem Cells.  2023 May;16(2):145-155. 10.15283/ijsc22187.

The Essential Function of miR-5739 in Embryonic Muscle Development

Affiliations
  • 1R&D Center, CLECELL Inc., Seoul, Korea
  • 2Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea
  • 3Mirae Cell Bio Inc., Seoul, Korea
  • 4Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea

Abstract

Background and Objectives
Embryologically, mesodermal development is closely related to the development of various organs such as muscles, blood vessels, and hearts, which are the main organs that make up the body. However, treatment for mesoderm developmental disorders caused by congenital or acquired factors has so far relied on surgery and drug treatment for symptom relief, and more fundamentally, treatment for mesoderm developmental disorders is needed.
Methods and Results
In our study, microRNA (miRNA), which plays an important role in the mesoderm development process, was identified and the developmental function was evaluated. miRNAs consist of small nucleotides, which act as transcription factors that bind to the 3’ untranslated region and suppressed target gene expression. We constructed the human embryonic stem cell (hESC) knockout cell line and analyzed the function and characteristics of miR-5739, which plays an important role in mesoderm lineage. miR-5739 acts as a transcription factor targeting SMA, Brachyury T, Hand1, which controls muscle proliferation and differentiation, and KDR gene, which regulates vessel formation in vitro. In vivo results suggest a role in regulating muscle proliferation and differentiation. Gene ontology analysis confirmed that the miR-5739 is closely related to genes that regulate muscle and vessel proliferation and differentiation. Importantly, abnormal expression of miR-5739 was detected in somatic cells derived from patients with congenital muscle disease.
Conclusions
Our study demonstrate that miR-5739 gene function significantly affects transcriptional circuits that regu-late muscle and vascular differentiation during embryonic development.

Keyword

Human embryonic stem cell; Mesoderm development; microRNA; Muscle; Vessel

Figure

  • Fig. 1 miR-5739 knockout cell line construction and analysis. (A) Schematic overview of the miR-5739 gene and the Cas9/gRNA target site. (B) miR-5739 specific sgRNA RNP-mediated mutations measured with the T7E1 assay. (C) Real-time PCR for confirming miR-5739 expression reduction in miR-5739 knockout cells.

  • Fig. 2 miR-5739 knockout cells undifferentiated in vitro characterization. (A) H9 and miR-5739 knockout cells colony, AP staining (Scale bar 200 μm). (B) Representative karyotype miR-5739 cell lines showing a normal 48 chromosomes. (C) Pluripotent gene expression profile miR-5739 knockout cell lines compared with the H9.

  • Fig. 3 miR-5739 knockout cells three-germ layer differentiated in vitro cha-racterization. (A) Immunofluoresce-nce was identified using differenti-ation markers in three-germ layer differentiated miR-5739 knockout cells. Top (Endoderm-SOX17 (Green), FOXA2 (Red)), middle (Mesoderm-VEGF (Gre-en), PECAM (Red)), bottom (Ec-toderm-Map2b (Green), Tuj1 (Red), DAPI (blue)), (Scale bar 200 μm). (B) Expression of markers for all three germ layers in 3D culture condition differentiation. GAPDH, Pluri-potent-Nanog, POU5F1, Endoderm-SOX17 (SRY-box transcription factor 17), Hnf4a (Hepatocyte nuclear factor 4 alpha), FOXA2 (Forkhead box protein A2), AFP (Alpha fetoprotein), Mesoderm (Collagen type)-ACAN (Aggrecan), Col1A1 (Collagen type 1 alpha 1 chain), ALP (Alkaline phosphatase), Mesoderm (Muscle type)-KDR (Kinase insert domain receptor), Hand1 (Heart and neural crest derivatives expressed 1), SMA (Smooth muscle actin), T (Brachyury), Ectoderm-Nestin, Tuj1 (Class III beta-tubulin), PAX6.

  • Fig. 4 The effect of miR-5739 knockout cells injection on development in nude mouse. Gut epithelium (Hematoxylin & Eosin staining, magnification ×10, scale bar 100 μm), Muscle (Masson’s trichrome staining, magnification ×10, scale bar 100 μm), Cartilage (Alcian blue staining, magnification ×10, scale bar 100 μm), secretory epithelium (PAS staining, magnification ×10, scale bar 100 μm).

  • Fig. 5 Clue GO analysis of regulated miR-5739 in human embryonic stem cells. The distribution of four clusters visualized on network. Overview chart with functional groups including specific terms for regulated genes.

  • Fig. 6 Muscle and vessel specific differentiated in vitro characterization. (A) Immunofluorescence identified cells differentiated into specific mesoderm at miR-5739 knockout cells. Endothelial cells-VEGF (Green), PECAM (Red), Cardiomyocytes-cTnT(Green), sarcomeric actin(Red), DAPI (blue), (Scale bar 200 μm). (B) FACS analysis of endothelial cells and cardio-myocytes. CD31+H9 cells (22.19%), miR-5739 #39 cells (5.09%), miR-5739 #65 cells (2.95%). cTnT+ H9 cells (62.89%), miR-5739 #39 (1.59%), miR-5739 #65 (1.06%).

  • Fig. 7 Verification of miR-5739 expression using congenital muscle and vascular disease cells. Real-time PCR for confirming miR-5739 expression reduction in duchenne muscular dystrophy (DMD) patient’s cell lines and hereditary hemorrhagic telangiectasia patient’s cell lines. DMD cell lines male (27.68%), DMD cell lines female (14.01%) and HHT cell lines male (21.94%), HHT cell lines female (27.51%).


Reference

References

1. Shim J, Nam JW. 2016; The expression and functional roles of microRNAs in stem cell differentiation. BMB Rep. 49:3–10. DOI: 10.5483/BMBRep.2016.49.1.217. PMID: 26497582. PMCID: PMC4914210.
Article
2. Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, Blelloch R. 2011; Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol. 29:443–448. DOI: 10.1038/nbt.1862. PMID: 21490602. PMCID: PMC3685579.
Article
3. Chang HM, Martinez NJ, Thornton JE, Hagan JP, Nguyen KD, Gregory RI. 2012; Trim71 cooperates with microRNAs to repress Cdkn1a expression and promote embryonic stem cell proliferation. Nat Commun. 3:923. DOI: 10.1038/ncomms1909. PMID: 22735451. PMCID: PMC3518406.
Article
4. Amador-Arjona A, Cimadamore F, Huang CT, Wright R, Lewis S, Gage FH, Terskikh AV. 2015; SOX2 primes the epigenetic landscape in neural precursors enabling proper gene activation during hippocampal neurogenesis. Proc Natl Acad Sci U S A. 112:E1936–E1945. DOI: 10.1073/pnas.1421480112. PMID: 25825708. PMCID: PMC4403144.
Article
5. Yoo JK, Kim J, Choi SJ, Kim CH, Lee DR, Chung HM, Kim JK. 2011; The hsa-miR-5739 modulates the endoglin network in endothelial cells derived from human embryonic stem cells. Biochem Biophys Res Commun. 415:258–262. DOI: 10.1016/j.bbrc.2011.10.030. PMID: 22020071.
Article
6. Chen JF, Tao Y, Li J, Deng Z, Yan Z, Xiao X, Wang DZ. 2010; microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol. 190:867–879. DOI: 10.1083/jcb.200911036. PMID: 20819939. PMCID: PMC2935565.
Article
7. Srivastava D, Heidersbach AJ. 2013; Small solutions to big problems: microRNAs for cardiac regeneration. Circ Res. 112:1412–1414. DOI: 10.1161/CIRCRESAHA.113.301409. PMID: 23704215. PMCID: PMC3760376.
8. Kim SJ, Habib O, Kim JS, Han HW, Koo SK, Kim JH. 2017; A homozygous Keap1-knockout human embryonic stem cell line generated using CRISPR/Cas9 mediates gene targeting. Stem Cell Res. 19:52–54. DOI: 10.1016/j.scr.2016.12.028. PMID: 28413007. PMID: 1e2a89c6c8014f008aa1ef8d7725ec5e.
Article
9. Kim S, Kim D, Cho SW, Kim J, Kim JS. 2014; Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24:1012–1019. DOI: 10.1101/gr.171322.113. PMID: 24696461. PMCID: PMC4032847.
10. D'Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. 2005; Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 23:1534–1541. DOI: 10.1038/nbt1163. PMID: 16258519.
11. Jiang J, Au M, Lu K, Eshpeter A, Korbutt G, Fisk G, Majumdar AS. 2007; Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells. 25:1940–1953. DOI: 10.1634/stemcells.2006-0761. PMID: 17510217.
Article
12. Choi SW, Lee HA, Moon SH, Park SJ, Kim HJ, Kim KS, Zhang YH, Youm JB, Kim SJ. 2016; Spontaneous inward currents reflecting oscillatory activation of Na⁺/Ca²⁺ exchangers in human embryonic stem cell-derived cardiomyocytes. Pflugers Arch. 468:609–622. Erratum in: Pflugers Arch 2016;468: 1295. DOI: 10.1007/s00424-015-1769-2. PMID: 26687128.
Article
13. Parsons XH, Parsons JF, Moore DA. 2012; Genome-scale mapping of microRNA signatures in human embryonic stem cell neurogenesis. Mol Med Ther. 1:105. DOI: 10.4172/2324-8769.1000105. PMID: 23543894. PMCID: PMC3609664.
Article
14. Park SJ, Lee JH, Lee SG, Lee JE, Seo J, Choi JJ, Jung TH, Chung EB, Kim HN, Ju J, Song YH, Chung HM, Lee DR, Moon SH. 2019; Functional equivalency in human somatic cell nuclear transfer-derived endothelial cells. Stem Cells. 37:623–630. DOI: 10.1002/stem.2986. PMID: 30721559.
Article
15. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pagès F, Trajanoski Z, Galon J. 2009; ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 25:1091–1093. DOI: 10.1093/bioinformatics/btp101. PMID: 19237447. PMCID: PMC2666812.
Article
16. Yang HM, Choi JJ, Kim HN, Yang SJ, Park SJ, Kang C, Chung HM, Lee MR, Kim SJ, Moon SH. 2019; Reconstituting human cutaneous regeneration in humanized mice under endothelial cell therapy. J Invest Dermatol. 139:692–701. DOI: 10.1016/j.jid.2018.08.031. PMID: 30393080.
Article
17. Han SS, Shim HE, Park SJ, Kim BC, Lee DE, Chung HM, Moon SH, Kang SW. 2018; Safety and optimization of metabolic labeling of endothelial progenitor cells for tracking. Sci Rep. 8:13212. DOI: 10.1038/s41598-018-31594-0. PMID: 30181604. PMCID: PMC6123424.
Article
18. Chistiakov DA, Orekhov AN, Bobryshev YV. 2016; Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J Mol Cell Cardiol. 94:107–121. DOI: 10.1016/j.yjmcc.2016.03.015. PMID: 27056419.
Article
19. Poon EN, Hao B, Guan D, Jun Li M, Lu J, Yang Y, Wu B, Wu SC, Webb SE, Liang Y, Miller AL, Yao X, Wang J, Yan B, Boheler KR. 2018; Integrated transcriptomic and regulatory network analyses identify microRNA-200c as a novel repressor of human pluripotent stem cell-derived cardiomyocyte differentiation and maturation. Cardiovasc Res. 114:894–906. DOI: 10.1093/cvr/cvy019. PMID: 29373717.
Article
20. Fu JD, Rushing SN, Lieu DK, Chan CW, Kong CW, Geng L, Wilson KD, Chiamvimonvat N, Boheler KR, Wu JC, Keller G, Hajjar RJ, Li RA. 2011; Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyo-cytes. PLoS One. 6:e27417. DOI: 10.1371/journal.pone.0027417. PMID: 22110643. PMCID: PMC3217986. PMID: c906e6f1799b400b8bf5c02dcd4e7ff2.
Article
21. Kuppusamy KT, Sperber H, Ruohola-Baker H. 2013; MicroRNA regulation and role in stem cell maintenance, cardiac differentiation and hypertrophy. Curr Mol Med. 13:757–764. DOI: 10.2174/1566524011313050007. PMID: 23642057. PMCID: PMC3898432.
Article
22. Wang J, Bai Y, Li H, Greene SB, Klysik E, Yu W, Schwartz RJ, Williams TJ, Martin JF. 2013; MicroRNA-17-92, a direct Ap-2α transcriptional target, modulates T-box factor activity in orofacial clefting. PLoS Genet. 9:e1003785. DOI: 10.1371/journal.pgen.1003785. PMID: 24068957. PMCID: PMC3777996. PMID: 9a295d38ba574972bbee7701823ca1cd.
Article
23. Bhatnagar S, Kumar A. 2010; Therapeutic targeting of signaling pathways in muscular dystrophy. J Mol Med (Berl). 88:155–166. DOI: 10.1007/s00109-009-0550-4. PMID: 19816663. PMCID: PMC2833214.
Article
24. Botella LM, Albiñana V, Ojeda-Fernandez L, Recio-Poveda L, Bernabéu C. 2015; Research on potential biomarkers in hereditary hemorrhagic telangiectasia. Front Genet. 6:115. DOI: 10.3389/fgene.2015.00115. PMID: 25873934. PMCID: PMC4379940. PMID: 0d24364ca6db49ec87de526b4e919f84.
Article
25. McDonald J, Wooderchak-Donahue W, VanSant Webb C, Whitehead K, Stevenson DA, Bayrak-Toydemir P. 2015; Hereditary hemorrhagic telangiectasia: genetics and molecular diagnostics in a new era. Front Genet. 6:1. DOI: 10.3389/fgene.2015.00001. PMID: 25674101. PMCID: PMC4306304. PMID: 4e0e7895728541ebba65b1b143e8e0f8.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr