1. Fischer KM, Cottage CT, Wu W, Din S, Gude NA, Avitabile D, Quijada P, Collins BL, Fransioli J, Sussman MA. 2009; Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase. Circulation. 120:2077–2087. DOI:
10.1161/CIRCULATIONAHA.109.884403. PMID:
19901187. PMCID:
PMC2787902.
Article
2. Wang X, Hu Q, Nakamura Y, Lee J, Zhang G, From AH, Zhang J. 2006; The role of the sca-1+/CD31-cardiac progenitor cell population in postinfarction left ventricular remode-ling. Stem Cells. 24:1779–1788. DOI:
10.1634/stemcells.2005-0386. PMID:
16614004.
Article
3. Li S, Guo K, Wu J, Guo Z, Li A. 2017; Altered expression of c-kit and nanog in a rat model of Adriamycin-induced chronic heart failure. Am J Cardiovasc Dis. 7:57–63.
4. Zakharova L, Nural-Guvener H, Nimlos J, Popovic S, Gaballa MA. 2013; Chronic heart failure is associated with transforming growth factor beta-dependent yield and functional decline in atrial explant-derived c-Kit+ cells. J Am Heart Assoc. 2:e000317. DOI:
10.1161/JAHA.113.000317. PMID:
24088507. PMCID:
PMC3835238.
Article
5. Zakharova L, Nural-Guvener H, Feehery L, Popovic-Sljukic S, Gaballa MA. 2015; Transplantation of epigenetically modified adult cardiac c-Kit+ cells retards remodeling and improves cardiac function in ischemic heart failure model. Stem Cells Transl Med. 4:1086–1096. DOI:
10.5966/sctm.2014-0290. PMID:
26240433. PMCID:
PMC4542868.
Article
6. Liu Q, Yang R, Huang X, Zhang H, He L, Zhang L, Tian X, Nie Y, Hu S, Yan Y, Zhang L, Qiao Z, Wang QD, Lui KO, Zhou B. 2016; Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes. Cell Res. 26:119–130. DOI:
10.1038/cr.2015.143. PMID:
26634606. PMCID:
PMC4816131.
Article
7. Castaldo C, Di Meglio F, Nurzynska D, Romano G, Maiello C, Bancone C, Müller P, Böhm M, Cotrufo M, Montagnani S. 2008; CD117-positive cells in adult human heart are localized in the subepicardium, and their activation is associated with laminin-1 and alpha6 integrin expression. Stem Cells. 26:1723–1731. DOI:
10.1634/stemcells.2007-0732. PMID:
18436868.
8. Wang X, Li Q, Hu Q, Suntharalingam P, From AH, Zhang J. 2014; Intra-myocardial injection of both growth factors and heart derived Sca-1+/CD31-cells attenuates post-MI LV remodeling more than does cell transplantation alone: neither intervention enhances functionally significant cardiomyocyte re-generation. PLoS One. 9:e95247. DOI:
10.1371/journal.pone.0095247. PMID:
24919180. PMCID:
PMC4053321. PMID:
3d821a02a7b1403bb4406eb707c63445.
9. Ellison GM, Vicinanza C, Smith AJ, Aquila I, Leone A, Waring CD, Henning BJ, Stirparo GG, Papait R, Scarfò M, Agosti V, Viglietto G, Condorelli G, Indolfi C, Ottolenghi S, Torella D, Nadal-Ginard B. 2013; Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell. 154:827–842. DOI:
10.1016/j.cell.2013.07.039. PMID:
23953114.
Article
14. Ong SB, Hausenloy DJ. 2017; Mitochondrial dynamics as a therapeutic target for treating cardiac diseases. Handb Exp Phar-macol. 240:251–279. DOI:
10.1007/164_2016_7. PMID:
27844171.
Article
15. Ishihara N, Eura Y, Mihara K. 2004; Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase ac-tivity. J Cell Sci. 117(Pt 26):6535–6546. DOI:
10.1242/jcs.01565. PMID:
15572413.
Article
16. Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers G. 2003; Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem. 278:7743–7746. DOI:
10.1074/jbc.C200677200. PMID:
12509422.
Article
17. Cereghetti GM, Stangherlin A, Martins de Brito O, Chang CR, Blackstone C, Bernardi P, Scorrano L. 2008; Dephospho-rylation by calcineurin regulates translocation of Drp1 to mito-chondria. Proc Natl Acad Sci U S A. 105:15803–15808. DOI:
10.1073/pnas.0808249105. PMID:
18838687. PMCID:
PMC2572940.
Article
18. Fransioli J, Bailey B, Gude NA, Cottage CT, Muraski JA, Emmanuel G, Wu W, Alvarez R, Rubio M, Ottolenghi S, Schaefer E, Sussman MA. 2008; Evolution of the c-kit-positive cell response to pathological challenge in the myocardium. Stem Cells. 26:1315–1324. DOI:
10.1634/stemcells.2007-0751. PMID:
18308948. PMCID:
PMC4037162.
Article
19. Orogo AM, Gonzalez ER, Kubli DA, Baptista IL, Ong SB, Prolla TA, Sussman MA, Murphy AN, Gustafsson ÅB. 2015; Accumulation of mitochondrial DNA mutations disrupts cardiac progenitor cell function and reduces survival. J Biol Chem. 290:22061–22075. Erratum in: J Biol Chem 2017;292:11348. DOI:
10.1074/jbc.A115.649657. PMID:
28687597. PMCID:
PMC5500800.
Article
20. Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ. 2010; Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation. 121:2012–2022. DOI:
10.1161/CIRCULATIONAHA.109.906610. PMID:
20421521.
Article
21. San Martin N, Cervera AM, Cordova C, Covarello D, McCreath KJ, Galvez BG. 2011; Mitochondria determine the differentiation potential of cardiac mesoangioblasts. Stem Cells. 29:1064–1074. DOI:
10.1002/stem.654. PMID:
21544900.
Article
22. Jin J, Xuan QK, Zhou LJ, Shi CM, Song GX, Sheng YH, Qian LM. 2014; Dynamic mitochondrial changes during differentiation of P19 embryonic carcinoma cells into cardio-myocytes. Mol Med Rep. 10:761–766. DOI:
10.3892/mmr.2014.2315. PMID:
24920049.
Article
23. Wang L, Ye X, Zhao Q, Zhou Z, Dan J, Zhu Y, Chen Q, Liu L. 2014; Drp1 is dispensable for mitochondria biogenesis in induction to pluripotency but required for differentiation of embryonic stem cells. Stem Cells Dev. 23:2422–2434. DOI:
10.1089/scd.2014.0059. PMID:
24937776.
Article
25. Vazquez-Martin A, Cufi S, Corominas-Faja B, Oliveras-Ferraros C, Vellon L, Menendez JA. 2012; Mitochondrial fusion by pharmacological manipulation impedes somatic cell reprogramming to pluripotency: new insight into the role of mitophagy in cell stemness. Aging (Albany NY). 4:393–401. DOI:
10.18632/aging.100465. PMID:
22713507. PMCID:
PMC3409676.
Article
26. Kasahara A, Cipolat S, Chen Y, Dorn GW 2nd, Scorrano L. 2013; Mitochondrial fusion directs cardiomyocyte differentia-tion via calcineurin and Notch signaling. Science. 342:734–737. DOI:
10.1126/science.1241359. PMID:
24091702.
Article
27. Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C, Terzic A. 2011; Somatic oxidative bioenergetics transitions into pluripoten-cy-dependent glycolysis to facilitate nuclear reprogram-ming. Cell Metab. 14:264–271. DOI:
10.1016/j.cmet.2011.06.011. PMID:
21803296. PMCID:
PMC3156138.
Article
28. Prieto J, Seo AY, León M, Santacatterina F, Torresano L, Palomino-Schätzlein M, Giménez K, Vallet-Sánchez A, Ponsoda X, Pineda-Lucena A, Cuezva JM, Lippincott-Schwartz J, Torres J. 2018; MYC induces a hybrid energetics program early in cell reprogramming. Stem Cell Reports. 11:1479–1492. DOI:
10.1016/j.stemcr.2018.10.018. PMID:
30472011. PMCID:
PMC6294174.
Article
29. Chen W, Sun Y, Sun Q, Zhang J, Jiang M, Chang C, Huang X, Wang C, Wang P, Zhang Z, Chen X, Wang Y. 2020; MFN2 plays a distinct role from MFN1 in regulating spermatogonial differentiation. Stem Cell Reports. 14:803–817. DOI:
10.1016/j.stemcr.2020.03.024. PMID:
32330448. PMCID:
PMC7221103.
31. Vigneault P, Naud P, Qi X, Xiao J, Villeneuve L, Davis DR, Nattel S. 2018; Calcium-dependent potassium channels control proliferation of cardiac progenitor cells and bone marrow-derived mesenchymal stem cells. J Physiol. 596:2359–2379. DOI:
10.1113/JP275388. PMID:
29574723. PMCID:
PMC6002232.
Article
32. Park JS, Kim YS, Yoo MA. 2009; The role of p38b MAPK in age-related modulation of intestinal stem cell proliferation and differentiation in Drosophila. Aging (Albany NY). 1:637–651. DOI:
10.18632/aging.100054. PMID:
20157545. PMCID:
PMC2806044.
Article
33. Bae YK, Kwon JH, Kim M, Kim GH, Choi SJ, Oh W, Yang YS, Jin HJ, Jeon HB. 2018; Intracellular calcium determines the adipogenic differentiation potential of human umbilical cord blood-derived mesenchymal stem cells via the Wnt5a/β-catenin signaling pathway. Stem Cells Int. 2018:6545071. DOI:
10.1155/2018/6545071. PMID:
30123291. PMCID:
PMC6079381. PMID:
920a99315261416d8d99ff8ab14608bc.
34. Cribbs JT, Strack S. 2007; Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 8:939–944. DOI:
10.1038/sj.embor.7401062. PMID:
17721437. PMCID:
PMC2002551.
Article
35. Li X, Zhu L, Yang A, Lin J, Tang F, Jin S, Wei Z, Li J, Jin Y. 2011; Calcineurin-NFAT signaling critically regulates early lineage specification in mouse embryonic stem cells and embryos. Cell Stem Cell. 8:46–58. DOI:
10.1016/j.stem.2010.11.027. PMID:
21211781.
Article
36. Gómez-Salinero JM, López-Olañeta MM, Ortiz-Sánchez P, Larrasa-Alonso J, Gatto A, Felkin LE, Barton PJR, Navarro-Lérida I, Ángel Del Pozo M, García-Pavía P, Sundararaman B, Giovinazo G, Yeo GW, Lara-Pezzi E. 2016; The calcineurin variant CnAβ1 controls mouse embryonic stem cell differen-tiation by directing mTORC2 membrane localization and activation. Cell Chem Biol. 23:1372–1382. DOI:
10.1016/j.chembiol.2016.09.010. PMID:
27746127.
Article
37. Mann KM, Ray JL, Moon ES, Sass KM, Benson MR. 2004; Cal-cineurin initiates smooth muscle differentiation in neural crest stem cells. J Cell Biol. 165:483–491. DOI:
10.1083/jcb.200402105. PMID:
15148306. PMCID:
PMC2172346.
Article
40. Choi IY, Lim H, Cho HJ, Oh Y, Chou BK, Bai H, Cheng L, Kim YJ, Hyun S, Kim H, Shin JH, Lee G. 2020; Transcrip-tional landscape of myogenesis from human pluripotent stem cells reveals a key role of TWIST1 in maintenance of skeletal muscle progenitors. Elife. 9:e46981. DOI:
10.7554/eLife.46981. PMID:
32011235. PMCID:
PMC6996923. PMID:
2ec2845de8084974b69d4de181793812.
Article
41. Harding MW, Handschumacher RE. 1988; Cyclophilin, a primary molecular target for cyclosporine. Structural and fun-ctional implications. Transplantation. 46(2 Suppl):29S–35S. DOI:
10.1097/00007890-198808001-00006. PMID:
3043795.
42. Nicolli A, Basso E, Petronilli V, Wenger RM, Bernardi P. 1996; Interactions of cyclophilin with the mitochondrial inner me-mbrane and regulation of the permeability transition pore, and cyclosporin A-sensitive channel. J Biol Chem. 271:2185–2192. DOI:
10.1074/jbc.271.4.2185. PMID:
8567677.
Article
44. Montero M, Lobatón CD, Gutierrez-Fernández S, Moreno A, Alvarez J. 2004; Calcineurin-independent inhibition of mito-chondrial Ca2+ uptake by cyclosporin A. Br J Pharmacol. 141:263–268. DOI:
10.1038/sj.bjp.0705609. PMID:
14691054. PMCID:
PMC1574196.
Article
46. Yilmaz DE, Kirschner K, Demirci H, Himmerkus N, Bach-mann S, Mutig K. 2022; Immunosuppressive calcineurin inhibi-tor cyclosporine A induces proapoptotic endoplasmic reticulum stress in renal tubular cells. J Biol Chem. 298:101589. DOI:
10.1016/j.jbc.2022.101589. PMID:
35033536. PMCID:
PMC8857494.
47. Hojo M, Morimoto T, Maluccio M, Asano T, Morimoto K, Lagman M, Shimbo T, Suthanthiran M. 1999; Cyclosporine indu-ces cancer progression by a cell-autonomous mechanism. Na-ture. 397:530–534. DOI:
10.1038/17401. PMID:
10028970.
Article
48. Bordt EA, Clerc P, Roelofs BA, Saladino AJ, Tretter L, Adam-Vizi V, Cherok E, Khalil A, Yadava N, Ge SX, Francis TC, Kennedy NW, Picton LK, Kumar T, Uppuluri S, Miller AM, Itoh K, Karbowski M, Sesaki H, Hill RB, Polster BM. 2017; The putative Drp1 inhibitor mdivi-1 is a reversible mitochondrial complex I inhibitor that modulates reactive oxygen species. Dev Cell. 40:583–594.e6. DOI:
10.1016/j.devcel.2017.02.020. PMID:
28350990. PMCID:
PMC5398851.
Article