Korean J Physiol Pharmacol.  2022 Nov;26(6):519-530. 10.4196/kjpp.2022.26.6.519.

Lactate promotes vascular smooth muscle cell switch to a synthetic phenotype by inhibiting miR-23b expression

Affiliations
  • 1Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710004, China

Abstract

Recent research indicates that lactate promotes the switching of vascular smooth muscle cells (VSMCs) to a synthetic phenotype, which has been implicated in various vascular diseases. This study aimed to investigate the effects of lactate on the VSMC phenotype switch and the underlying mechanism. The CCK-8 method was used to assess cell viability. The microRNAs and mRNAs levels were evaluated using quantitative PCR. Targets of microRNA were predicted using online tools and confirmed using a luciferase reporter assay. We found that lactate promoted the switch of VSMCs to a synthetic phenotype, as evidenced by an increase in VSMC proliferation, mitochondrial activity, migration, and synthesis but a decrease in VSMC apoptosis. Lactate inhibited miR-23b expression in VSMCs, and miR-23b inhibited VSMC's switch to the synthetic phenotype. Lactate modulated the VSMC phenotype through downregulation of miR-23b expression, suggesting that overexpression of miR-23b using a miR-23b mimic attenuated the effects of lactate on VSMC phenotype modulation. Moreover, we discovered that SMAD family member 3 (SMAD3) was the target of miR-23b in regulating VSMC phenotype. Further findings suggested that lactate promotes VSMC switch to synthetic phenotype by targeting SMAD3 and downregulating miR-23b. These findings suggest that correcting the dysregulation of miR-23b/ SMAD3 or lactate metabolism is a potential treatment for vascular diseases.

Keyword

Lactate; miR-23b; Phenotype switch; SMAD3; Smooth muscle

Figure

  • Fig. 1 Lactate-induced synthetic phenotype in vascular smooth muscle cells (VSMCs). (A) Lactate treatment caused VSMCs to lose their spindle shape and acquire an irregular morphology. Scale bar = 200 μm. (B) CCK-8 assay reveals the cell viability of VSMCs treated with the indicated lactate. (C) VSMC apoptosis was determined using the Tunel assay after treatment with 4 mM lactate (magnification 200×). After treatment with 4 mM lactate, the mitochondrial membrane potential of VSMCs was measured by flow cytometry (E) and quantified (D). (F) The protein levels of apoptosis-associated markers in VSMCs treated with 4 mM lactate were measured. (G) A representative image of the transwell assay was used to determine the migration of VSMCs following treatment with 4 mM lactate (magnification 400×). (H) Using Western blotting, the protein levels of contractile phenotype and synthetic phenotype markers were determined in lactate-treated VSMCs. Values in this figure are presented with mean ± SD. n = 3. *p < 0.05, **p < 0.01, and ***p < 0.001.

  • Fig. 2 Lactate decreased miR-23b expression in vascular smooth muscle cells (VSMCs). (A) Lactate treatment (4 mM) altered the expression of microRNAs in VSMCs. (B) qRT-PCR was used to determine the expression of the top three downregulated miRNAs: miR-222, miR-23b, and miR-133a in VSMCs transfected with miRNA inhibitors. (C–E) qRT-PCR analysis of the expression of VSMC phenotypic markers in VSMCs transfected with miR-222 (C), miR-23b (D), or miR-133a (E) inhibitors. (F) VSMC proliferation was measured with CCK-8 after transfection with miR-23b inhibitors. (G) After transfection with miR-23b inhibitors, the migration of VSMC was measured using the transwell assay (magnification 400×). Values in this figure are presented with mean ± SD. n = 3. NC, negative control. *p < 0.05, **p < 0.01, and ***p < 0.001.

  • Fig. 3 miR-23b mimic attenuated the effects of lactate on vascular smooth muscle cell (VSMC) phenotype switch. (A) qRT-PCR analysis of the expression of miR-23b in VSMCs after transfection with a miR-23b mimic. (B–F) VSMCs cells were treated with 4 mM lactate with or without overexpression of a miR-23b mimic. (B) VSMC cell viability was determined using CCK-8. (C) The Tunel assay was used to determine the apoptosis of VSMSCs (magnification 200×). (D) Using JC-1 staining, the mitochondrial membrane potential of VSMCs was determined. (E) The migration of VSMCs was determined using a transwell assay, and the quantitative results were presented (magnification 400×). (F) The effects of lactate on the protein levels of α-SMA, SM22, SM-MHC, vimentin, and collagen 1 in VSMCs were attenuated using a Western blot assay. Values in this figure are presented with mean ± SD. n = 3. NC, negative control. *p < 0.05, **p < 0.01, and ***p < 0.001.

  • Fig. 4 miR-23b targeting of SMAD3. (A) Target genes of miR-23b have been predicted using bioinformatics. (B) The mRNA expression of WEE1, CNOT2, HMGA2, and SMAD3 in vascular smooth muscle cells (VSMCs) after miR-23b mimic transfection. (C, D) The protein expression of WEE1, CNOT2, HMGA2, and SMAD3 in VSMCs after miR-23b mimic transfection. The representative image was displayed (C), followed by statistical analysis in triplicate (D). (E) Complementary sequences of Wt/Mut-SMAD3 3UTR and miR-23b. (F) Dual-luciferase reporter assay demonstrating that SMAD3 is an miR-23b target. (G) In VSMCs, the level of SMAD3 protein was decreased by the miR-23b mimic and increased by lactate. Values in this figure are presented with mean ± SD. n = 3. NC, negative control. *p < 0.05, **p < 0.01, and ***p < 0.001.

  • Fig. 5 Lactate modulates vascular smooth muscle cell (VSMC) phenotype switch via regulating miR-23b/SMAD3 axis. Following transfection with SMAD3 OE or/and miR-23b mimic, VMSCs were treated with lactate. (A) Expression of miR-23b and SMAD3 in VSMCs as determined by qRT-PCR and Western blotting, respectively. (B) CCK-8 assay determines the B cell viability of VSMCs. (C) The VSMC apoptosis as determined by the Tunel assay (magnification 200×). (D) By JC-1 staining, the mitochondrial membrane potential of VSMCs is determined. (E) A transwell assay was used to determine VSMC migration (magnification 400×). (F) The Western blot-detected expression levels of phenotype switch-associated makers. Values in this figure are presented with mean ± SD. n = 3. *p < 0.05, **p < 0.01, and ***p<0.001.


Reference

1. Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat Z. 2019; Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol. 16:727–744. DOI: 10.1038/s41569-019-0227-9. PMID: 31243391. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85068318311&origin=inward.
Article
2. Bennett MR, Sinha S, Owens GK. 2016; Vascular smooth muscle cells in atherosclerosis. Circ Res. 118:692–702. DOI: 10.1161/CIRCRESAHA.115.306361. PMID: 26892967. PMCID: PMC4762053. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84959048825&origin=inward.
Article
3. Morrow D, Guha S, Sweeney C, Birney Y, Walshe T, O'Brien C, Walls D, Redmond EM, Cahill PA. 2008; Notch and vascular smooth muscle cell phenotype. Circ Res. 103:1370–1382. DOI: 10.1161/CIRCRESAHA.108.187534. PMID: 19059839. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=58149379347&origin=inward.
Article
4. Lacolley P, Regnault V, Avolio AP. 2018; Smooth muscle cell and arterial aging: basic and clinical aspects. Cardiovasc Res. 114:513–528. DOI: 10.1093/cvr/cvy009. PMID: 29514201. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85042943530&origin=inward.
Article
5. Grootaert MOJ, Moulis M, Roth L, Martinet W, Vindis C, Bennett MR, De Meyer GRY. 2018; Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res. 114:622–634. DOI: 10.1093/cvr/cvy007. PMID: 29360955. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85042944408&origin=inward.
Article
6. Chistiakov DA, Orekhov AN, Bobryshev YV. 2015; Vascular smooth muscle cell in atherosclerosis. Acta Physiol (Oxf). 214:33–50. DOI: 10.1111/apha.12466. PMID: 25677529. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84927640251&origin=inward.
Article
7. Salabei JK, Hill BG. 2015; Autophagic regulation of smooth muscle cell biology. Redox Biol. 4:97–103. DOI: 10.1016/j.redox.2014.12.007. PMID: 25544597. PMCID: PMC4309847. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84919782591&origin=inward.
Article
8. Hashimoto T, Hussien R, Oommen S, Gohil K, Brooks GA. 2007; Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J. 21:2602–2612. DOI: 10.1096/fj.07-8174com. PMID: 17395833. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34547790342&origin=inward.
Article
9. Hirschhaeuser F, Sattler UG, Mueller-Klieser W. 2011; Lactate: a metabolic key player in cancer. Cancer Res. 71:6921–6925. DOI: 10.1158/0008-5472.CAN-11-1457. PMID: 22084445. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=81155126061&origin=inward.
Article
10. Dhup S, Dadhich RK, Porporato PE, Sonveaux P. 2012; Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr Pharm Des. 18:1319–1330. DOI: 10.2174/138161212799504902. PMID: 22360558. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84857716739&origin=inward.
Article
11. Müller P, Duderstadt Y, Lessmann V, Müller NG. 2020; Lactate and BDNF: key mediators of exercise induced neuroplasticity? J Clin Med. 9:1136. DOI: 10.3390/jcm9041136. PMID: 32326586. PMCID: PMC7230639. PMID: 76c733ff1dc9428887e259897e30f192. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85087787055&origin=inward.
Article
12. Baltazar F, Afonso J, Costa M, Granja S. 2020; Lactate beyond a waste metabolite: metabolic affairs and signaling in malignancy. Front Oncol. 10:231. DOI: 10.3389/fonc.2020.00231. PMID: 32257942. PMCID: PMC7093491. PMID: 2b0659710b5a4cafb82419c662eae7cc. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85082649332&origin=inward.
Article
13. Pereira-Nunes A, Afonso J, Granja S, Baltazar F. 2020; Lactate and lactate transporters as key players in the maintenance of the Warburg effect. Adv Exp Med Biol. 1219:51–74. DOI: 10.1007/978-3-030-34025-4_3. PMID: 32130693. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081043083&origin=inward.
Article
14. Yang L, Gao L, Nickel T, Yang J, Zhou J, Gilbertsen A, Geng Z, Johnson C, Young B, Henke C, Gourley GR, Zhang J. 2017; Lactate promotes synthetic phenotype in vascular smooth muscle cells. Circ Res. 121:1251–1262. DOI: 10.1161/CIRCRESAHA.117.311819. PMID: 29021296. PMCID: PMC5681426. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85037676960&origin=inward.
Article
15. Gomez-Cabrera MC, Domenech E, Viña J. 2008; Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med. 44:126–131. DOI: 10.1016/j.freeradbiomed.2007.02.001. PMID: 18191748. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=37849021505&origin=inward.
Article
16. Griffiths-Jones S. 2004; The microRNA Registry. Nucleic Acids Res. 32:D109–D111. DOI: 10.1093/nar/gkh023. PMID: 14681370. PMCID: PMC308757.
Article
17. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. 2006; miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34:D140–D144. DOI: 10.1093/nar/gkj112. PMID: 16381832. PMCID: PMC1347474. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33644750115&origin=inward.
Article
18. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Müller P, Spring J, inivasan A Sr, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G. 2000; Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 408:86–89. DOI: 10.1038/35040556. PMID: 11081512. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0034597777&origin=inward.
Article
19. Yang F, Chen Q, He S, Yang M, Maguire EM, An W, Afzal TA, Luong LA, Zhang L, Xiao Q. 2018; miR-22 is a novel mediator of vascular smooth muscle cell phenotypic modulation and neointima formation. Circulation. 137:1824–1841. DOI: 10.1161/CIRCULATIONAHA.117.027799. PMID: 29246895. PMCID: PMC5916488. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85051770266&origin=inward.
Article
20. Tang Y, Yu S, Liu Y, Zhang J, Han L, Xu Z. 2017; MicroRNA-124 controls human vascular smooth muscle cell phenotypic switch via Sp1. Am J Physiol Heart Circ Physiol. 313:H641–H649. DOI: 10.1152/ajpheart.00660.2016. PMID: 28667053. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85029370012&origin=inward.
Article
21. Iaconetti C, De Rosa S, Polimeni A, Sorrentino S, Gareri C, Carino A, Sabatino J, Colangelo M, Curcio A, Indolfi C. 2015; Down-regulation of miR-23b induces phenotypic switching of vascular smooth muscle cells in vitro and in vivo. Cardiovasc Res. 107:522–533. DOI: 10.1093/cvr/cvv141. PMID: 25994172. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84948129366&origin=inward.
Article
22. Yue Y, Zhang Z, Zhang L, Chen S, Guo Y, Hong Y. 2018; miR-143 and miR-145 promote hypoxia-induced proliferation and migration of pulmonary arterial smooth muscle cells through regulating ABCA1 expression. Cardiovasc Pathol. 37:15–25. DOI: 10.1016/j.carpath.2018.08.003. PMID: 30195228. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85052849462&origin=inward.
Article
23. Grundmann S, Hans FP, Kinniry S, Heinke J, Helbing T, Bluhm F, Sluijter JP, Hoefer I, Pasterkamp G, Bode C, Moser M. 2011; MicroRNA-100 regulates neovascularization by suppression of mammalian target of rapamycin in endothelial and vascular smooth muscle cells. Circulation. 123:999–1009. DOI: 10.1161/CIRCULATIONAHA.110.000323. PMID: 21339483. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79952739991&origin=inward.
Article
24. Torella D, Iaconetti C, Catalucci D, Ellison GM, Leone A, Waring CD, Bochicchio A, Vicinanza C, Aquila I, Curcio A, Condorelli G, Indolfi C. 2011; MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ Res. 109:880–893. DOI: 10.1161/CIRCRESAHA.111.240150. PMID: 21852550.
Article
25. Luo Y, Xiong W, Dong S, Liu F, Liu H, Li J. 2017; MicroRNA-146a promotes the proliferation of rat vascular smooth muscle cells by downregulating p53 signaling. Mol Med Rep. 16:6940–6945. DOI: 10.3892/mmr.2017.7477. PMID: 28901447. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85030107419&origin=inward.
Article
26. Liu X, Cheng Y, Zhang S, Lin Y, Yang J, Zhang C. 2009; A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res. 104:476–487. DOI: 10.1161/CIRCRESAHA.108.185363. PMID: 19150885. PMCID: PMC2728290. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=61949252089&origin=inward.
Article
27. Merlet E, Atassi F, Motiani RK, Mougenot N, Jacquet A, Nadaud S, Capiod T, Trebak M, Lompré AM, Marchand A. 2013; miR-424/322 regulates vascular smooth muscle cell phenotype and neointimal formation in the rat. Cardiovasc Res. 98:458–468. DOI: 10.1093/cvr/cvt045. PMID: 23447642. PMCID: PMC3656613. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84877949558&origin=inward.
Article
28. Tang R, Mei X, Wang YC, Cui XB, Zhang G, Li W, Chen SY. 2019; LncRNA GAS5 regulates vascular smooth muscle cell cycle arrest and apoptosis via p53 pathway. Biochim Biophys Acta Mol Basis Dis. 1865:2516–2525. DOI: 10.1016/j.bbadis.2019.05.022. PMID: 31167125. PMCID: PMC6663079. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85067497328&origin=inward.
Article
29. Haas R, Smith J, Rocher-Ros V, Nadkarni S, Montero-Melendez T, D'Acquisto F, Bland EJ, Bombardieri M, Pitzalis C, Perretti M, Marelli-Berg FM, Mauro C. 2015; Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol. 13:e1002202. DOI: 10.1371/journal.pbio.1002202. PMID: 26181372. PMCID: PMC4504715. PMID: 23101ff17da749d2a6752ee7354ed8ab. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84938702403&origin=inward.
Article
30. Butler TM, Siegman MJ. 1985; High-energy phosphate metabolism in vascular smooth muscle. Annu Rev Physiol. 47:629–643. DOI: 10.1146/annurev.ph.47.030185.003213. PMID: 3158271.
Article
31. Paul RJ. 1983; Functional compartmentalization of oxidative and glycolytic metabolism in vascular smooth muscle. Am J Physiol. 244:C399–409. DOI: 10.1152/ajpcell.1983.244.5.C399. PMID: 6846528. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0020582997&origin=inward.
Article
32. Andersen LW, Mackenhauer J, Roberts JC, Berg KM, Cocchi MN, Donnino MW. 2013; Etiology and therapeutic approach to elevated lactate levels. Mayo Clin Proc. 88:1127–1140. DOI: 10.1016/j.mayocp.2013.06.012. PMID: 24079682. PMCID: PMC3975915. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84888627079&origin=inward.
Article
33. Leite TC, Coelho RG, Da Silva D, Coelho WS, Marinho-Carvalho MM, Sola-Penna M. 2011; Lactate downregulates the glycolytic enzymes hexokinase and phosphofructokinase in diverse tissues from mice. FEBS Lett. 585:92–98. DOI: 10.1016/j.febslet.2010.11.009. PMID: 21074528. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=78650911575&origin=inward.
Article
34. Zhao LL, Wu H, Sun JL, Liao L, Cui C, Liu Q, Luo J, Tang XH, Luo W, Ma JD, Ye X, Li SJ, Yang S. 2020; MicroRNA-124 regulates lactate transportation in the muscle of largemouth bass (micropterus salmoides) under hypoxia by targeting MCT1. Aquat Toxicol. 218:105359. DOI: 10.1016/j.aquatox.2019.105359. PMID: 31765944. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075308374&origin=inward.
Article
35. Ping W, Senyan H, Li G, Yan C, Long L. 2018; Increased lactate in gastric cancer tumor-infiltrating lymphocytes is related to impaired T cell function due to miR-34a deregulated lactate dehydrogenase A. Cell Physiol Biochem. 49:828–836. DOI: 10.1159/000493110. PMID: 30165351. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85052941175&origin=inward.
Article
36. Bang C, Fiedler J, Thum T. 2012; Cardiovascular importance of the microRNA-23/27/24 family. Microcirculation. 19:208–214. DOI: 10.1111/j.1549-8719.2011.00153.x. PMID: 22136461. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84859125017&origin=inward.
Article
37. Majid S, Dar AA, Saini S, Arora S, Shahryari V, Zaman MS, Chang I, Yamamura S, Tanaka Y, Deng G, Dahiya R. 2012; miR-23b represses proto-oncogene Src kinase and functions as methylation-silenced tumor suppressor with diagnostic and prognostic significance in prostate cancer. Cancer Res. 72:6435–6446. DOI: 10.1158/0008-5472.CAN-12-2181. PMID: 23074286. PMCID: PMC3940348. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84871222985&origin=inward.
Article
38. Zhu S, Pan W, Song X, Liu Y, Shao X, Tang Y, Liang D, He D, Wang H, Liu W, Shi Y, Harley JB, Shen N, Qian Y. 2012; The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α. Nat Med. 18:1077–1086. DOI: 10.1038/nm.2815. PMID: 22660635. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84863686039&origin=inward.
Article
39. Plekhanova OS, Parfyonova YV, Bibilashvily RSh, Stepanova VV, Erne P, Bobik A, Tkachuk VA. 2000; Urokinase plasminogen activator enhances neointima growth and reduces lumen size in injured carotid arteries. J Hypertens. 18:1065–1069. DOI: 10.1097/00004872-200018080-00011. PMID: 10953998. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0033851467&origin=inward.
Article
40. Clowes AW, Clowes MM, Au YP, Reidy MA, Belin D. 1990; Smooth muscle cells express urokinase during mitogenesis and tissue-type plasminogen activator during migration in injured rat carotid artery. Circ Res. 67:61–67. DOI: 10.1161/01.RES.67.1.61. PMID: 2114227. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0025295728&origin=inward.
Article
41. Kundi R, Hollenbeck ST, Yamanouchi D, Herman BC, Edlin R, Ryer EJ, Wang C, Tsai S, Liu B, Kent KC. 2009; Arterial gene transfer of the TGF-beta signalling protein Smad3 induces adaptive remodelling following angioplasty: a role for CTGF. Cardiovasc Res. 84:326–335. DOI: 10.1093/cvr/cvp220. PMID: 19570811. PMCID: PMC2761202. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=71549123218&origin=inward.
Article
42. Tsai S, Hollenbeck ST, Ryer EJ, Edlin R, Yamanouchi D, Kundi R, Wang C, Liu B, Kent KC. 2009; TGF-beta through Smad3 signaling stimulates vascular smooth muscle cell proliferation and neointimal formation. Am J Physiol Heart Circ Physiol. 297:H540–H549. DOI: 10.1152/ajpheart.91478.2007. PMID: 19525370. PMCID: PMC2724222. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=68049103323&origin=inward.
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr