Int J Stem Cells.  2023 May;16(2):123-134. 10.15283/ijsc22141.

The Calcineurin-Drp1-Mediated Mitochondrial Fragmentation is Aligned with the Differentiation of c-Kit Cardiac Progenitor Cells

Affiliations
  • 1Department of Medicine and Therapeutics (MEDT), Faculty of Medicine, Chinese University of Hong Kong (CUHK), Hong Kong, China
  • 2Centre for Cardiovascular Genomics and Medicine (CCGM), Lui Che Woo Institute of Innovative Medicine, CUHK, Hong Kong, China
  • 3Hong Kong Children’s Hospital (HKCH), Hong Kong Hub of Paediatric Excellence (HK HOPE), Kowloon Bay, Hong Kong, China
  • 4Department of Basic Medicine, Graduate School of PLA General Hospital, Beijing, China
  • 5Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
  • 6Department of Cardiology, Qidong People’s Hospital, Qidong, Jiangsu, China
  • 7Department of Cardiology, Chinese People’s Liberation Army General Hospital, Beijing, China
  • 8Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
  • 9KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China

Abstract


Objective
The heart contains a pool of c-kit+ progenitor cells which is believed to be able to regenerate. The differentiation of these progenitor cells is reliant on different physiological cues. Unraveling the underlying signals to direct differentiation of progenitor cells will be beneficial in controlling progenitor cell fate. In this regard, the role of the mitochondria in mediating cardiac progenitor cell fate remains unclear. Specifically, the association between changes in mitochondrial morphology with the differentiation status of c-kit+ CPCs remains elusive. In this study, we investigated the relationship between mitochondrial morphology and the differentiation status of c-kit+ progenitor cells.
Methods and Results
c-kit+ CPCs were isolated from 2-month-old male wild-type FVB mice. To activate differentiation, CPCs were incubated in α-minimal essential medium containing 10 nM dexamethasone for up to 7 days. To inhibit Drp1-mediated mitochondrial fragmentation, either 10 μM or 50 μM mdivi-1 was administered once at Day 0 and again at Day 2 of differentiation. To inhibit calcineurin, either 1 μM or 5 μM ciclosporin-A (CsA) was administered once at Day 0 and again at Day 2 of differentiation. Dexamethasone-induced differentiation of c-kit+ progenitor cells is aligned with fragmentation of the mitochondria via a calcineurin-Drp1 pathway. Pharmacologically inhibiting mitochondrial fragmentation retains the undifferentiated state of the c-kit+ progenitor cells.
Conclusions
The findings from this study provide an alternative view of the role of mitochondrial fusion-fission in the differentiation of cardiac progenitor cells and the potential of pharmacologically manipulating the mitochondria to direct progenitor cell fate.

Keyword

c-kit; Cardiac progenitor cells; Stem cell differentiation; Mitochondrial fragmentation; Drp1; Calcineurin

Figure

  • Fig. 1 Differentiation of c-kit+ CPCs is mediated by dexamethasone incubation. Representative epifluorescence images and quantification of (A) c-kit and (B) GATA-4 in the c-kit+ CPCs at Day 0 and 7-days post-dexamethasone treatment (n=80 cells per group; *p<0.05). (C) Representative Western blot of mitochondrial respiratory subunits in the c-kit+ CPCs at Day 0 and 7-days post-dexamethasone treatment.

  • Fig. 2 Differentiation of c-kit+ CPCs promotes changes in mitochondrial morphology. Dexamethasone incubation for 7 days causes (A) fragmentation of the mitochondria in the c-kit+ CPCs, (B) an increase in mitochondrial number, and (C) a reduction in the average size of the individual mitochondrion (n=80 cells per group; *p<0.05). (D) Mitochondrial fragmentation occurred as early as Day 2 following dexamethasone treatment (n=80 cells per group; *p<0.05).

  • Fig. 3 Mitochondrial fragmentation during c-kit differentiation is mediated by calcineurin-Drp1. (A) Representative Western blot images of mitochondrial-shaping proteins in c-kit+ CPCs at Day 0 and Day 7 following dexamethasone treatment. (B) Representative Western blot image of mitochondrial-shaping proteins following a time course of 7 days dexamethasone treatment. (C) Representative Western blot image profiling the changes in phosphorylated Drp1 at the S637 site following a time course of 7 days dexamethasone treatment. (D) Quantification of calcineurin activity during dexamethasone-differentiation of c-kit+ CPCs (n=3, *p<0.05 when compared with D0; †p<0.05 when compared with D7).

  • Fig. 4 Drp1 inhibition impairs mitochondrial fragmentation and c-kit differentiation. (A) Representative epifluorescence images of c-kit+ CPCs stained with antibodies against CoxIV (red), GATA-4 (green) with Hoescht (blue). (B) Quantification of c-kit+ CPCs with fragmented mitochondria following mdivi-1 treatment (n=80; *p<0.05 when compared with D0; †p<0.05 when compared with D7 with 50 μM mdivi-1). (C) GATA-4-positive c-kit+ CPCs following 7 days dexamethasone treatment in the presence of mdivi-1 (n=80; *p<0.05 when compared with D0; †p<0.05 when compared with D7 with 50 μM mdivi-1).

  • Fig. 5 Inhibition of calcineurin impairs mitochondrial fragmentation and differentiation of c-kit CPCs. (A) Representative epifluorescence images of c-kit+ CPCs stained with antibodies against CoxIV (red), GATA-4 (green) with Hoescht (blue). (B) Quantification of c-kit+ CPCs with fragmented mitochondria following CsA treatment (n=80; *p<0.05 when compared with D0; †p<0.05 when compared with D7 with 5 μM CsA). (C) GATA-4-positive c-kit+ CPCs following 7 days dexamethasone treatment in the presence of CsA (n=80; *p<0.05 when compared with D0; †p<0.05 when compared with D7 with 5 μM CsA).


Reference

References

1. Fischer KM, Cottage CT, Wu W, Din S, Gude NA, Avitabile D, Quijada P, Collins BL, Fransioli J, Sussman MA. 2009; Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase. Circulation. 120:2077–2087. DOI: 10.1161/CIRCULATIONAHA.109.884403. PMID: 19901187. PMCID: PMC2787902.
Article
2. Wang X, Hu Q, Nakamura Y, Lee J, Zhang G, From AH, Zhang J. 2006; The role of the sca-1+/CD31-cardiac progenitor cell population in postinfarction left ventricular remode-ling. Stem Cells. 24:1779–1788. DOI: 10.1634/stemcells.2005-0386. PMID: 16614004.
Article
3. Li S, Guo K, Wu J, Guo Z, Li A. 2017; Altered expression of c-kit and nanog in a rat model of Adriamycin-induced chronic heart failure. Am J Cardiovasc Dis. 7:57–63.
4. Zakharova L, Nural-Guvener H, Nimlos J, Popovic S, Gaballa MA. 2013; Chronic heart failure is associated with transforming growth factor beta-dependent yield and functional decline in atrial explant-derived c-Kit+ cells. J Am Heart Assoc. 2:e000317. DOI: 10.1161/JAHA.113.000317. PMID: 24088507. PMCID: PMC3835238.
Article
5. Zakharova L, Nural-Guvener H, Feehery L, Popovic-Sljukic S, Gaballa MA. 2015; Transplantation of epigenetically modified adult cardiac c-Kit+ cells retards remodeling and improves cardiac function in ischemic heart failure model. Stem Cells Transl Med. 4:1086–1096. DOI: 10.5966/sctm.2014-0290. PMID: 26240433. PMCID: PMC4542868.
Article
6. Liu Q, Yang R, Huang X, Zhang H, He L, Zhang L, Tian X, Nie Y, Hu S, Yan Y, Zhang L, Qiao Z, Wang QD, Lui KO, Zhou B. 2016; Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes. Cell Res. 26:119–130. DOI: 10.1038/cr.2015.143. PMID: 26634606. PMCID: PMC4816131.
Article
7. Castaldo C, Di Meglio F, Nurzynska D, Romano G, Maiello C, Bancone C, Müller P, Böhm M, Cotrufo M, Montagnani S. 2008; CD117-positive cells in adult human heart are localized in the subepicardium, and their activation is associated with laminin-1 and alpha6 integrin expression. Stem Cells. 26:1723–1731. DOI: 10.1634/stemcells.2007-0732. PMID: 18436868.
8. Wang X, Li Q, Hu Q, Suntharalingam P, From AH, Zhang J. 2014; Intra-myocardial injection of both growth factors and heart derived Sca-1+/CD31-cells attenuates post-MI LV remodeling more than does cell transplantation alone: neither intervention enhances functionally significant cardiomyocyte re-generation. PLoS One. 9:e95247. DOI: 10.1371/journal.pone.0095247. PMID: 24919180. PMCID: PMC4053321. PMID: 3d821a02a7b1403bb4406eb707c63445.
9. Ellison GM, Vicinanza C, Smith AJ, Aquila I, Leone A, Waring CD, Henning BJ, Stirparo GG, Papait R, Scarfò M, Agosti V, Viglietto G, Condorelli G, Indolfi C, Ottolenghi S, Torella D, Nadal-Ginard B. 2013; Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell. 154:827–842. DOI: 10.1016/j.cell.2013.07.039. PMID: 23953114.
Article
10. Lees JG, Kong AM, Chen YC, Sivakumaran P, Hernández D, Pébay A, Harvey AJ, Gardner DK, Lim SY. 2019; Mitochon-drial fusion by M1 promotes embryoid body cardiac differentiation of human pluripotent stem cells. Stem Cells Int. 2019:6380135. DOI: 10.1155/2019/6380135. PMID: 31641358. PMCID: PMC6770295. PMID: 85ccbf95dccf420887dafb2aa41ba1df.
Article
11. Lee JE, Seo BJ, Han MJ, Hong YJ, Hong K, Song H, Lee JW, Do JT. 2020; Changes in the expression of mitochondrial morphology-related genes during the differentiation of murine embryonic stem cells. Stem Cells Int. 2020:9369268. DOI: 10.1155/2020/9369268. PMID: 32399055. PMCID: PMC7204333. PMID: 08b215ff185940229f1bdf094d83ca55.
Article
12. Varum S, Rodrigues AS, Moura MB, Momcilovic O, Easley CA 4th, Ramalho-Santos J, Van Houten B, Schatten G. 2011; Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One. 6:e20914. DOI: 10.1371/journal.pone.0020914. PMID: 21698063. PMCID: PMC3117868. PMID: 3a763051317f43ffb33cf5da9b0515c6.
Article
13. Ong SB, Hausenloy DJ. 2010; Mitochondrial morphology and cardiovascular disease. Cardiovasc Res. 88:16–29. DOI: 10.1093/cvr/cvq237. PMID: 20631158. PMCID: PMC2936127.
Article
14. Ong SB, Hausenloy DJ. 2017; Mitochondrial dynamics as a therapeutic target for treating cardiac diseases. Handb Exp Phar-macol. 240:251–279. DOI: 10.1007/164_2016_7. PMID: 27844171.
Article
15. Ishihara N, Eura Y, Mihara K. 2004; Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase ac-tivity. J Cell Sci. 117(Pt 26):6535–6546. DOI: 10.1242/jcs.01565. PMID: 15572413.
Article
16. Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers G. 2003; Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem. 278:7743–7746. DOI: 10.1074/jbc.C200677200. PMID: 12509422.
Article
17. Cereghetti GM, Stangherlin A, Martins de Brito O, Chang CR, Blackstone C, Bernardi P, Scorrano L. 2008; Dephospho-rylation by calcineurin regulates translocation of Drp1 to mito-chondria. Proc Natl Acad Sci U S A. 105:15803–15808. DOI: 10.1073/pnas.0808249105. PMID: 18838687. PMCID: PMC2572940.
Article
18. Fransioli J, Bailey B, Gude NA, Cottage CT, Muraski JA, Emmanuel G, Wu W, Alvarez R, Rubio M, Ottolenghi S, Schaefer E, Sussman MA. 2008; Evolution of the c-kit-positive cell response to pathological challenge in the myocardium. Stem Cells. 26:1315–1324. DOI: 10.1634/stemcells.2007-0751. PMID: 18308948. PMCID: PMC4037162.
Article
19. Orogo AM, Gonzalez ER, Kubli DA, Baptista IL, Ong SB, Prolla TA, Sussman MA, Murphy AN, Gustafsson ÅB. 2015; Accumulation of mitochondrial DNA mutations disrupts cardiac progenitor cell function and reduces survival. J Biol Chem. 290:22061–22075. Erratum in: J Biol Chem 2017;292:11348. DOI: 10.1074/jbc.A115.649657. PMID: 28687597. PMCID: PMC5500800.
Article
20. Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ. 2010; Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation. 121:2012–2022. DOI: 10.1161/CIRCULATIONAHA.109.906610. PMID: 20421521.
Article
21. San Martin N, Cervera AM, Cordova C, Covarello D, McCreath KJ, Galvez BG. 2011; Mitochondria determine the differentiation potential of cardiac mesoangioblasts. Stem Cells. 29:1064–1074. DOI: 10.1002/stem.654. PMID: 21544900.
Article
22. Jin J, Xuan QK, Zhou LJ, Shi CM, Song GX, Sheng YH, Qian LM. 2014; Dynamic mitochondrial changes during differentiation of P19 embryonic carcinoma cells into cardio-myocytes. Mol Med Rep. 10:761–766. DOI: 10.3892/mmr.2014.2315. PMID: 24920049.
Article
23. Wang L, Ye X, Zhao Q, Zhou Z, Dan J, Zhu Y, Chen Q, Liu L. 2014; Drp1 is dispensable for mitochondria biogenesis in induction to pluripotency but required for differentiation of embryonic stem cells. Stem Cells Dev. 23:2422–2434. DOI: 10.1089/scd.2014.0059. PMID: 24937776.
Article
24. Fu W, Liu Y, Yin H. 2019; Mitochondrial dynamics: biogenesis, fission, fusion, and mitophagy in the regulation of stem cell behaviors. Stem Cells Int. 2019:9757201. DOI: 10.1155/2019/9757201. PMID: 31089338. PMCID: PMC6476046. PMID: 798abb0e1ee64828bcce19bf5ea83351.
Article
25. Vazquez-Martin A, Cufi S, Corominas-Faja B, Oliveras-Ferraros C, Vellon L, Menendez JA. 2012; Mitochondrial fusion by pharmacological manipulation impedes somatic cell reprogramming to pluripotency: new insight into the role of mitophagy in cell stemness. Aging (Albany NY). 4:393–401. DOI: 10.18632/aging.100465. PMID: 22713507. PMCID: PMC3409676.
Article
26. Kasahara A, Cipolat S, Chen Y, Dorn GW 2nd, Scorrano L. 2013; Mitochondrial fusion directs cardiomyocyte differentia-tion via calcineurin and Notch signaling. Science. 342:734–737. DOI: 10.1126/science.1241359. PMID: 24091702.
Article
27. Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C, Terzic A. 2011; Somatic oxidative bioenergetics transitions into pluripoten-cy-dependent glycolysis to facilitate nuclear reprogram-ming. Cell Metab. 14:264–271. DOI: 10.1016/j.cmet.2011.06.011. PMID: 21803296. PMCID: PMC3156138.
Article
28. Prieto J, Seo AY, León M, Santacatterina F, Torresano L, Palomino-Schätzlein M, Giménez K, Vallet-Sánchez A, Ponsoda X, Pineda-Lucena A, Cuezva JM, Lippincott-Schwartz J, Torres J. 2018; MYC induces a hybrid energetics program early in cell reprogramming. Stem Cell Reports. 11:1479–1492. DOI: 10.1016/j.stemcr.2018.10.018. PMID: 30472011. PMCID: PMC6294174.
Article
29. Chen W, Sun Y, Sun Q, Zhang J, Jiang M, Chang C, Huang X, Wang C, Wang P, Zhang Z, Chen X, Wang Y. 2020; MFN2 plays a distinct role from MFN1 in regulating spermatogonial differentiation. Stem Cell Reports. 14:803–817. DOI: 10.1016/j.stemcr.2020.03.024. PMID: 32330448. PMCID: PMC7221103.
30. Maxwell JT, Wagner MB, Davis ME. 2016; Electrically induced calcium handling in cardiac progenitor cells. Stem Cells Int. 2016:8917380. DOI: 10.1155/2016/8917380. PMID: 27818693. PMCID: PMC5080514. PMID: 6e4d500b11d946cda1d3262f03033db1.
Article
31. Vigneault P, Naud P, Qi X, Xiao J, Villeneuve L, Davis DR, Nattel S. 2018; Calcium-dependent potassium channels control proliferation of cardiac progenitor cells and bone marrow-derived mesenchymal stem cells. J Physiol. 596:2359–2379. DOI: 10.1113/JP275388. PMID: 29574723. PMCID: PMC6002232.
Article
32. Park JS, Kim YS, Yoo MA. 2009; The role of p38b MAPK in age-related modulation of intestinal stem cell proliferation and differentiation in Drosophila. Aging (Albany NY). 1:637–651. DOI: 10.18632/aging.100054. PMID: 20157545. PMCID: PMC2806044.
Article
33. Bae YK, Kwon JH, Kim M, Kim GH, Choi SJ, Oh W, Yang YS, Jin HJ, Jeon HB. 2018; Intracellular calcium determines the adipogenic differentiation potential of human umbilical cord blood-derived mesenchymal stem cells via the Wnt5a/β-catenin signaling pathway. Stem Cells Int. 2018:6545071. DOI: 10.1155/2018/6545071. PMID: 30123291. PMCID: PMC6079381. PMID: 920a99315261416d8d99ff8ab14608bc.
34. Cribbs JT, Strack S. 2007; Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 8:939–944. DOI: 10.1038/sj.embor.7401062. PMID: 17721437. PMCID: PMC2002551.
Article
35. Li X, Zhu L, Yang A, Lin J, Tang F, Jin S, Wei Z, Li J, Jin Y. 2011; Calcineurin-NFAT signaling critically regulates early lineage specification in mouse embryonic stem cells and embryos. Cell Stem Cell. 8:46–58. DOI: 10.1016/j.stem.2010.11.027. PMID: 21211781.
Article
36. Gómez-Salinero JM, López-Olañeta MM, Ortiz-Sánchez P, Larrasa-Alonso J, Gatto A, Felkin LE, Barton PJR, Navarro-Lérida I, Ángel Del Pozo M, García-Pavía P, Sundararaman B, Giovinazo G, Yeo GW, Lara-Pezzi E. 2016; The calcineurin variant CnAβ1 controls mouse embryonic stem cell differen-tiation by directing mTORC2 membrane localization and activation. Cell Chem Biol. 23:1372–1382. DOI: 10.1016/j.chembiol.2016.09.010. PMID: 27746127.
Article
37. Mann KM, Ray JL, Moon ES, Sass KM, Benson MR. 2004; Cal-cineurin initiates smooth muscle differentiation in neural crest stem cells. J Cell Biol. 165:483–491. DOI: 10.1083/jcb.200402105. PMID: 15148306. PMCID: PMC2172346.
Article
38. Fischer KM, Din S, Gude N, Konstandin MH, Wu W, Quijada P, Sussman MA. 2011; Cardiac progenitor cell commitment is inhibited by nuclear Akt expression. Circ Res. 108:960–970. DOI: 10.1161/CIRCRESAHA.110.237156. PMID: 21350213. PMCID: PMC3082319.
Article
39. Dai DF, Danoviz ME, Wiczer B, Laflamme MA, Tian R. 2017; Mitochondrial maturation in human pluripotent stem cell derived cardiomyocytes. Stem Cells Int. 2017:5153625. DOI: 10.1155/2017/5153625. PMID: 28421116. PMCID: PMC5380852. PMID: f512aa1509de4709ad70a39b9d16dd6b.
Article
40. Choi IY, Lim H, Cho HJ, Oh Y, Chou BK, Bai H, Cheng L, Kim YJ, Hyun S, Kim H, Shin JH, Lee G. 2020; Transcrip-tional landscape of myogenesis from human pluripotent stem cells reveals a key role of TWIST1 in maintenance of skeletal muscle progenitors. Elife. 9:e46981. DOI: 10.7554/eLife.46981. PMID: 32011235. PMCID: PMC6996923. PMID: 2ec2845de8084974b69d4de181793812.
Article
41. Harding MW, Handschumacher RE. 1988; Cyclophilin, a primary molecular target for cyclosporine. Structural and fun-ctional implications. Transplantation. 46(2 Suppl):29S–35S. DOI: 10.1097/00007890-198808001-00006. PMID: 3043795.
42. Nicolli A, Basso E, Petronilli V, Wenger RM, Bernardi P. 1996; Interactions of cyclophilin with the mitochondrial inner me-mbrane and regulation of the permeability transition pore, and cyclosporin A-sensitive channel. J Biol Chem. 271:2185–2192. DOI: 10.1074/jbc.271.4.2185. PMID: 8567677.
Article
43. Paslaru L, Davidson S, Popescu I, Morange M. 2007; The effect of cyclosporine A on cardiomyocytes differentiation. J Cell Mol Med. 11:369–371. DOI: 10.1111/j.1582-4934.2007.00029.x. PMID: 17488483. PMCID: PMC3822835.
Article
44. Montero M, Lobatón CD, Gutierrez-Fernández S, Moreno A, Alvarez J. 2004; Calcineurin-independent inhibition of mito-chondrial Ca2+ uptake by cyclosporin A. Br J Pharmacol. 141:263–268. DOI: 10.1038/sj.bjp.0705609. PMID: 14691054. PMCID: PMC1574196.
Article
45. Nash A, Samoylova M, Leuthner T, Zhu M, Lin L, Meyer JN, Brennan TV. 2020; Effects of immunosuppressive medications on mitochondrial function. J Surg Res. 249:50–57. DOI: 10.1016/j.jss.2019.12.010. PMID: 31918330. PMCID: PMC7136143.
Article
46. Yilmaz DE, Kirschner K, Demirci H, Himmerkus N, Bach-mann S, Mutig K. 2022; Immunosuppressive calcineurin inhibi-tor cyclosporine A induces proapoptotic endoplasmic reticulum stress in renal tubular cells. J Biol Chem. 298:101589. DOI: 10.1016/j.jbc.2022.101589. PMID: 35033536. PMCID: PMC8857494.
47. Hojo M, Morimoto T, Maluccio M, Asano T, Morimoto K, Lagman M, Shimbo T, Suthanthiran M. 1999; Cyclosporine indu-ces cancer progression by a cell-autonomous mechanism. Na-ture. 397:530–534. DOI: 10.1038/17401. PMID: 10028970.
Article
48. Bordt EA, Clerc P, Roelofs BA, Saladino AJ, Tretter L, Adam-Vizi V, Cherok E, Khalil A, Yadava N, Ge SX, Francis TC, Kennedy NW, Picton LK, Kumar T, Uppuluri S, Miller AM, Itoh K, Karbowski M, Sesaki H, Hill RB, Polster BM. 2017; The putative Drp1 inhibitor mdivi-1 is a reversible mitochondrial complex I inhibitor that modulates reactive oxygen species. Dev Cell. 40:583–594.e6. DOI: 10.1016/j.devcel.2017.02.020. PMID: 28350990. PMCID: PMC5398851.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr