Korean J Physiol Pharmacol.  2023 Mar;27(2):187-196. 10.4196/kjpp.2023.27.2.187.

Negative self-regulation of transient receptor potential canonical 4 by the specific interaction with phospholipase C-δ1

Affiliations
  • 1Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea

Abstract

Transient receptor potential canonical (TRPC) channels are non-selective calcium-permeable cation channels. It is suggested that TRPC4β is regulated by phospholipase C (PLC) signaling and is especially maintained by phosphatidylinositol 4,5-bisphosphate (PIP2 ). In this study, we present the regulation mechanism of the TRPC4 channel with PIP2 hydrolysis which is mediated by a channel-bound PLCδ1 but not by the GqPCR signaling pathway. Our electrophysiological recordings demonstrate that the Ca2+ via an open TRPC4 channel activates PLCδ1 in the physiological range, and it causes the decrease of current amplitude. The existence of PLCδ1 accelerated PIP2 depletion when the channel was activated by an agonist. Interestingly, PLCδ1 mutants which have lost the ability to regulate PIP2 level failed to reduce the TRPC4 current amplitude. Our results demonstrate that TRPC4 self-regulates its activity by allowing Ca2+ ions into the cell and promoting the PIP2 hydrolyzing activity of PLCδ1.

Keyword

Calcium; Fluorescence resonance energy transfer; Phosphatidylinositols; Phospholipase C delta; Transient receptor potential channels

Figure

  • Fig. 1 TRPC4β and PLCδ1 colocalize together. (A, C) Localizations of TRPC channel and PLCδ enzyme. Upper panel: Channel with PLCδ1; Lower panel: Channel with PLCδ3. ECFP-tagged channel and EYFP-tagged PLCδ were co-expressed in HEK293 cells. The line scanned position is indicated by arrow in overlay images. Line scan graph shows TRPC4β colocalized with PLCδ1, but not with PLCδ3. Original magnification, ×63. (B, D) Summaries of FRET efficiency in the same expression conditions. The numbers in parentheses refer to cell numbers. (E) Representative blots of Co-IP experiments. HEK293 cells were co-expressed with Flag-tagged channel and EYFP-tagged PLCδ. Proteins from each condition were subjected to immunoprecipitation using anti-GFP antibody and probed with anti-Flag antibody. TRPC4β interacts with PLCδ1 directly but not with another subtype. TRPC5 interacts with neither. Data are expressed as mean ± SEM. TRPC, transient receptor potential canonical; PLC, phospholipase C; Co-IP, Co-immunoprecipitation.

  • Fig. 2 PLCδ1 inhibits TRPC4β currents. (A) Rapamycin-induced translocation of CFP-FKBP-PLCδ1 to the plasma membrane. CFP-FKBP-PLCδ1 and Lyn-FRB were co-expressed in HEK293 cells, and 50 nM rapamycin was used. The line scanned region is indicated by dashed line. Scale bars, 10 μm. (B, C) Representative whole-cell current recordings of HEK293 cells co-expressed with TRPC4β, FKBP-PLCδ1 in the absence (B) or presence of Lyn-FRB (C). Left panel: Time course of currents at ±100 mV every 10 sec; Right panel: I-V relationship for selected time points. Stippled lines indicate zero currents. Applications of 50 nM rapamycin and 100 nM (-)-Englerin A (EA) are indicated. The pipette solution contained 100 nM free Ca2+. (D) Summaries of peak current densities at –60 mV induced by rapamycin and EA. Rapamycin-induced PLCδ1 translocation to plasma membrane significantly reduced TRPC4β currents. Data are expressed as mean ± SEM. TRPC, transient receptor potential canonical; PLC, phospholipase C. *p < 0.05 by t-test. The numbers in parentheses refer to cell numbers.

  • Fig. 3 Ca2+-dependent activation of PLCδ1 occurs in physiological intracellular calcium range. (A, C, E) Representative whole-cell current recordings of HEK293 cells co-expressed with TRPC4β in the absence or presence of PLCδ1 using 50 nM (A), 100 nM (C), and 500 nM (E) free Ca2+ recording pipette solutions. Left panel: Time course of currents at ±100 mV every 10 sec; Left panel: I-V relationship for selected time points. Stippled lines indicate zero currents. Applications of 100 nM (-)-Englerin A (EA) are indicated. (B, D, F) Summaries of peak current densities at –60 mV induced by EA. The PLCδ1 inhibited TRPC4 currents when using 100 nM and 500 nM [Ca2+]i recording solutions. Data are expressed as mean ± SEM. TRPC, transient receptor potential canonical; PLC, phospholipase C. **p < 0.01, ***p < 0.001 by t-test. The numbers in parentheses refer to cell numbers.

  • Fig. 4 Channel calcium-activated PLCδ1 accelerates PIP2 depletion. (A, B) PIP2 depletion from plasma membrane to cytosol after (-)-Englerin A stimulation. Imaging was performed in the cells expressing TRPC4β and CFP-PH domain in the absence (A) or presence of PLCδ1 (B). PIP2 changes are monitored by CFP-PH domain. Left panel: Images of CFP-PH domain for selected time points; Right panel: Line scan graph of each image. The line scanned regions are indicated by dashed line. Scale bars, 10 μm. TRPC, transient receptor potential canonical; PLC, phospholipase C; PIP2, phosphatidylinositol 4,5-bisphosphate.

  • Fig. 5 Nonfunctional PLCδ1 mutants on PIP2 level have no effect on TRPC4 currents. (A) Representative whole cell current recordings of HEK293 cells co-expressed with TRPC4β and PLCδ1 (K30A/K32A) (A) or PLCδ1 (H311A) (B). Left panel: Time course of currents at ±100 mV every 10 sec; Right panel: I-V relationship for selected time points. Stippled lines indicate zero currents. Application of 100 nM (-)-Englerin A (EA) are indicated. The pipette solution contained 100 nM free Ca2+. (C) Schematization of PLCδ1. The mutation sites are indicated with arrow. (D) Summaries of peak current densities at –60 mV induced by EA. PLCδ1 mutants had no effect on TRPC4β currents as the PLCδ1 non-expressing cells. Data are expressed as mean ± SEM. TRPC, transient receptor potential canonical; PLC, phospholipase C. **p < 0.01, ***p < 0.001 by t-test. The numbers in parentheses refer to cell numbers.


Reference

1. Kim BJ, Kim MT, Jeon JH, Kim SJ, So I. 2008; Involvement of phosphatidylinositol 4,5-bisphosphate in the desensitization of canonical transient receptor potential 5. Biol Pharm Bull. 31:1733–1738. DOI: 10.1248/bpb.31.1733. PMID: 18758068. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=51449087751&origin=inward.
Article
2. Kim H, Jeon JP, Hong C, Kim J, Myeong J, Jeon JH, So I. 2013; An essential role of PI(4,5)P₂ for maintaining the activity of the transient receptor potential canonical (TRPC)4β. Pflugers Arch. 465:1011–1021. DOI: 10.1007/s00424-013-1236-x. PMID: 23417604. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84879844737&origin=inward.
Article
3. Ko J, Myeong J, Shin YC, So I. 2019; Differential PI(4,5)P₂ sensitivities of TRPC4, C5 homomeric and TRPC1/4, C1/5 heteromeric channels. Sci Rep. 9:1849. DOI: 10.1038/s41598-018-38443-0. PMID: 30755645. PMCID: PMC6372716. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85061476067&origin=inward.
4. Otsuguro K, Tang J, Tang Y, Xiao R, Freichel M, Tsvilovskyy V, Ito S, Flockerzi V, Zhu MX, Zholos AV. 2008; Isoform-specific inhibition of TRPC4 channel by phosphatidylinositol 4,5-bisphosphate. J Biol Chem. 283:10026–10036. DOI: 10.1074/jbc.M707306200. PMID: 18230622. PMCID: PMC2365920. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=44349107703&origin=inward.
Article
5. Mederos Y Schnitzler M, Gudermann T, Storch U. 2018; Emerging roles of diacylglycerol-sensitive TRPC4/5 channels. Cells. 7:218. DOI: 10.3390/cells7110218. PMID: 30463370. PMCID: PMC6262340. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85071855162&origin=inward.
Article
6. Storch U, Forst AL, Pardatscher F, Erdogmus S, Philipp M, Gregoritza M, Mederos Y Schnitzler M, Gudermann T. 2017; Dynamic NHERF interaction with TRPC4/5 proteins is required for channel gating by diacylglycerol. Proc Natl Acad Sci U S A. 114:E37–E46. DOI: 10.1073/pnas.1612263114. PMID: 27994151. PMCID: PMC5224389. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85008147871&origin=inward.
Article
7. Zhu MH, Chae M, Kim HJ, Lee YM, Kim MJ, Jin NG, Yang DK, So I, Kim KW. 2005; Desensitization of canonical transient receptor potential channel 5 by protein kinase C. Am J Physiol Cell Physiol. 289:C591–C600. DOI: 10.1152/ajpcell.00440.2004. PMID: 15843439. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=23944515240&origin=inward.
Article
8. Myeong J, Ko J, Kwak M, Kim J, Woo J, Ha K, Hong C, Yang D, Kim HJ, Jeon JH, So I. 2018; Dual action of the Gαq-PLCβ-PI(4,5)P₂ pathway on TRPC1/4 and TRPC1/5 heterotetramers. Sci Rep. 8:12117. DOI: 10.1038/s41598-018-30625-0. PMID: 30108272. PMCID: PMC6092394. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85053409035&origin=inward.
Article
9. Ko J, Myeong J, Kwak M, Jeon JH, So I. 2019; Identification of phospholipase C β downstream effect on transient receptor potential canonical 1/4, transient receptor potential canonical 1/5 channels. Korean J Physiol Pharmacol. 23:357–366. DOI: 10.4196/kjpp.2019.23.5.357. PMID: 31496873. PMCID: PMC6717798. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85072645866&origin=inward.
Article
10. Berridge MJ. 1993; Inositol trisphosphate and calcium signalling. Nature. 361:315–325. DOI: 10.1038/361315a0. PMID: 8381210. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0027397544&origin=inward.
Article
11. Noh DY, Shin SH, Rhee SG. 1995; Phosphoinositide-specific phospholipase C and mitogenic signaling. Biochim Biophys Acta. 1242:99–113. DOI: 10.1016/0304-419X(95)00006-0. PMID: 7492569. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0028971813&origin=inward.
Article
12. Rhee SG, Choi KD. 1992; Regulation of inositol phospholipid-specific phospholipase C isozymes. J Biol Chem. 267:12393–12396. DOI: 10.1016/S0021-9258(18)42284-3. PMID: 1319994.
Article
13. Lee SB, Rhee SG. 1995; Significance of PIP2 hydrolysis and regulation of phospholipase C isozymes. Curr Opin Cell Biol. 7:183–189. DOI: 10.1016/0955-0674(95)80026-3. PMID: 7612269. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0028986998&origin=inward.
Article
14. Kim YH, Park TJ, Lee YH, Baek KJ, Suh PG, Ryu SH, Kim KT. 1999; Phospholipase C-delta1 is activated by capacitative calcium entry that follows phospholipase C-beta activation upon bradykinin stimulation. J Biol Chem. 274:26127–26134. DOI: 10.1074/jbc.274.37.26127. PMID: 10473563. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0033543237&origin=inward.
Article
15. Allen V, Swigart P, Cheung R, Cockcroft S, Katan M. 1997; Regulation of inositol lipid-specific phospholipase cdelta by changes in Ca2+ ion concentrations. Biochem J. 327(Pt 2):545–552. DOI: 10.1042/bj3270545. PMID: 9359428. PMCID: PMC1218828. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0030681061&origin=inward.
Article
16. Rebecchi MJ, Pentyala SN. 2000; Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev. 80:1291–1335. DOI: 10.1152/physrev.2000.80.4.1291. PMID: 11015615. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0033779101&origin=inward.
Article
17. Cifuentes ME, Delaney T, Rebecchi MJ. 1994; D-myo-inositol 1,4,5-trisphosphate inhibits binding of phospholipase C-delta 1 to bilayer membranes. J Biol Chem. 269:1945–1948. DOI: 10.1016/S0021-9258(17)42118-1. PMID: 8294445.
Article
18. Lukacs V, Thyagarajan B, Varnai P, Balla A, Balla T, Rohacs T. 2007; Dual regulation of TRPV1 by phosphoinositides. J Neurosci. 27:7070–7080. DOI: 10.1523/JNEUROSCI.1866-07.2007. PMID: 17596456. PMCID: PMC6672228. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34347354387&origin=inward.
Article
19. Rohács T, Lopes CM, Michailidis I, Logothetis DE. 2005; PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci. 8:626–634. DOI: 10.1038/nn1451. PMID: 15852009. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=17844373771&origin=inward.
Article
20. Erickson MG, Alseikhan BA, Peterson BZ, Yue DT. 2001; Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells. Neuron. 31:973–985. DOI: 10.1016/S0896-6273(01)00438-X. PMID: 11580897. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0035959942&origin=inward.
Article
21. Epe B, Steinhäuser KG, Woolley P. 1983; Theory of measurement of Förster-type energy transfer in macromolecules. Proc Natl Acad Sci U S A. 80:2579–2583. DOI: 10.1073/pnas.80.9.2579. PMID: 16593305. PMCID: PMC393869.
Article
22. Patterson G, Day RN, Piston D. 2001; Fluorescent protein spectra. J Cell Sci. 114(Pt 5):837–838. DOI: 10.1242/jcs.114.5.837. PMID: 11181166.
Article
23. Kwak M, Hong C, Myeong J, Park EYJ, Jeon JH, So I. 2018; Gαi-mediated TRPC4 activation by polycystin-1 contributes to endothelial function via STAT1 activation. Sci Rep. 8:3480. DOI: 10.1038/s41598-018-21873-1. PMID: 29472562. PMCID: PMC5823873. PMID: 6b1dac94af454f40b779ad80c02bde32. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85042546595&origin=inward.
24. Blair NT, Kaczmarek JS, Clapham DE. 2009; Intracellular calcium strongly potentiates agonist-activated TRPC5 channels. J Gen Physiol. 133:525–546. DOI: 10.1085/jgp.200810153. PMID: 19398778. PMCID: PMC2712973. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=66049141826&origin=inward.
Article
25. Garcia P, Gupta R, Shah S, Morris AJ, Rudge SA, Scarlata S, Petrova V, McLaughlin S, Rebecchi MJ. 1995; The pleckstrin homology domain of phospholipase C-delta 1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochemistry. 34:16228–16234. DOI: 10.1021/bi00049a039. PMID: 8519781. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0028787055&origin=inward.
Article
26. Ellis MV, U S, Katan M. 1995; Mutations within a highly conserved sequence present in the X region of phosphoinositide-specific phospholipase C-delta 1. Biochem J. 307(Pt 1):69–75. DOI: 10.1042/bj3070069. PMID: 7717996. PMCID: PMC1136746. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0028937655&origin=inward.
Article
27. Zhang Z, Okawa H, Wang Y, Liman ER. 2005; Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J Biol Chem. 280:39185–39192. DOI: 10.1074/jbc.M506965200. PMID: 16186107. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=28244499948&origin=inward.
Article
28. Liu D, Liman ER. 2003; Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci U S A. 100:15160–15165. DOI: 10.1073/pnas.2334159100. PMID: 14657398. PMCID: PMC299934. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0344149569&origin=inward.
Article
29. Liu B, Qin F. 2005; Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J Neurosci. 25:1674–1681. DOI: 10.1523/JNEUROSCI.3632-04.2005. PMID: 15716403. PMCID: PMC6725927. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=14044261739&origin=inward.
Article
30. Daniels RL, Takashima Y, McKemy DD. 2009; Activity of the neuronal cold sensor TRPM8 is regulated by phospholipase C via the phospholipid phosphoinositol 4,5-bisphosphate. J Biol Chem. 284:1570–1582. DOI: 10.1074/jbc.M807270200. PMID: 19019830. PMCID: PMC2615505. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=59449084852&origin=inward.
Article
31. Yudin Y, Lutz B, Tao YX, Rohacs T. 2016; Phospholipase C δ4 regulates cold sensitivity in mice. J Physiol. 594:3609–3628. DOI: 10.1113/JP272321. PMID: 27062607. PMCID: PMC4929334. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84977591935&origin=inward.
Article
32. Lukacs V, Yudin Y, Hammond GR, Sharma E, Fukami K, Rohacs T. 2013; Distinctive changes in plasma membrane phosphoinositides underlie differential regulation of TRPV1 in nociceptive neurons. J Neurosci. 33:11451–11463. DOI: 10.1523/JNEUROSCI.5637-12.2013. PMID: 23843517. PMCID: PMC3724548. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84880435653&origin=inward.
Article
33. Banno Y, Okano Y, Nozawa Y. 1994; Thrombin-mediated phosphoinositide hydrolysis in Chinese hamster ovary cells overexpressing phospholipase C-delta 1. J Biol Chem. 269:15846–15852. DOI: 10.1016/S0021-9258(17)40758-7. PMID: 8195239.
Article
34. Tsvilovskyy VV, Zholos AV, Aberle T, Philipp SE, Dietrich A, Zhu MX, Birnbaumer L, Freichel M, Flockerzi V. 2009; Deletion of TRPC4 and TRPC6 in mice impairs smooth muscle contraction and intestinal motility in vivo. Gastroenterology. 137:1415–1424. DOI: 10.1053/j.gastro.2009.06.046. PMID: 19549525. PMCID: PMC2757464. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=70349432267&origin=inward.
Article
35. Dresviannikov AV, Bolton TB, Zholos AV. 2006; Muscarinic receptor-activated cationic channels in murine ileal myocytes. Br J Pharmacol. 149:179–187. DOI: 10.1038/sj.bjp.0706852. PMID: 16894345. PMCID: PMC2013797. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33748480349&origin=inward.
Article
36. Lee KP, Jun JY, Chang IY, Suh SH, So I, Kim KW. 2005; TRPC4 is an essential component of the nonselective cation channel activated by muscarinic stimulation in mouse visceral smooth muscle cells. Mol Cells. 20:435–441. PMID: 16404161. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33644869882&origin=inward.
37. Thakur DP, Tian JB, Jeon J, Xiong J, Huang Y, Flockerzi V, Zhu MX. 2016; Critical roles of Gi/o proteins and phospholipase C-δ1 in the activation of receptor-operated TRPC4 channels. Proc Natl Acad Sci U S A. 113:1092–1097. DOI: 10.1073/pnas.1522294113. PMID: 26755577. PMCID: PMC4743816. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84955450086&origin=inward.
Article
38. Klein RM, Ufret-Vincenty CA, Hua L, Gordon SE. 2008; Determinants of molecular specificity in phosphoinositide regulation. Phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) is the endogenous lipid regulating TRPV1. J Biol Chem. 283:26208–26216. DOI: 10.1074/jbc.M801912200. PMID: 18574245. PMCID: PMC2533779. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=54449099889&origin=inward.
39. Liu B, Zhang C, Qin F. 2005; Functional recovery from desensitization of vanilloid receptor TRPV1 requires resynthesis of phosphatidylinositol 4,5-bisphosphate. J Neurosci. 25:4835–4843. DOI: 10.1523/JNEUROSCI.1296-05.2005. PMID: 15888659. PMCID: PMC6724779. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=18644381102&origin=inward.
Article
40. Rohacs T, Thyagarajan B, Lukacs V. 2008; Phospholipase C mediated modulation of TRPV1 channels. Mol Neurobiol. 37:153–163. DOI: 10.1007/s12035-008-8027-y. PMID: 18528787. PMCID: PMC2568872. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=53749084409&origin=inward.
Article
41. Murthy SN, Lomasney JW, Mak EC, Lorand L. 1999; Interactions of G(h)/transglutaminase with phospholipase Cdelta1 and with GTP. Proc Natl Acad Sci U S A. 96:11815–11819. DOI: 10.1073/pnas.96.21.11815. PMID: 10518533. PMCID: PMC18369. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0032718477&origin=inward.
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr