Korean J Gastroenterol.  2023 Apr;81(4):145-153. 10.4166/kjg.2023.028.

Brain–Gut–Microbiota Axis

Affiliations
  • 1Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Korea
  • 2Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
  • 3Catholic Kwandong University International St. Mary's Hospital, Incheon, Korea
  • 4Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
  • 5Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Korea
  • 6Department of Psychiatry, School of Medicine, Wonkwang University, Iksan, Korea
  • 7Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu, Korea
  • 8Digestive Disease Research Institute, Wonkwang University College of Medicine, Iksan, Korea

Abstract

Patients frequently report that stress causes or exacerbates gastrointestinal (GI) symptoms, indicating a functional relationship between the brain and the GI tract. The brain and GI tract are closely related embryologically and functionally, interacting in various ways. The concept of the brain–gut axis was originally established in the 19th and early 20th centuries based on physiological observations and experiments conducted in animals and humans. In recent years, with the growing recognition that gut microbiota plays a vital role in human health and disease, this concept has been expanded to the brain–gut–microbiota axis. The brain influences the motility, secretion, and immunity of the GI tract, with consequent effects on the composition and function of the gut microbiota. On the other hand, gut microbiota plays an essential role in the development and function of the brain and enteric nervous system. Although knowledge of the mechanisms through which the gut microbiota influences distant brain function is incomplete, studies have demonstrated communication between these organs through the neuronal, immune, and endocrine systems. The brain–gut–microbiota axis is an essential aspect of the pathophysiology of functional GI disorders such as irritable bowel syndrome, and is also involved in other GI diseases, including inflammatory bowel disease. This review summarizes the evolving concept of the brain–gut–microbiota axis and its implications for GI diseases, providing clinicians with new knowledge to apply in clinical practice.

Keyword

Brain-gut axis; Microbiota; Physiopathology; Irritable bowel syndrome; Inflammatory bowel diseases

Figure

  • Fig. 1 Brain–gut–microbiota axis. ANS, autonomic nervous system; HPA axis, hypothalamus-pituitary-adrenal axis; MAMPs, microbe-associated molecular patterns. Data from the Infographic for clinicians: Brain-gut-microbiota axis.3


Reference

1. Goldstein AM, Hofstra RM, Burns AJ. 2013; Building a brain in the gut: development of the enteric nervous system. Clin Genet. 83:307–316. DOI: 10.1111/cge.12054. PMID: 23167617. PMCID: PMC3721665.
2. Lucas G. 2018; Gut thinking: the gut microbiome and mental health beyond the head. Microb Ecol Health Dis. 29:1548250. DOI: 10.1080/16512235.2018.1548250. PMID: 30532687. PMCID: PMC6282467.
3. Infographic for clinicians: Brain-gut-microbiota axis. [Internet]. Available from: http://www.ksgm.org/rang_board/list.html?num=474&code=m_reference. Seoul: The Korean Society of Neurogastroenterology and Motility/Brain Gut Axis Research Group;cited 2023 Mar 1.
4. Beaumont W. 1977; Experiments and observations on the gastric juice and the physiology of digestion. Nutr Rev. 35:144–145. DOI: 10.1111/j.1753-4887.1977.tb06570.x. PMID: 327355.
5. Drossman DA. 2016; Functional gastrointestinal disorders: History, pathophysiology, clinical features and Rome IV. Gastroenterology. 150:1262–1279.e2. DOI: 10.1053/j.gastro.2016.02.032. PMID: 27144617.
6. Almy TP. 1951; Experimental studies on the irritable colon. Am J Med. 10:60–67. DOI: 10.1016/0002-9343(51)90219-7. PMID: 14799500.
7. Mönnikes H, Tebbe JJ, Hildebrandt M, et al. 2001; Role of stress in functional gastrointestinal disorders. Evidence for stress-induced alterations in gastrointestinal motility and sensitivity. Dig Dis. 19:201–211. DOI: 10.1159/000050681. PMID: 11752838.
8. Selye H. 1946; The general adaptation syndrome and the diseases of adaptation. J Clin Endocrinol Metab. 6:117–230. DOI: 10.1210/jcem-6-2-117. PMID: 21025115.
9. Guillemin R. 2011; Neuroendocrinology: a short historical review. Ann N Y Acad Sci. 1220:1–5. DOI: 10.1111/j.1749-6632.2010.05936.x. PMID: 21388398.
10. Taché Y, Bonaz B. 2007; Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. J Clin Invest. 117:33–40. DOI: 10.1172/JCI30085. PMID: 17200704. PMCID: PMC1716215.
11. Kim YS, Lee MY, Ryu HS, et al. 2014; Regional differences in chronic stress-induced alterations in mast cell and protease-activated receptor-2-positive cell numbers in the colon of Ws/Ws rats. J Neurogastroenterol Motil. 20:54–63. DOI: 10.5056/jnm.2014.20.1.54. PMID: 24466445. PMCID: PMC3895609.
12. Buckinx R, Adriaensen D, Nassauw LV, Timmermans JP. 2011; Corticotrophin-releasing factor, related peptides, and receptors in the normal and inflamed gastrointestinal tract. Front Neurosci. 5:54. DOI: 10.3389/fnins.2011.00054. PMID: 21541251. PMCID: PMC3082851.
13. Kano M, Dupont P, Aziz Q, Fukudo S. 2018; Understanding neurogastroenterology from neuroimaging perspective: A comprehensive review of functional and structural brain imaging in functional gastrointestinal disorders. J Neurogastroenterol Motil. 24:512–527. DOI: 10.5056/jnm18072. PMID: 30041284. PMCID: PMC6175554.
14. Martin CR, Osadchiy V, Kalani A, Mayer EA. 2018; The brain-gut-microbiome axis. Cell Mol Gastroenterol Hepatol. 6:133–148. DOI: 10.1016/j.jcmgh.2018.04.003. PMID: 30023410. PMCID: PMC6047317.
15. Carabotti M, Scirocco A, Maselli MA, Severi C. 2015; The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 28:203–209.
16. Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. 2011; Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun. 25:397–407. DOI: 10.1016/j.bbi.2010.10.023. PMID: 21040780. PMCID: PMC3039072.
17. Knowles SR, Nelson EA, Palombo EA. 2008; Investigating the role of perceived stress on bacterial flora activity and salivary cortisol secretion: a possible mechanism underlying susceptibility to illness. Biol Psychol. 77:132–137. DOI: 10.1016/j.biopsycho.2007.09.010. PMID: 18023961.
18. Vandeputte D, Falony G, Vieira-Silva S, Tito RY, Joossens M, Raes J. 2016; Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut. 65:57–62. DOI: 10.1136/gutjnl-2015-309618. PMID: 26069274. PMCID: PMC4717365.
19. Rhee SH, Pothoulakis C, Mayer EA. 2009; Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 6:306–314. DOI: 10.1038/nrgastro.2009.35. PMID: 19404271. PMCID: PMC3817714.
20. Paulose JK, Wright JM, Patel AG, Cassone VM. 2016; Human gut bacteria are sensitive to melatonin and express endogenous circadian rhythmicity. PLoS One. 11:e0146643. DOI: 10.1371/journal.pone.0146643. PMID: 26751389. PMCID: PMC4709092.
21. Quigley EMM. 2017; Gut microbiome as a clinical tool in gastrointestinal disease management: are we there yet? Nat Rev Gastroenterol Hepatol. 14:315–320. DOI: 10.1038/nrgastro.2017.29. PMID: 28356581.
22. Bonaz B, Bazin T, Pellissier S. 2018; The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci. 12:49. DOI: 10.3389/fnins.2018.00049. PMID: 29467611. PMCID: PMC5808284.
23. Sampson TR, Mazmanian SK. 2015; Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 17:565–576. DOI: 10.1016/j.chom.2015.04.011. PMID: 25974299. PMCID: PMC4442490.
24. Kaelberer MM, Buchanan KL, Klein ME, et al. 2018; A gut-brain neural circuit for nutrient sensory transduction. Science. 361:eaat5236. DOI: 10.1126/science.aat5236. PMID: 30237325. PMCID: PMC6417812.
25. Haba R, Shintani N, Onaka Y, et al. 2012; Lipopolysaccharide affects exploratory behaviors toward novel objects by impairing cognition and/or motivation in mice: Possible role of activation of the central amygdala. Behav Brain Res. 228:423–431. DOI: 10.1016/j.bbr.2011.12.027. PMID: 22209851.
26. Tolhurst G, Heffron H, Lam YS, et al. 2012; Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 61:364–371. DOI: 10.2337/db11-1019. PMID: 22190648. PMCID: PMC3266401.
27. Ridlon JM, Kang DJ, Hylemon PB. 2006; Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 47:241–259. DOI: 10.1194/jlr.R500013-JLR200. PMID: 16299351.
28. Yano JM, Yu K, Donaldson GP, et al. 2015; Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 161:264–276. DOI: 10.1016/j.cell.2015.02.047. PMID: 25860609. PMCID: PMC4393509.
29. Ye L, Bae M, Cassilly CD, et al. 2021; Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host Microbe. 29:179–196.e9. DOI: 10.1016/j.chom.2020.11.011. PMID: 33352109. PMCID: PMC7997396.
30. Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. 2016; The central nervous system and the gut microbiome. Cell. 167:915–932. DOI: 10.1016/j.cell.2016.10.027. PMID: 27814521. PMCID: PMC5127403.
31. Spichak S, Guzzetta KE, O'Leary OF, Clarke G, Dinan TG, Cryan JF. 2018; Without a bug's life: Germ-free rodents to interrogate microbiota-gut-neuroimmune interactions. Drug Discov Today Dis Models. 28:79–93. DOI: 10.1016/j.ddmod.2019.08.002.
32. Sudo N, Chida Y, Aiba Y, et al. 2004; Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 558:263–275. DOI: 10.1113/jphysiol.2004.063388. PMID: 15133062. PMCID: PMC1664925.
33. Slykerman RF, Hood F, Wickens K, et al. Probiotic in Pregnancy Study Group. Effect of Lactobacillus rhamnosus HN001 in pregnancy on postpartum symptoms of depression and anxiety: A randomised double-blind placebo-controlled trial. EBioMedicine. 2017; 24:159–165. Probiotic in Pregnancy Study Group. DOI: 10.1016/j.ebiom.2017.09.013. PMID: 28943228. PMCID: PMC5652021.
34. Margolis KG, Cryan JF, Mayer EA. 2021; The microbiota-gut-brain axis: From motility to mood. Gastroenterology. 160:1486–1501. DOI: 10.1053/j.gastro.2020.10.066. PMID: 33493503. PMCID: PMC8634751.
35. De Vadder F, Grasset E, Mannerås Holm L, et al. 2018; Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc Natl Acad Sci U S A. 115:6458–6463. DOI: 10.1073/pnas.1720017115. PMID: 29866843. PMCID: PMC6016808.
36. Ceylani T, Jakubowska-Doğru E, Gurbanov R, Teker HT, Gozen AG. 2018; The effects of repeated antibiotic administration to juvenile BALB/c mice on the microbiota status and animal behavior at the adult age. Heliyon. 4:e00644. DOI: 10.1016/j.heliyon.2018.e00644. PMID: 29872772. PMCID: PMC5986162.
37. Dinan K, Dinan T. 2022; Antibiotics and mental health: The good, the bad and the ugly. J Intern Med. 292:858–869. DOI: 10.1111/joim.13543. PMID: 35819136. PMCID: PMC9796968.
38. Ishii W, Komine-Aizawa S, Hayakawa S. 2016; Antibiotics or infection itself? The possible importance of inflammatory cytokines on mental states. J Clin Psychiatry. 77:e1653. DOI: 10.4088/JCP.16lr11074. PMID: 28086015.
39. Van Oudenhove L, Crowell MD, Drossman DA, et al. Biopsychosocial aspects of functional gastrointestinal disorders. Gastroenterology. 2016; Feb. 18. doi: 10.1053/j.gastro.2016.02.027. DOI: 10.1053/j.gastro.2016.02.027. PMID: 27144624. PMCID: PMC8809487.
40. Creed F. 2022; Risk factors for self-reported irritable bowel syndrome with prior psychiatric disorder: The lifelines cohort study. J Neurogastroenterol Motil. 28:442–453. DOI: 10.5056/jnm21041. PMID: 35799238. PMCID: PMC9274465.
41. Welgan P, Meshkinpour H, Hoehler F. 1985; The effect of stress on colon motor and electrical activity in irritable bowel syndrome. Psychosom Med. 47:139–149. DOI: 10.1097/00006842-198503000-00005. PMID: 4048360.
42. Narducci F, Snape WJ Jr, Battle WM, London RL, Cohen S. 1985; Increased colonic motility during exposure to a stressful situation. Dig Dis Sci. 30:40–44. DOI: 10.1007/BF01318369. PMID: 3965273.
43. Welgan P, Meshkinpour H, Beeler M. 1988; Effect of anger on colon motor and myoelectric activity in irritable bowel syndrome. Gastroenterology. 94:1150–1156. DOI: 10.1016/0016-5085(88)90006-6. PMID: 3350284.
44. Fukudo S, Nomura T, Muranaka M, Taguchi F. 1993; Brain-gut response to stress and cholinergic stimulation in irritable bowel syndrome. A preliminary study. J Clin Gastroenterol. 17:133–141. DOI: 10.1097/00004836-199309000-00009. PMID: 8031340.
45. Murray CD, Flynn J, Ratcliffe L, Jacyna MR, Kamm MA, Emmanuel AV. 2004; Effect of acute physical and psychological stress on gut autonomic innervation in irritable bowel syndrome. Gastroenterology. 127:1695–1703. DOI: 10.1053/j.gastro.2004.08.057. PMID: 15578507.
46. O'Mahony SM, Marchesi JR, Scully P, et al. 2009; Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry. 65:263–267. DOI: 10.1016/j.biopsych.2008.06.026. PMID: 18723164.
47. Enqi W, Jingzhu S, Lingpeng P, et al. 2020; Comparison of the gut microbiota disturbance in rat models of irritable bowel syndrome induced by maternal separation and multiple early-life adversity. Front Cell Infect Microbiol. 10:581974. DOI: 10.3389/fcimb.2020.581974. PMID: 33520732. PMCID: PMC7840688.
48. Enck P, Aziz Q, Barbara G, et al. 2016; Irritable bowel syndrome. Nat Rev Dis Primers. 2:16014. DOI: 10.1038/nrdp.2016.14. PMID: 27159638. PMCID: PMC5001845.
49. Jiang W, Wu J, Zhu S, Xin L, Yu C, Shen Z. 2022; The role of short chain fatty acids in irritable bowel syndrome. J Neurogastroenterol Motil. 28:540–548. DOI: 10.5056/jnm22093. PMID: 36250361. PMCID: PMC9577580.
50. Min YW, Rezaie A, Pimentel M. 2022; Bile acid and gut microbiota in irritable bowel syndrome. J Neurogastroenterol Motil. 28:549–561. DOI: 10.5056/jnm22129. PMID: 36250362. PMCID: PMC9577585.
51. Pittayanon R, Lau JT, Leontiadis GI, et al. 2020; Differences in gut microbiota in patients with vs without inflammatory bowel diseases: A systematic review. Gastroenterology. 158:930–946.e1. DOI: 10.1053/j.gastro.2019.11.294. PMID: 31812509.
52. Jo HG, Seo GS. 2021; [Efficacy and safety of fecal microbiota transplantation and prospect of microbe-based therapies for inflammatory bowel disease]. Korean J Gastroenterol. 78:31–36. Korean. DOI: 10.4166/kjg.2021.089. PMID: 34312355.
53. Mikocka-Walus A, Knowles SR, Keefer L, Graff L. 2016; Controversies revisited: A systematic review of the comorbidity of depression and anxiety with inflammatory bowel diseases. Inflamm Bowel Dis. 22:752–762. DOI: 10.1097/MIB.0000000000000620. PMID: 26841224.
54. Frolkis AD, Vallerand IA, Shaheen AA, et al. 2019; Depression increases the risk of inflammatory bowel disease, which may be mitigated by the use of antidepressants in the treatment of depression. Gut. 68:1606–1612. DOI: 10.1136/gutjnl-2018-317182. PMID: 30337374.
55. Ghia JE, Blennerhassett P, Deng Y, Verdu EF, Khan WI, Collins SM. 2009; Reactivation of inflammatory bowel disease in a mouse model of depression. Gastroenterology. 136:2280–2288.e1-4. DOI: 10.1053/j.gastro.2009.02.069. PMID: 19272381.
56. Mawdsley JE, Macey MG, Feakins RM, Langmead L, Rampton DS. 2006; The effect of acute psychologic stress on systemic and rectal mucosal measures of inflammation in ulcerative colitis. Gastroenterology. 131:410–419. DOI: 10.1053/j.gastro.2006.05.017. PMID: 16890594.
57. Gracie DJ, Hamlin PJ, Ford AC. 2019; The influence of the brain-gut axis in inflammatory bowel disease and possible implications for treatment. Lancet Gastroenterol Hepatol. 4:632–642. DOI: 10.1016/S2468-1253(19)30089-5. PMID: 31122802.
58. Bercik P, Verdu EF, Foster JA, et al. 2010; Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology. 139:2102–2112.e1. DOI: 10.1053/j.gastro.2010.06.063. PMID: 20600016.
59. Horst S, Chao A, Rosen M, et al. 2015; Treatment with immunosuppressive therapy may improve depressive symptoms in patients with inflammatory bowel disease. Dig Dis Sci. 60:465–470. DOI: 10.1007/s10620-014-3375-0. PMID: 25274158.
60. Guthrie E, Barlow J, Fernandes L, et al. North of England IBS Research Group. Changes in tolerance to rectal distension correlate with changes in psychological state in patients with severe irritable bowel syndrome. Psychosom Med. 2004; 66:578–582. North of England IBS Research Group. DOI: 10.1097/01.psy.0000128899.22514.c0. PMID: 15272106.
61. Ford AC, Lacy BE, Harris LA, Quigley EMM, Moayyedi P. 2019; Effect of antidepressants and psychological therapies in irritable bowel syndrome: An updated systematic review and meta-analysis. Am J Gastroenterol. 114:21–39. DOI: 10.1038/s41395-018-0222-5. PMID: 30177784.
62. Ghia JE, Blennerhassett P, Collins SM. 2008; Impaired parasympathetic function increases susceptibility to inflammatory bowel disease in a mouse model of depression. J Clin Invest. 118:2209–2218. DOI: 10.1172/JCI32849. PMID: 18451995. PMCID: PMC2350428.
63. Iglesias-Escabi IM, Kleesattel D, McDaniel LS, et al. 2022; Effect of mirtazapine on nausea in children with functional nausea and functional dyspepsia postprandial distress syndrome. Paediatr Drugs. 24:155–161. DOI: 10.1007/s40272-022-00494-2. PMID: 35188625.
64. Hall BJ, Hamlin PJ, Gracie DJ, Ford AC. 2018; The effect of antidepressants on the course of inflammatory bowel disease. Can J Gastroenterol Hepatol. 2018:2047242. DOI: 10.1155/2018/2047242. PMID: 30271765. PMCID: PMC6151237.
65. Messaoudi M, Lalonde R, Violle N, et al. 2011; Assessment of psycho-tropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr. 105:755–764. DOI: 10.1017/S0007114510004319. PMID: 20974015.
66. Kazemi A, Noorbala AA, Azam K, Eskandari MH, Djafarian K. 2019; Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: A randomized clinical trial. Clin Nutr. 38:522–528. DOI: 10.1016/j.clnu.2018.04.010. PMID: 29731182.
67. Diop L, Guillou S, Durand H. 2008; Probiotic food supplement reduces stress-induced gastrointestinal symptoms in volunteers: a double-blind, placebo-controlled, randomized trial. Nutr Res. 28:1–5. DOI: 10.1016/j.nutres.2007.10.001. PMID: 19083380.
68. Wallace CJK, Milev RV. 2021; The efficacy, safety, and tolerability of probiotics on depression: Clinical results from an open-label pilot study. Front Psychiatry. 12:618279. DOI: 10.3389/fpsyt.2021.618279. PMID: 33658952. PMCID: PMC7917127.
69. Benton D, Williams C, Brown A. 2007; Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr. 61:355–361. DOI: 10.1038/sj.ejcn.1602546. PMID: 17151594.
70. Tillisch K, Labus J, Kilpatrick L, et al. 2013; Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 144:1394–1401.e1-4. DOI: 10.1053/j.gastro.2013.02.043. PMID: 23474283. PMCID: PMC3839572.
71. Goh KK, Liu YW, Kuo PH, Chung YE, Lu ML, Chen CH. 2019; Effect of probiotics on depressive symptoms: A meta-analysis of human studies. Psychiatry Res. 282:112568. DOI: 10.1016/j.psychres.2019.112568. PMID: 31563280.
72. Dehghani F, Abdollahi S, Shidfar F, Clark CCT, Soltani S. Probiotics supplementation and brain-derived neurotrophic factor (BDNF): a systematic review and meta-analysis of randomized controlled trials. Nutr Neurosci. 2022; Aug. 22. doi: 10.1080/1028415X.2022.2110664. DOI: 10.1080/1028415X.2022.2110664. PMID: 35996352.
73. Quigley EMM. 2022; Clinical trials of probiotics in patients with irritable bowel syndrome: Some points to consider. J Neurogastroenterol Motil. 28:204–211. DOI: 10.5056/jnm22012. PMID: 35189598. PMCID: PMC8978119.
74. Gweon TG, Lee YJ, Kim KO, et al. Gut Microbiota and Therapy Research Group Under the Korean Society of Neurogastroenterology and Motility. Clinical practice guidelines for fecal microbiota transplantation in Korea. J Neurogastroenterol Motil. 2022; 28:28–42. DOI: 10.5056/jnm21221. PMID: 34980687. PMCID: PMC8748844.
75. Kang DW, Adams JB, Gregory AC, et al. 2017; Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome. 5:10. DOI: 10.1186/s40168-016-0225-7. PMID: 28122648. PMCID: PMC5264285.
76. Kang DW, Adams JB, Coleman DM, et al. 2019; Long-term benefit of Microbiota Transfer Therapy on autism symptoms and gut microbiota. Sci Rep. 9:5821. DOI: 10.1038/s41598-019-42183-0. PMID: 30967657. PMCID: PMC6456593.
77. Wortelboer K, Nieuwdorp M, Herrema H. 2019; Fecal microbiota transplantation beyond Clostridioides difficile infections. EBioMedicine. 44:716–729. DOI: 10.1016/j.ebiom.2019.05.066. PMID: 31201141. PMCID: PMC6606746.
78. Mizuno S, Masaoka T, Naganuma M, et al. 2017; Bifidobacterium-rich fecal donor may be a positive predictor for successful fecal microbiota transplantation in patients with irritable bowel syndrome. Digestion. 96:29–38. DOI: 10.1159/000471919. PMID: 28628918. PMCID: PMC5637308.
79. Lahtinen P, Jalanka J, Hartikainen A, et al. 2020; Randomised clinical trial: faecal microbiota transplantation versus autologous placebo administered via colonoscopy in irritable bowel syndrome. Aliment Pharmacol Ther. 51:1321–1331. DOI: 10.1111/apt.15740. PMID: 32343000.
80. Johnsen PH, Hilpüsch F, Valle PC, Goll R. 2020; The effect of fecal microbiota transplantation on IBS related quality of life and fatigue in moderate to severe non-constipated irritable bowel: Secondary endpoints of a double blind, randomized, placebo-controlled trial. EBioMedicine. 51:102562. DOI: 10.1016/j.ebiom.2019.11.023. PMID: 31877418. PMCID: PMC6931102.
Full Text Links
  • KJG
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr