J Korean Med Sci.  2023 May;38(17):e131. 10.3346/jkms.2023.38.e131.

Diagnostic Performance of a Tablet Computer-Based Cognitive Screening Test for Identification of Amnestic Mild Cognitive Impairment

Affiliations
  • 1Department of Neurology, Incheon St. Mary’s Hospital, The Catholic University of Korea, Incheon, Korea
  • 2Department of Neurology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea

Abstract

Background
Early and appropriate diagnosis of amnestic mild cognitive impairment (aMCI) is clinically important because aMCI is considered the prodromal stage of dementia caused by Alzheimer’s disease (AD). aMCI is assessed using the comprehensive neuropsychological (NP) battery, but it is rater-dependent and does not provide quick results. Thus, we investigated the performance of the computerized cognitive screening test (Inbrain Cognitive Screening Test; Inbrain CST) in the diagnosis of aMCI and compared its performance to that of the Korean version of the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) test (CERAD-K), a comprehensive and pencil-and-paper NP test.
Methods
A total of 166 participants were included in this cross-sectional study. The participants were recruited as part of a prospective, community-based cohort study for MCI (PREcision medicine platform for mild cognitive impairment on multi-omics, imaging, evidence-based R&BD; PREMIER). All participants were assessed using the CERAD-K and the Inbrain CST. The Inbrain CST comprised seven subtests that assessed the following five cognitive domains: attention, language, visuospatial, memory, and executive functions. Seventy-six participants underwent brain magnetic resonance imaging and [ 18 F]-flutemetamol positron emission tomography (PET). We evaluated the diagnostic performance of the Inbrain CST for the identification of aMCI by comparing the findings with those of CERAD-K. We also determined the characteristics of aMCI patients as defined by the CERAD-K and Inbrain CST.
Results
Of the 166 participants, 93 were diagnosed with aMCI, while 73 were cognitively unimpaired. The sensitivity of the Inbrain CST for aMCI diagnosis was 81.7%, and its specificity was 84.9%. Positive and negative predictive values were 87.4% and 78.5%, respectively. The diagnostic accuracy was 83.1%, and the error rate was 16.9%. Demographic and clinical characteristics between individuals with aMCI defined by the Inbrain CST and CERAD-K were not significantly different. The frequency of positive amyloid PET scan, the hippocampal/ parahippocampal volumes, and AD signature cortical thickness did not differ between the patients with aMCI defined by CERAD-K and those with aMCI defined by the Inbrain CST.
Conclusion
The Inbrain CST showed sufficient sensitivity, specificity, and positive and negative predictive values for diagnosing objective memory impairment in aMCI. In addition, aMCI patients identified by CERAD-K and the Inbrain CST showed comparable clinical and neuroimaging characteristics. Therefore, the Inbrain CST can be considered an alternative test to supplement the limitations of existing pencil-and-paper NP tests.

Keyword

Neurocognitive Test; Computerized Cognitive Test; Amnestic Mild Cognitive Impairment; Alzheimer Disease

Reference

1. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004; 256(3):183–194. PMID: 15324362.
Article
2. Dubois B, Albert ML. Amnestic MCI or prodromal Alzheimer’s disease? Lancet Neurol. 2004; 3(4):246–248. PMID: 15039037.
Article
3. Adams JL, Myers TL, Waddell EM, Spear KL, Schneider RB. Telemedicine: a valuable tool in neurodegenerative diseases. Curr Geriatr Rep. 2020; 9(2):72–81. PMID: 32509504.
Article
4. Chan JY, Yau ST, Kwok TC, Tsoi KK. Diagnostic performance of digital cognitive tests for the identification of MCI and dementia: a systematic review. Ageing Res Rev. 2021; 72:101506. PMID: 34744026.
Article
5. Chin J, Kim DE, Lee H, Yun J, Lee BH, Park J, et al. A validation study of the Inbrain CST: a tablet computer-based cognitive screening test for elderly people with cognitive impairment. J Korean Med Sci. 2020; 35(34):e292. PMID: 32864906.
Article
6. Jang H, Yeo M, Cho J, Kim S, Chin J, Kim HJ, et al. Effects of smartphone application-based cognitive training at home on cognition in community-dwelling non-demented elderly individuals: A randomized controlled trial. Alzheimers Dement (N Y). 2021; 7(1):e12209. PMID: 35005202.
Article
7. Lee JH, Lee KU, Lee DY, Kim KW, Jhoo JH, Kim JH, et al. Development of the Korean version of the Consortium to Establish a Registry for Alzheimer’s Disease Assessment Packet (CERAD-K): clinical and neuropsychological assessment batteries. J Gerontol B Psychol Sci Soc Sci. 2002; 57(1):47–53.
Article
8. Lim HK, Hong SC, Jung WS, Ahn KJ, Won WY, Hahn C, et al. Automated hippocampal subfield segmentation in amnestic mild cognitive impairments. Dement Geriatr Cogn Disord. 2012; 33(5):327–333. PMID: 22759884.
9. Qiu A, Bitouk D, Miller MI. Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator. IEEE Trans Med Imaging. 2006; 25(10):1296–1306. PMID: 17024833.
Article
10. Vallet B, Lévy B. Spectral geometry processing with manifold harmonics. Comput Graph Forum. 2008; 27(2):251–260.
Article
11. Jack CR Jr, Wiste HJ, Weigand SD, Knopman DS, Mielke MM, Vemuri P, et al. Different definitions of neurodegeneration produce similar amyloid/neurodegeneration biomarker group findings. Brain. 2015; 138(Pt 12):3747–3759. PMID: 26428666.
Article
12. Rugg MD, Otten LJ, Henson RN. The neural basis of episodic memory: evidence from functional neuroimaging. Philos Trans R Soc Lond B Biol Sci. 2002; 357(1424):1097–1110. PMID: 12217177.
Article
13. Parra MA, Abrahams S, Fabi K, Logie R, Luzzi S, Della Sala S. Short-term memory binding deficits in Alzheimer’s disease. Brain. 2009; 132(Pt 4):1057–1066. PMID: 19293236.
Article
14. Wilkins CH, Windon CC, Dilworth-Anderson P, Romanoff J, Gatsonis C, Hanna L, et al. Racial and ethnic differences in amyloid PET positivity in individuals with mild cognitive impairment or dementia: a secondary analysis of the Imaging Dementia–Evidence for Amyloid Scanning (IDEAS) cohort study. JAMA Neurol. 2022; 79(11):1139–1147. PMID: 36190710.
Article
15. Landau SM, Horng A, Fero A, Jagust WJ. Alzheimer’s Disease Neuroimaging Initiative. Amyloid negativity in patients with clinically diagnosed Alzheimer disease and MCI. Neurology. 2016; 86(15):1377–1385. PMID: 26968515.
Article
16. Ho S, Hong YJ, Jeong JH, Park KH, Kim S, Wang MJ, et al. Study design and baseline results in a cohort study to identify predictors for the clinical progression to mild cognitive impairment or dementia from subjective cognitive decline (CoSCo) study. Dement Neurocogn Disord. 2022; 21(4):147–161. PMID: 36407288.
Article
17. Janssen O, Jansen WJ, Vos SJB, Boada M, Parnetti L, Gabryelewicz T, et al. Characteristics of subjective cognitive decline associated with amyloid positivity. Alzheimers Dement. 2022; 18(10):1832–1845. PMID: 34877782.
Article
18. Park HK, Na DL, Han SH, Kim JY, Cheong HK, Kim SY, et al. Clinical characteristics of a nationwide hospital-based registry of mild-to-moderate Alzheimer’s disease patients in Korea: a CREDOS (Clinical Research Center for Dementia of South Korea) study. J Korean Med Sci. 2011; 26(9):1219–1226. PMID: 21935279.
Article
19. Aisen PS, Petersen RC, Donohue MC, Gamst A, Raman R, Thomas RG, et al. Clinical core of the Alzheimer’s disease neuroimaging initiative: progress and plans. Alzheimers Dement. 2010; 6(3):239–246. PMID: 20451872.
Article
20. Jak AJ, Bondi MW, Delano-Wood L, Wierenga C, Corey-Bloom J, Salmon DP, et al. Quantification of five neuropsychological approaches to defining mild cognitive impairment. Am J Geriatr Psychiatry. 2009; 17(5):368–375. PMID: 19390294.
Article
21. Jessen F, Wolfsgruber S, Wiese B, Bickel H, Mösch E, Kaduszkiewicz H, et al. AD dementia risk in late MCI, in early MCI, and in subjective memory impairment. Alzheimers Dement. 2014; 10(1):76–83. PMID: 23375567.
Article
22. Edmonds EC, McDonald CR, Marshall A, Thomas KR, Eppig J, Weigand AJ, et al. Early versus late MCI: improved MCI staging using a neuropsychological approach. Alzheimers Dement. 2019; 15(5):699–708. PMID: 30737119.
Article
23. Grill JD, Nuño MM, Gillen DL. Alzheimer’s Disease Neuroimaging Initiative. Which MCI patients should be included in prodromal Alzheimer disease clinical trials? Alzheimer Dis Assoc Disord. 2019; 33(2):104–112. PMID: 30958413.
Article
Full Text Links
  • JKMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr